Annual Conference: Communicating Process Architectures
Communicating Process Architectures 2018,
the 40th. WoTUG conference on concurrent and parallel systems, takes place from
Sunday August 19th. to Wednesday August 22nd. 2018 and is hosted by
Professor Dr. Rainer Spallek,
Chair of
VLSI Design, Diagnostics and Architecture
at the Faculty of Computer Science,
Technische Universität Dresden, Germany.
The conference is organised by Dr. Spallek in collboration with Oliver Knodel and Uwe Mielke
and in partnership with WoTUG.
About WoTUG
WoTUG provides a forum for the discussion and promotion of concurrency ideas,
tools and products in computer science.
It organises specialist workshops and annual conferences that address
key concurrency issues at all levels of software and hardware granularity.
WoTUG aims to progress the leading state of the art in:
-
theory (programming models, process algebra, semantics, ...);
-
practice (multicore processors and run-times, clusters, clouds, libraries, languages, verification, model checking, ...);
-
education (at school, undergraduate and postgraduate levels, ...);
-
applications (complex systems, modelling, supercomputing, embedded systems, robotics, games, e-commerce, ...);
and to stimulate discussion and ideas on the roles concurrency will play in the future:
-
for the next generation of scalable computer infrastructure (hard and soft) and application,
where scaling means the ability to ramp up functionality (stay in control as complexity increases)
as well as physical metrics (such as absolute performance and response times);
-
for system integrity (dependability, security, safety, liveness, ...);
-
for making things simple.
Of course, neither of the above sets of bullets are exclusive.
WoTUG publications
A database of papers and presentations from WoTUG conferences is here.
The Abstract below has been randomly selected from this database.
An environment for transputer CPU load measurements
By Giuseppe de Pietro, Umberto Villano
In a multiprocessor system an uneven load balancing can usually dramatically reduce the performance of the parallel program running on it Hence it is of paramount importance to be able to estimate the CPU and communication loads of every task before the program is actually executed so that the optimal application partitioning can be found. In this paper the problem of CPU load measurement is tackled, and a measurement environment is illustrated in which the processes to be allocated to the processors in the network are run in quasi-concurrence on a single Transputer. A technique based on active process list manipulation makes it possible to perform a fairly accurate measurement of the CPU activity of the parallel processes in the application using the Transputer internal tinier as a reference clock.
Complete record...
|