WoTUG - The place for concurrent processes

Annual Conference: Communicating Process Architectures

Communicating Process Architectures 2017, the 39th. WoTUG conference on concurrent and parallel systems, takes place from Sunday August 20th. to Wednesday August 23rd. 2017 and is hosted by Kevin Vella, Head of Department in Computer Science at the University of Malta. Conference sessions will take place at the Victoria Hotel in Sliema, Malta.

About WoTUG

WoTUG provides a forum for the discussion and promotion of concurrency ideas, tools and products in computer science. It organises specialist workshops and annual conferences that address key concurrency issues at all levels of software and hardware granularity. WoTUG aims to progress the leading state of the art in:

  • theory (programming models, process algebra, semantics, ...);
  • practice (multicore processors and run-times, clusters, clouds, libraries, languages, verification, model checking, ...);
  • education (at school, undergraduate and postgraduate levels, ...);
  • applications (complex systems, modelling, supercomputing, embedded systems, robotics, games, e-commerce, ...);
and to stimulate discussion and ideas on the roles concurrency will play in the future:
  • for the next generation of scalable computer infrastructure (hard and soft) and application, where scaling means the ability to ramp up functionality (stay in control as complexity increases) as well as physical metrics (such as absolute performance and response times);
  • for system integrity (dependability, security, safety, liveness, ...);
  • for making things simple.
Of course, neither of the above sets of bullets are exclusive.

WoTUG publications

A database of papers and presentations from WoTUG conferences is here. The Abstract below has been randomly selected from this database.

Shared-Clock Methodology for Time-Triggered Multi-Cores

By Keith F. Athaide, Michael J. Pont, Devaraj Ayavoo

The co-operative design methodology has significant advantages when used in safety-related systems. Coupled with the time-triggered architecture, the methodology can result in robust and predictable systems. Nevertheless, use of a co-operative design methodology may not always be appropriate especially when the system possesses tight resource and cost constraints. Under relaxed constraints, it might be possible to maintain a co-operative design by introducing additional software processing cores to the same chip. The resultant multi-core microcontroller then requires suitable design methodologies to ensure that the advantages of time-triggered co-operative design are maintained as far as possible. This paper explores the application of a time-triggered distributed-systems protocol, called shared-clock, on an eight-core microcontroller. The cores are connected in a mesh topology with no hardware broadcast capabilities and three implementations of the shared-clock protocol are examined. The custom multi-core system and the network interfaces used for the study are also described. The network interfaces share higher level serialising logic amongst channels, resulting in low hardware overhead when increasing the number of channels.

Complete record...

Pages © WoTUG, or the indicated author. All Rights Reserved.
Comments on these web pages should be addressed to: www at wotug.org