
Source level debugging Handel-C

Debug the FPGA, Herman Roebbers

07-Sep-2008



July 11, 2011 2

Introduction

• TASS and Handel-C history

• The problem
• Solution

• Approaches
• Screen shots

• Conclusions
• Future work



July 11, 2011 3

TASS and Handel-C, a history

• TASS is a software house in Eindhoven, NL

• Ex-Philips
• Embedded Software

• Approx. 200 people
• Using Handel-C for student projects since 

2001

• Several Commercial projects with Handel-C



July 11, 2011 4

The problem

• Sometimes Handel-C simulation and reality 
do not agree

• Handel-C simulation of HW components can 
take ages

• If it doesn’t work, where/what is the problem
• A quick peek would make things clear very 

quickly



July 11, 2011 5

Solution

• We want a graphical Handel-C source level 
debugger

• We know there are restrictions, but we may 
be able to live with them.

• Let’s put some students to work!



July 11, 2011 6

Approaches

1) Insert code at the EDIF level
– Difficult to know names of variables at EDIF level
– Variables or names are optimized away
+ No changes to Handel-C source
+ Not so intrusive



July 11, 2011 7

Approaches

2) Insert code at the Handel-C level
– Need a (primitive) Handel-C parser
– No replicated par{ } support yet
– Need to hide extra Handel-C code when 

debugging
– Use more FPGA resource
+ Easier to do
+ Can relate to names/arrays



July 11, 2011 8

Requirements

• Source level debugger

• Set / remove breakpoints
• Detect which breakpoints are hit

• Inspect/change program variables
• Do single stepping

• Make debugger communication independent 
of communication mechanism(RS232/JTAG)



July 11, 2011 9

Results

Source level debugger based on approach 2

• Set / remove breakpoints
• Detect which breakpoints are hit

• Inspect/change program variables when 
program is in breakpoint

• Do single stepping by setting/removing bpts

• RS-232 communication with debugger 



July 11, 2011 10

Results



July 11, 2011 11

Results



July 11, 2011 12

Results

• Inspect / change variables

• Variables presented in 
declared type 
(signed/unsigned, char)

• Only after associated 
breakpoint is hit

• Only change ticked 
variables



July 11, 2011 13

Limitations

• Need a separate program to
– Show Handel-C source without added 

instrumentation
– Indicate variables to be inspected
– Set / remove / inspect breakpoints

• Only RS-232 comms with debugger 
implemented

• No support for 
– chan, ram, rom, signal, WOM, struct, mpram



July 11, 2011 14

Future work

• Use Handel-C parser instead of homebrew

• Integrate with Handel-C DK GUI
• Add JTAG /USB communication mechanism

• Add conditional / data breakpoints
• Add more complex triggering

• Support for replicated par’s



July 11, 2011 15


