Shared-clock methodology for time-triggered multi-cores

Keith F. Athaide

Project supervisor: Michael J. Pont Technical supervisor: Devaraj Ayavoo

Communicating Process Architectures (CPA) 2008 8th-10th September 2008

Embedded Systems Laboratory http://www.le.ac.uk/eg/embedded

Overview

- Aims
- Execution policies
 - Co-operative
 - Pre-emptive
- Execution architectures
- Shared-clock architecture
 - Algorithm for non-broadcast topologies
- Multi-processor microcontroller architecture
- Case study description
- Results
- Conclusions

Aims

- Maintain the predictability and robustness of co-operative single-processor systems
 - Custom system-on-chip (SoC)
 - Time-triggered applications
- Heterogeneous processors
- How to synchronise the different processors?

Execution policy

- System has many functions
- Functions often decomposed into discretely executing blocks called tasks
 - Periodic or aperiodic tasks
- Periodic tasks may have static or dynamic periods
- Tasks have deadlines
- Tasks are executed according to a policy
 - Co-operative execution policy
 - Pre-emptive execution policy

Co-operative execution policy

- Tasks must yield control when required
- Resource sharing needs no complex locking mechanisms
 - Same processor, one execution thread
- System responsiveness inversely related to longest task execution time

Pre-emptive execution policy

- Tasks can interrupt each other
- Interruption controlled by priorities
- Predictability dependent on uniformity in pre-empting instructions
- Problems such as priority inversion

Scheduler architectures

Event-triggered

- Multiple events
- Feasibility depends on
 - the number of events expected
 - the number of events serviceable by hardware
- "Construct by correction"
- Time-triggered
 - Single event
 - Other events sensed by polling
 - "Correct by construction"
 - Can be power hungry

Shared-clock architecture

Shared-clock non-broadcast topology

- Existing implementations need communication topologies supporting broadcasts
 - Buses like CAN
- Can be simulated by point-to-point transmissions
 - Hardware or software
- Tree broadcast
 - MPI collective communication algorithm
- Lag due to point-to-point transmissions

Multiprocessor architecture

- Network Interface Module (NIM)
 - Messaging component as peripheral or co-processor
- Debug cluster
 - Write to memories
 - Set breakpoints, stepping, etc.

Network interface modules (NIMs)

- Asynchronous communication
- Error detection
 - 12-bit checksums (CRCs)
- No automatic error correction
 - Errors cause no extra communication
 - Software notes and corrects errors
- Static routing
- Serial-parallel communication
- Variable number of channels
- Lack of predictability in communication latency might affect overall predictability of the sharedclock system

PH Processor

- Single interrupt
 - Built for time-triggered applications
 - Multiplexed from any number of sources
- Soft-core processor (VHDL source available)
- 32-bit reduced instruction set computer (RISC)
- MIPS I ISA (excluding patented instructions)
- Harvard architecture
- 32 registers
- 5-stage pipeline

Hardware implementation

Hardware usage of NIMs

Case study description

- Nine nodes
 - Mesh topology
- Three scheduler types
 - SCH1: P1 as master; P1 sends Ticks only when previous is acknowledged
 - SCH2: P1 as master; P1 sends Ticks in turn
 - SCH3: Tree broadcast
- Relative times measured

Timer sense times (microseconds)

Timer sense times for SCH3 (microseconds)

Embedded Systems Laboratory http://www.le.ac.uk/eg/embedded

Timer sense time jitter (microseconds)

Embedded Systems Laboratory http://www.le.ac.uk/eg/embedded

Timer sense time jitter in SCH3 (microseconds)

Conclusions

- A custom multiprocessor microcontroller was developed for time-triggered applications
- The shared-clock protocol was employed on a 9 node mesh version of this microcontroller using a broadcast simulation algorithm
- Absorption of the broadcast simulation algorithm into software allows the node sending the ticks to worry only about the ones it is connected to – a scalable situation
- The delay and jitter in SCH3 could be improved