
Communicating Process Architectures 2003 185
Jan F. Broenink and Gerald H. Hilderink (Eds.)
IOS Press, 2003

Formal Contracts:
Enabling Component Composition

Marcel BOOSTEN
Philips Medical Systems, P.O. Box 10000, 5680 DA Best, Netherlands

Marcel.Boosten@philips.com

Abstract. Traditional component interaction is based on interface calls and
callbacks. Such interaction can introduce integration faults, i.e., side effects at the
moment of component integration. Solutions to such problems can be hard to apply,
and may require drastic changes in the design of the involved components. This
paper introduces Formal Contracts, a software construct that allows side-effect free
component interaction, and thereby avoids the introduction of integration faults.
Furthermore, via a state machine representing the inter-component contract, Formal
Contracts, in addition to the static aspects, formally specify the dynamic aspects of
component interaction. Formal Contracts are a pragmatic software mechanism that
supports the full development cycle: from the specification and decomposition until
the debugging, composition, and test of a system.

1 Problem Statement

Research, as in Trew[2], has identified that during software Component Integration, so
typically at a relatively late stage of the development cycle, the following integration issues
make the development cycle costly and unpredictable:
• Race conditions in component interaction
• Re-entrant callbacks
• State-inconsistency between components and unexpected state-event combinations

The integration issues listed are only revealed at the moment components are integrated
into a larger whole. These problems are largely caused by the interface definitions between
components being unclear and component interaction containing side-effects that only
show up during component integration. This paper claims that by using a different
mechanism for component interfaces, the Formal Contracts, all these problems can be
avoided by design.

Furthermore, Formal Contracts facilitate pragmatic, but also formal, specification of
component interaction, and, with negligible additional effort, facilitate automated testing.
Formal Contracts therefore combine "design for testability"[1] with "design for ease of
testing"[1], and support the whole of the development cycle.

Formal Contracts are based on the principles of CSP: using these principles, the
integration issues are avoided by design, thereby enabling component composition. A
Formal Contract can be considered to be a generalised form of a Channel, or collection of
Channels. A Channel is an explicitly instantiated inter-component interface in Occam - a
CSP-based programming language. The basic idea behind Formal Contracts is the addition

186 M. Boosten / Formal Contracts

of a formal - i.e., machine readable, executable, and verifiable - specification of the
interaction between components to the explicitly instantiated interface between the
components. Formal Contracts specify, implement, and test the dynamics of the interaction
between components, and thereby pragmatically support the whole of the software
development cycle.

2 Technical Aspects of Formal Contracts

In this section, we will introduce, illustrate, and motivate the technical aspects of Formal
Contracts. This section is meant to give the reader an in-depth understanding of the
combination of techniques and concepts used in Formal Contracts, such that at a later stage
the advantages of the use of Formal Contracts can be motivated.

2.1 Contract, Role, Component

Formal Contracts define the interaction between a number of Roles. Each Role is an
abstract entity that interacts with the other Roles that are involved in the Formal Contract.
When instantiating a Formal Contract, each Role of the Formal Contract has to be fulfilled
by an instantiated Component. A Role is an abstract base class or interface, i.e., a collection
of methods.

2.2 Formal Contracts exist as components

A fundamental idea behind Formal Contracts is their explicit existence: each Formal
Contract is what one would normally consider being a, even though relatively small,
component in the system. I.e., a Formal Contract is a self-contained entity that provides a
number of interfaces. The interfaces it provides are the Roles of the Formal Contract. The
Components use the Roles, i.e. use the interfaces provided by Formal Contracts. This is
illustrated with an example in Figure 1.

ClientRole

TimerRole

Machine

AlarmClock

FormalContract

TimeOut

Figure 1: The Formal Contract "TimeOut" with two Roles "ClientRole",
"TimerRole", and two Components, "Machine" and "AlarmClock", that use, and
thereby implement, their Role.

Notice that this approach differs significantly from the standard approach in Object

Orientation (OO) and component based infrastructures: Formal Contracts are the new

 M. Boosten / Formal Contracts 187

interface between Components; Formal Contracts provide the interfaces for component
interaction, whereas traditionally, Components would provide interfaces themselves, and
directly use the interfaces provided by other components.

Traditional component interfaces are asymmetrical: a component is either a user or
provider of an interface. Formal Contracts are symmetrical: Components have to fulfil the
Formal Contract when using it.

Furthermore, notice that even though the approach conceptually differs significantly,
still, standard component frameworks can be used to implement Formal Contracts.

2.3 Formal Contracts have explicit and observable state

Another fundamental idea to Formal Contracts is the fact that Formal Contracts have state,
and that a Formal Contract is a state machine (or small program, if you like). Figure 2
illustrates interaction between two components in the traditional setting. Both components
have an internal state, however, typically, components maintain an abstraction of each
others state, the "externally observable state" to ensure that the messages send (or interface
methods they call) occur as specified. This approach can easily become complicated, and is
therefore error prone.

In Formal Contracts, we use a different approach: Formal Contracts have state. This
state should not be considered to be the state of any of the components involved with the
contract; no, it is the state of the Formal Contract itself. This way, implementers of
Components need not implement abstractions of the state of other components; they can
simply ask the Formal Contract for its current state, if they would want to know it. Formal
Contracts export their state via read methods. These read methods -of course- do not
change the Formal Contract's state.

The following code illustrates Formal Contract initialisation and the state read methods.

 class TimeOut : FormalContract
 {
 private:
 state : IDLE | COUNTINGDOWN | TIMEDOUT | CANCELLED;
 public:
 TimeOut::TimeOut() { state = IDLE; }
 // Observable State
 Bool TimeOut::getState()
 {
 return state;
 }
 ...
 }

2.4 Specifying and verifying dynamic behaviour

Another fundamental idea of Formal Contracts is that they specify the dynamic behaviour,
simply by coding a small state machine that covers the full dynamic behaviour.

Formal Contracts define the relation between a number of Roles. Each Role consists of a
number of state modification methods, that based on the parameters passed via the method,
adjust the state of the Formal Contract. The state change is observable via the state read
methods.

The implementation of the state modification methods within a given Formal Contract

188 M. Boosten / Formal Contracts

specifies formally the precondition and the effect on the state of the Formal Contract.
Preconditions are verified via assertions, similar to Meyer's approach [8].

 class TimeOut : FormalContract
 interface TimeOutClientRole
 interface TimeOutTimerRole
 {
 ...
 int timeInSeconds;

 // Observable State
 ...
 int TimeOut::getTimeInSeconds() { return timeInSeconds; }

 // ClientRole
 void TimeOut::start(int aTimeInSeconds) {
 assert(state == IDLE);
 timeInSeconds = aTimeInSeconds;
 state = COUNTINGDOWN;
 }

 void TimeOut::cancel() {
 assert(state != IDLE);
 if (state == COUNTINGDOWN) {
 state = CANCELLED;
 }
 }

 // TimerRole
 void TimeOut::timeOut() {
 assert(state == COUNTINGDOWN);
 state = TIMEDOUT;
 }
 }

The state diagram of this Formal Contract is shown in Figure 2.

COUNTINGDOWN CANCELLED

TIMEDOUT

IDLE
start cancel

timedOut

cancel

Figure 2: State diagram of Formal Contract TimeOut. The lined arrows represent
the transitions caused by the ClientRole, the dotted arrow represent the transitions
caused by the TimerRole.

 M. Boosten / Formal Contracts 189

In case the timeOut method is called while the state is IDLE, the assertion fails. The
Component that plays the TimerRole can in that case easily be identified as the cause of the
problem. Similarly, when the cancel method is called in state IDLE, the ClientRole is not
well fulfilled. Typically, the Component that fails the Contract can easily be identified:
either via the debugger, or via logging information of the method called and the current
state of the Formal Contract. While integrating components, such assertions to pinpoint
problems can help significantly.

Furthermore, while performing tests at component level, the Formal Contracts are to be
present as well. Violations of Formal Contracts are to be eliminated during component-
level tests.

2.5 Base Class for Formal Contracts extends component infrastructure

To make it even more explicit that Formal Contracts exist as implementation entities, a
class is used as the base class for all Formal Contracts. Of course, functionality that is
common by all Formal Contracts is implemented in that class. The Formal Contract class
should be considered an extension of the component infrastructure.

2.6 Observer Pattern with Asynchronous Contents-Free Notification

Formal Contracts use the Observer pattern[9], but in a modified form. The Observer
pattern is a very powerful decoupling and abstraction mechanism. It forms the basis for the
popular Model-View-Controller pattern. The main disadvantage of the Observer pattern is
the risk of introducing re-entrancy[3]. Re-entrancy problems are one of the major risks
during integration testing[1]. Formal Contracts avoid the re-entrancy problem completely
by design: Asynchronous Notification is used, instead of the Observer pattern's
Synchronous Notification. Figure 3 illustrates Asynchronous Notification.

#notify()

FormalContract

EventQueueEventQueue
ModifyEvent

Component in Role X Role X Role Y Component in Role Y

Figure 3: Asynchronous Notification by communicating the event via a queue to the
Observing Components.

Another important aspect of the notification events used by Formal Contracts is them

being contents free. The reception of a notification event indicates that the Formal Contract
could have changed state (possibly it did not). It does not provide any additional
information, for example not even an indication of the kind of state change that has
occurred. By doing so, the Observing Components are forced to consult the Formal
Contract to obtain the up-to-date status.

Due to the asynchronous (buffered) communication between Formal Contract and
Observing Component, contents of a notification event would be likely not to resemble the
state of the contract at that moment in time, misinterpretation of such contents could easily
lead to state inconsistency problems and race conditions. These problems are avoided by

190 M. Boosten / Formal Contracts

using contents-free notification events.
Each Formal Contract notifies each of its state changes. This is illustrated in the

following code example:

 void TimeOut::start(int aTimeInSeconds)
 {
 assert(state == IDLE);
 timeInSeconds = aTimeInSeconds;
 state = COUNTINGDOWN;
 notify();
 }

The Formal Contract base class provides attach and detach functionality that allows

Components to subscribe and unsubscribe to notification events generated by the Formal
Contract. It is no problem for a Component to miss out on notification events that are
generated before its first subscription to the Formal Contract: notification events are
contents-free, by inspecting the state of the Formal Contract, newly subscribed Components
can synchronise their internal state to that of the Formal Contract. It is the responsibility of
each component to expect all specified series of state transitions (caused by other
Components using the Formal Contract) to have occurred in-between inspections of the
Formal Contract.

2.7 Consistency via a Reentrant Locking mechanism

In each Component infrastructure it is important to allow the use of multi threading and/or
multi processing. As a consequence, Formal Contracts have to be instance MT-safe, i.e.,
safely usable by multiple threads or processes. Therefore, a locking mechanism is
introduced: each method of each Formal Contract locks its Formal Contract during data
access, and is therefore an atomic operation on the Formal Contract. Here are two
examples:

 void TimeOut::start(int aTimeInSeconds) {
 lock();
 assert(state == IDLE);
 timeInSeconds = aTimeInSeconds;
 state = COUNTINGDOWN;
 notify();
 unlock();
 }

 Bool TimeOut::getState() {
 enum theState;
 lock();
 theState = state;
 unlock();
 return theState;
 }

However, to avoid race conditions, it can be important for a Component to base

decisions on how to change the Formal Contract on the current state of that Formal

 M. Boosten / Formal Contracts 191

Contract. When the AlarmClock would use the following code, this would introduce a race
condition:

 if (contract->getState() == COUNTINGDOWN) {
 // Race condition here when contract would be cancelled,
 // since timeOut() is only allowed in the COUNTINGDOWN state.
 contract->timeOut();
 }

The race condition occurs because the contract may change while decisions based on the

contract's state are taken. We introduce a re-entrant locking mechanism to allow
Components to avoid of such race conditions:

 contract->lock();
 if (contract->getState() == COUNTINGDOWN) {
 contract->timeOut();
 }
 contract->unlock();

The locking mechanism is re-entrant; this means that lock/unlock pairs on the same

Formal Contract can be nested without causing deadlock. Often, the use of the locking
mechanism can be avoided by choosing the state modification methods --and therefore the
state machine itself-- carefully. For example, by changing the timeOut() method from:

 void TimeOut::timeOut() {
 lock();
 assert(state == COUNTINGDOWN);
 state = TIMEDOUT;
 unlock();
 }

into:

 void TimeOut::timeOut() {
 lock();
 if (state == COUNTINGDOWN) {
 state = TIMEDOUT;
 }
 unlock();
 }

Then, to avoid the race condition in the AlarmClock, no locks are needed anymore. By

introducing the design rule that a Component are allowed to have locked at most one
Formal Contract at any time, deadlock problems are avoided.

Note that the example in this section is simplistic. While developing a Formal Contract,
attention should be paid to make the Roles as intuitive as possible, and to avoid the need for
lock/unlock outside the Formal Contract, so in the calling Component, as much as possible.
From a testability point of view, one can also argue that Formal Contract should contain as
little assertions as possible, and that therefore changes that replace an assertion by an if
statement are always (or typically) to be preferred.

192 M. Boosten / Formal Contracts

The sequence diagram in Figure 4 illustrates the interaction with the Formal Contract.
The diagram shows how the Machine starts the AlarmClock via the formal contract by (1)
changing the state of the contract, (2) the AlarmClock being notified of a changed contract,
(3) the AlarmClock discovering that via getState that it has to start its internal timer.
Furthermore, the diagram shows a situation in which the cancel of the timeout and the
timedOut occur simultaneously: the Formal Contract decides which of the two events took
place first (cancel in this example), and notifies both the Machine and the AlarmClock of
this fact. This way, all possible inconsistencies due to differences in interpretations from
either side are avoided: both Machine and AlarmClock have the same view on the situation
that occurred; they both find out that the TimeOut has been cancelled.

 Machine TimeOut

CO

AlarmClock

Figure 4: Seque
Contract TimeO

2.8 Shared ownersh

Formal Contracts are
management of Formal
reference counting. T
automatically de-allocat
also fine solutions.

3 Advantages of Form

3.1 Avoidance of Sta

Each Formal Contract is
the state machine th
communication takes pl
mechanism. Componen
communicate: inconsist
Start(10)

modifyEvent
CANCELLED

e

UNTINGDOWN

t
t

e
C

nce diagram illustrating in
ut, and the AlarmClock.

ip via reference counting

shared by the Compon
Contracts is organised via a
he Component that is la
es it. Other solutions, for e

al Contracts

te Inconsistencies and of R

 always in a specified state
at implements the Form
ace via the Formal Contrac
ts can read and change the
encies and race condition
modifyEvent
C

OU

te

en
n
st
xa

ac

, i.
al
ts
 F
s c
getState

NTINGDOWN 10

9
…
1
0
cancel
t
modifyEven
timedOut
t
modifyEven

modifyEven

modifyEven
getStat
getState
getStat

ANCELLED

raction between Machine, the Formal

ts fulfilling the Roles. Life cycle
access/de-access mechanism based on
 to de-access the Formal Contract,
mple based on garbage collection, are

e Conditions

e., in a state that can be reached by
Contract. All inter component

 and their contents-less notification
ormal Contract's state and thereby
an easily be completely avoided,

 M. Boosten / Formal Contracts 193

while facilitating the use of multi threading and other forms of concurrency.

3.2 Avoidance of Re-entrancy Problems

Threads of different Components will never `pass through' a Formal Contract, and therefore
never enter the execution domain of other Components. Each Formal Contract acts as a
thread barrier. It allows communication and synchronisation between threads, however, it
stops threads from entering each others domain. This way, inconsistency and re-entrancy
problems related to multi-threading across component boundaries are avoided by design.

Often, in sequential OO programming, the use of anonymous call-backs are the cause of
re-entrancy problems. However, even in situations where direct interface calls are used, re-
entrancy problems[5] are likely to occur. Formal Contracts eliminate these problems by
design, and are therefore also important for usage in single threaded applications.

3.3 Formal Contracts during the development lifecycle

Integration testing often has to take place relatively late in the project life cycle. It is
crucial to avoid integration and integration test problems by design, since at the stage in the
project that integration problems are discovered, it is typically too late to solve the
problems without project slippage. Improving in the area of system integration is important
for many organisations developing large and complex systems. This is only possible via an
integral approach that addresses the full development cycle, and not just the last phase - at
which time it is too late to solve the problems structurally:
• Interface Specification and System Decomposition Formal Contracts, or actually the

state machine inside, is the formal specification of the interaction between Components.
In addition to the definition of the static aspects of component interaction via method
names and corresponding parameters, Formal Contracts also specify fully and formally
the dynamic aspects of the Component interaction.

• Component Development and Component Testing Formal Contracts facilitate
automated testing right from the start of the component development until the end of the
integration phase. In principle, the "output" of each Component is automatically and
always tested by the Formal Contract. Furthermore, by observing the state of the
Formal Contracts that are to be fulfilled by a specific Component, a lot of insight in the
behaviour of the Component becomes visible. Formal Contracts therefore are a
powerful debugging tool as well. Furthermore, Formal Contracts can facilitate
deadlock analysis across multiple Components. The state of each Formal Contract
provides insight in "who is waiting for who". Furthermore, I believe that techniques for
deadlock cycle detection in designs can exploit Formal Contracts, and thereby make
automated deadlock detection possible even for large real-life component structures. Of
course, significant research would be needed to proof this, and to fill in the many more
details.

The use of Formal Contracts requires a new way of thinking about Component interaction.
At first sight, it might look like a lot of administrative overhead. And, indeed, for very
small and trivial interfaces it does introduce significant administrative overhead. However,
Formal Contracts are meant as specification, communication, and verification medium
between different Components, so between groups of people.

At that point, Formal Contracts become a very neat, powerful, and low-overhead tool.
My own experience has shown that the approach is also applicable at a much smaller scale,
so as interface between "one" or "few man" components.

194 M. Boosten / Formal Contracts

4 Comparison to State-of-the-Art Techniques

4.1 Interface Definition Language (IDL)

Today, the IDL is widely used to specify component interfaces. IDL is limited to the
definition of groups of methods or functions. Formal Contracts extend IDL with a means to
formally specify the dynamic interface behaviour, and to verifying the Component's
compliance to it. Furthermore, in contrast to IDL, Formal Contracts has been designed to
avoid race conditions, re-entrance problems, and state-inconsistencies.

IDL is a language independent of any specific programming languages. It provides
language de-coupling between components. This aspect of IDL can be used for Formal
Contracts as well: Formal Contracts are (small) components of which the interfaces
methods, the Roles, can be published in IDL or some other interface definition language
used by the component infrastructure.

4.2 Model - Observer based Decoupling

Model - Observer based decoupling is sometimes used for the definition of component

interfaces. Compared to Formal Contracts, these approaches typically do not eliminate race
conditions and re-entrancy problems via the design of the Component interconnect.
Furthermore, these approaches typically do not model the dynamic interaction at all.
Typically, the Model that contains the state shared between Components is a data structure
of which the fields can be changed any time into any of its values. Components fulfilling
the interface should be able to deal with such state changes. The dynamic aspects of the
interface are not well covered by such approach. Typically, the approach allows all state
transitions on the model, and therefore the dynamic behaviour need not be specified – an
approach which is practically unusable in case of non-trivial control applications.

4.3 Trew's Design for Testability approaches

In his paper[4], Trew describes design patterns that can be applied to eliminate the typical
integration problems: race conditions, re-entrancy problems, state inconsistencies. Formal
Contracts are a very specific combination of such design patterns. By using Formal
Contracts for all interactions between Components, many of the difficult integration
problems can be avoided. However, note that, even if Formal Contracts would be applied
rigorously in a design, several of the design patterns identified by Trew would still be
needed for more specific or exceptional situations.

Formal Contracts address the main integration problems identified by Trew, however,
they also introduce a formal way of component interaction specification that decreases the
chance of interpretation problems. Furthermore, Formal Contracts can very well support a
new way of working: they can become the leading specifications during decomposition, and
the glue during composition. Formal Contracts integrate system decomposition, interaction
specification, interaction verification, and component composition into a streamlined
approach.

4.4 Communicating Sequential Processes (CSP)

Within CSP research groups [5][6], there is a very clear awareness that component
interaction should takes place across well-defined side-effect-free interfaces. Furthermore,
they noticed that today’s Object Oriented and Component infrastructures do not provide

 M. Boosten / Formal Contracts 195

such well-defined interfaces. Re-entrancy and concurrency problems violate the promised
and promoted “Encapsulation” characteristic that should enable black box reusable
components and facilitate assembly of systems by component composition.

The work presented in this paper is based on the fundamental ideas behind CSP, and has
been inspired by the work of the research group to improve interaction definitions, but, at
the same time, takes industrialist's experience and way-of-working into account.

Comparing the work presented in this paper with work performed on CSP is difficult due
to the variety of work performed. It is important to notice that Formal Contracts use the
CSP principles, therefore, it is possible to use the mathematics of CSP to specify and
analyse properties of systems constructed with Formal Contracts as well.

If we compare the work performed here with work performed within the CSP-based
research groups that focus on an embedding of CSP principles in programming languages,
we clearly see a number of differences.
• XToYChannels Within JCSP and JavaPP, a relatively large number of Channels is

introduced: OneToOneChannel, OneToManyChannel, ..., AnyToAnyBufferedChannel.
The approach presented here generalises this to a user-definable state machine. The
advantage of the state machine is that it combines logically dependent Channels into a
single whole of which the dynamic behaviour is both formally and understandably
specified.

• Channels are typically only half a Contract Channels are communication primitives
between Processes. However, since channels are typically unidirectionally in Occam,
JCSP and JavaPP, in order to specify the dynamic behaviour between two Processes,
typically one would have to define a set of sequences of interaction across a number of
channels between the two processes. A Contract is the complete relation between two
processes, and is N-directional.

• Event based vs. Process Based The approach presented here allows both Process-
based implementations and Event-based implementations: an Event-Based process is a
main loop with a large ALT inside in which all events are handled. The decision
between an Event based vs. Process based should be made on a per case bases.

• Formal Contracts enabling combined input output ALTs In contrast to all the
CSP-based implementations that are currently available, Formal Contracts enable both
input and output ALTs, and, just as natural, combinations of the two. A combined input
output ALT could be the following:

do {

 WaitForEvent(Contract1, Contract2);
keepwaiting = FALSE;
if (contract1->canWrite()) {
 contract1->output(value1)
} else if (contract1->canRead()) {
 value2 = contract2->input()
} else keepWaiting = TRUE;

 } while (keepWaiting);

• Formal Contracts combine synchronous and asynchronous communication The

CSP-based approaches are mostly based on synchronous communication. Formal
Contracts combines the two: communication with the contract is synchronous but
basically non-blocking. The communication of the modification events is asynchronous,
and 'overwriting'. Processes can decide to perform a blocking wait on modification
events. The author of this article is convinced that the model presented here can easily

196 M. Boosten / Formal Contracts

be modelled in CSP, especially because the asynchronous communication of
modification events is 'overwriting'. In Formal Contracts, Processes typically do not
synchronise with each other, only with the Formal Contract. Compared most existing
CSP-based approaches, this has the advantage that by default synchronisation (which
can be costly, since it reduces parallelism) is avoided.

4.5 Jonkers' API Structure and Model-Based Specification

In his paper [7], Jonkers presents the API Structure and Specification method used for
DVP2. There are several similarities between his approach, and the approach presented in
this paper: he recognises and identifies contracts as combinations of different interfaces; he
also identifies roles, and makes components fulfil those roles. He also recognises that the
contract is an excellent way for people to agree on the interface.

Jonkers uses a Model-Based approach to specify the behaviour of each role: "abstract
implementations" of each Role are used for specification purposes. Formal Contracts
completely inverse this specification: instead of providing "abstract implementations" for
each Role, the true implementation of the interaction is specified by implementing a Formal
Contract. This way, the obligations and expectations of each Role and their
interdependencies are made explicit. Formal Contracts are integrated as small components
into the system: they are more than specification, they are the interaction medium. Formal
Contracts facilitate the verification of the behaviour of each Component: the Formal
Contract checks input events versus its internal state. Using Jonkers' approach, verifying
that a Component fulfils its Model, its "abstract implementation", is much more
complicated. The Formal Contracts approach can very well be combined with a Model-
Based development approach, in that case, it can be considered an extension to the Model-
Based approach. Formal Contracts avoid race conditions, re-entrancy problems, and state
inconsistencies. These fundamental integration aspects have not been addressed by
Jonkers' approach.

In other work, Jonkers has used Interaction Objects for communication and
synchronisation. The objective of this research was different: it was meant to minimise the
coupling between Processes aiming at minimisation of communication latency and
throughput impact on the whole of the system.

5 Background, Context, and Experience so far

The solution presented in this paper is the result of accumulated fragments of experience

in the area of component specification and integration. The first inspiration for this
approach has come from the 1998-2000 Communicating Process Architectures (CPA)
conferences, especially due to presentations and discussions with Peter Welch, Andrew
Laurence, and Tom Locke. Thanks, it has always been very interesting!

During my working period at Philips Medical Systems, Product Management Group
(PMG) Computed Topography (CT), I was faced with component integration problems, and
with multi-threading aspects. I would like to thank my colleague CT architects at that time:
Peter Jaspers, Phil van Liere, Jacco Wesselius, Joland Rutgers, for being as stubborn as
myself, and thereby -in the end- pushing me to find the solution as described in this paper.
I have implemented the approach described in this paper in the multi-threaded so-called
"Multi-Scan" controller in the CT software; one of its most complex parts. The
implementation demonstrated a significant reduction in complexity compared to an
approach based on asynchronous message passing, in which the multitude in race
conditions was hard to handle.

 M. Boosten / Formal Contracts 197

Furthermore, I'm very grateful for Tim Trew's work. He has very well used his
architectural experience to identify the major integration problems in practical industrial
situations. In my experience, it was extremely difficult to convince highly experience
architects of the problems at hand, and of the need for a structural solution. However, if the
consequences are in the order of many man-years of additional effort, convincing people
will be easier. Tim Trew's award winning “most influential” paper[1] convinced people of
the relevance of such work. Consequently, I decided to write this paper on Formal
Contracts down. Some results of discussions with Tim Trew and a quick discussion with
Hans Jonkers have been incorporated in this paper.

6 Conclusions

Formal Contracts are a software construct enabling side-effect-free component interaction.
Thereby, Formal Contracts avoid the introduction of major integration faults. Furthermore,
Formal Contracts specify in a human readable and machine executable form the dynamic
aspects of component interaction. They check the state of the contract versus incoming
modification requests. These characteristics make Formal Contracts a pragmatic tool that
supports the full development lifecycle: from the specification and decomposition until the
debugging, integration, and test of the system.

7 References

[1] Tim Trew. Demystifying Design for Testability. Philips Software Conference June 2002.
[2] Tim Trew. The aims of Integration Testing. PRL Tech. Note 3922. November 1999.
[3] Tim Trew. Software Component Composition: Still 'Plug & Pray'? Philips Software Conference 2001.
[4] Tim Trew. Testability of Component Based Software: Mastering Component Interaction. PRL Int. Note
[5] Tom Locke. The Broken Promises of OO, And How We Might Do Better. Slides presented during one

of the SIG evenings at the CPA 2000 conference.
[6] Peter Welch. Java Threads in the light of occam/CSP. WoTUG-21. IOS Press, 2000. ISBN 90-5199-391-

9
[7] Hans Jonkers. DVP2-API: Structure and Specification. Philips Software Conference June 2002.
[8] Bertrand Meyer. Object Oriented Software Construction. Prentice Hall, 1997. ISBN 0-13-629155-4
[9] E. Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley,

1995.

	Problem Statement
	Technical Aspects of Formal Contracts
	Contract, Role, Component
	Formal Contracts exist as components
	Formal Contracts have explicit and observable state
	Specifying and verifying dynamic behaviour
	Base Class for Formal Contracts extends component infrastruc
	Observer Pattern with Asynchronous Contents-Free Notificatio
	Consistency via a Reentrant Locking mechanism
	Shared ownership via reference counting

	Advantages of Formal Contracts
	Avoidance of State Inconsistencies and of Race Conditions
	Avoidance of Re-entrancy Problems
	Formal Contracts during the development lifecycle

	Comparison to State-of-the-Art Techniques
	Interface Definition Language (IDL)
	Model - Observer based Decoupling
	Trew's Design for Testability approaches
	Communicating Sequential Processes (CSP)
	Jonkers' API Structure and Model-Based Specification

	Background, Context, and Experience so far
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

