Communicating Process Architectures — 2003 125
Jan E Broenink and Gerald H. Hilderink (Eds.)
10S Press, 2003

Parallel Processing — the picoChip way!

Andrew DULLER Gajinder PANESAR Daniel TOWNER
picoChip Designs Ltd., Bath, UK

Abstract. This paper describes a new approach to parallel processing within the
well targetted application domain of wireless communications systems, using the
picoArray™. The picoArrayM is a tiled-processor architecture, containing 430 het-
erogeneous processors, connected through a novel, compile-time scheduled intercon-
nect. We show how the features of the picoArfayallow deterministic processing to

be achieved, and how the tool chain allows programming to be performed effectively
in a combination of high level assembly language and C. By handling a wide vari-
ety of types of processing within the picoArfdy a single design flow can be used

to produce complex communications systems. The effectiveness of this approach is
demonstrated through the use of the picoAftayo build a working 3G base-station.

1 Introduction

Within the applications space of wireless communications, systems are typically designed
using a mixture of DSPs, FPGAs and custom ASICs, resulting in systems that are awkwardly
parallel in nature. In addition, the tool chain forces the user to regard the systems from
several different perspectives, introducing problems with specification, implementation and
verification. All these factors result in solutions that are complex, non-deterministic, and
difficult to debug.

The picoArrayM architecture [1] was developed to create a massively parallel system
which did not suffer from many of the problems of conventional general purpose parallel
systems. There was no intention to create a general purpose parallel processor but one which
provided an alternative to creating an ASIC in a range of applications within the wireless
communications domain. In some senses it can be thought of as a “programmable ASIC”.
The fundamental attributes of the approach are that communications between processes have
to be fixed at compile time and therefore no support for dynamic communications is required
and problem partitioning is largely done by the user since this is what would occur during an
ASIC design process.

The design of both the picoArrdy and the tool chain strongly reflect the application
domain whose attributes are:

e application partitioning is traditionally done by the user and is well understood,
¢ high degree of replicated code due to multi-user and multi-antenna systems,
e considerable use of stream based processing

e hand coding of assembly language is often used to achieve compactness of code and
efficiency.

1Stream based processing is where data is passed at high rate through a chain of processes each of which do
relatively simple operations on the data before passing them on to the next stage.

126 A.W.G. Duller et al. / Parallel Processing — the picoChip way!

This paper consists of an overview of the picoArfayarchitecture, an introduction to
the applications domain and a summary of the tool chain. Finally, the current status of the
work is described which helps to show the effectiveness of the approach through the goals
that have been achieved.

2 Overview of the picoArray™ architecture

The picoArrayM is a tiled processor architecture in which 430 heterogeneous processors are
connected together using a deterministic interconnect as shown in figure 1. The interconnect
consists of bus switches joined by picoBlsconnections. To simplify the diagram the in-
terconnect is only drawn between the switches, each processor is actually connected directly
to the picoBugV above and below it (an enlarged view of part of the interconnect is shown

in figure 2, again to simplify the diagram only two of the four vertical bus connections are
shown).

The level of parallelism is relatively fine grained with each processor having a small
amount of local memory. There are four RISC processor variants which share a common core
instruction set, but have varying amounts of memory and additional instructions to implement
certain wireless baseband control and digital signal processing functions. Each processor
runs a single process in its own memory space and they use “signals” to synchronise and
communicate. Multiple picoArra)! devices may be connected together to form systems
containing thousands of processors using on-chip peripherals which effectively extend the
on-chip bus structure. A brief description of the four processor variants and a breakdown of
the internal memory distribution is given in table 1.

The initial version of the picoArray!, the PC101, is a large chip and it is therefore
necessary to use redundancy within the array to improve the yield.

The routing strategy used was determined largely by the real time nature of the intended
applications where the indeterminate latency due to bus arbitration would be unacceptable.
All of the communications are determined during the “compilation” of the system which
means that the communications bandwidth can be guaranteed.

2.1 Interconnect

Within the picoArrayM , processors are organised in a two dimensional grid, and commu-
nicate over a network of 32-bit unidirectional buses (the picdBuand programmable bus
switches. The physical interconnect structure is shown in figure 2. The processors are con-
nected to the picoBU¥ by ports which contain internal buffering for signal data. These
act as nodes on the picoBtfsand provide a simple processor interface to the bus based on
putandgetcommands. The processors are essentially independent of the ports unless they
specifically use @utor agetinstruction.
The inter-processor communication protocol implemented by the pic§Basdased on
a time division multiplexing (TDM) scheme. There is no run-time bus arbitration, so com-
munication bandwidth is guaranteed. Data transfers between processor ports occur during
specific time slots, scheduled in software, and controlled using the bus switches. Figure 2
shows an example in which the switches have been set to form two different signals between
processors. Signals may be point-to-point, or point-to-multi-point. In the latter case, the data
transfer will not take place until all the processor ports involved in the transfer are ready.
Communication time slots throughout the picoBligrchitecture are allocated according
to the bandwidth required. Faster signals are allocated time-slots more frequently than slower
signals. The user specifies the required bandwidth for a signal by giving a rate at which the

the picoChip way! 127

A.W.G. Duller et al. / Parallel Processing

(0zTx) OV D
(ov2X) NV1S D

(89%) N3N .
XU YoNMS .

1av/Id | —> H——— 1av/idl

H 80e) ;B1U| 10SS300.1d 1S0H H

Figure 1: Top-level Diagram showing processors and interconnect

128 A.W.G. Duller et al. / Parallel Processing — the picoChip way!

= Example signa path

Figure 2: Interconnect

signal must communicate data. For example, a transfer rate might be described as @4, which
means that every fourth time-slot has been allocated to that transfer.

The default signal transfer mode is synchronous; data is not transfered until both the
sender and receiver ports are ready for the transfer. If either is ready before the other then
the transfer will be retried during the next available time slot. If, duripg&instruction no
buffer space is available then the processor will sleep (hence reducing power consumption)
until space becomes available. In the same way, if duriggténstruction there is no data
available in the buffers then the processor will also sleep. Using this protocol ensures that no
data can be lost.

There is also an asynchronous signal mode where transfer of data is not handshaken and
in consequence data can be lost by being overwritten in the buffers without being read.

2.2 Processors

All of the processors in the picoArrdY are 16-bit, and use 3-way VLIW scheduling. The
basic structure of the processors is shown in figure 3. Each processor has its own small mem-
ory (between 1KB and 32KB), which is organised as separate data and instruction banks (i.e.
a Harvard architecture). The processor contains a number of communication ports, which
allow access to the interconnect buses through which it can communicate with other proces-
sors. Each processor is programmed and initialised using a special configuration bus. The
processors have a very short pipeline which helps programming, particularly at the assembly
language level. The architecture of the four processor variants are shown in figure 4.

In addition to the general purpose processors, there are a number of special peripherals,
including a host interface, an SRAM interface, asynchronous data and inter-picoArray in-
terfaces. These peripherals are connected to the bus structure through ports, which enables
them to be treated as though they are special purpose processes. The overall distribution of
processors and peripherals is shown in figure 1 with the peripherals being placed in the top
and bottom rows of the array.

A.W.G. Duller et al. / Parallel Processing — the picoChip way! 129

Configuration bus

Config
A
| v b
Instruction| | Data
Memory [| Processors Memory
A
v
Ports
.......................... AA
32-bit picoBus >
< 32-bit picoBus

Figure 3: Processor Structure

Processor Type LIW Fields/Execution Units
LIW.O LIW.1 LIW.2
Memory Pt
Comms . Branch Application
STANdard ALU.O Unit Access Unit/ Unit SpECIfICUﬂIt
ALU.1
Comms Memory Branch MAC
MAC ALU.O Unit Access Unit/ Unit Unit
ALU.1
Comms Memory Branch Multipl
MEMory/Control ALU.0) Access Unit/ . Ld
Unit ALU1L Unit Unit

Figure 4: VLIW and execution unit structure in each processor

130 A.W.G. Duller et al. / Parallel Processing — the picoChip way!

Type | Description Number | Memory
(bytes)
STAN | Standard A standard processor optimized fFr 240 768
CDMA spread and de-spread and other wire-

less base station signal processing functions
MAC | Multiply accumulate A processor that iny 120 768
cludes a multiply-accumulate unit and which
supports additional multiply-accumulate in-

structions

MEM | Memory A processor having a multiply unjt 68 8,704
and additional data memory

CTRL | Control: A processor with a multiply unitand 2 32,768

larger amounts of data and instruction mem-
ory optimized for the implementation of con-
trol functionality

Table 1: PC101 processor variants and memory distribution

2.3 Host interface

The Host or microprocessor interface is used to configure the picotrdgvice and to
transfer data to and from the picoArfdyydevice using either a register transfer method or a
DMA mechanism. The DMA memory-mapped interface has a number of ports mapped into
the external microprocessor memory area. Two ports are connected to the configuration bus
within the PC101 and the others are connected to the internal pic¥Blidese enable the
external microprocessor to communicate with the internal array elements using signals.

2.4 SRAM interface

Each picoArray has an amount of memory distributed amongst the processors for data and
instruction storage. However, an external SRAM interface is provided to supplement the on-
chip memory. This interface allows processors within the core of the picoRtrmyaccess
external SRAM across the internal picoBis

2.5 Asynchronous data/Inter-picoArray interfaces

There are four interfaces on each device which can be configured in one of two modes: either
the inter picoArray interface (IPI) mode or the asynchronous data interface (ADI) mode. The
choice of interface mode is made for each interface separately during device configuration.

2.5.1 Inter picoArray interface

The four IPI interfaces are bidirectional and designed to allow each picoArtayexchange

data with up to four others. Using this feature, a grid of picoAl¥agevices can be con-
structed to implement highly complex and computationally intensive signal processing sys-
tems. The IPI interface operates in full duplex, sending and receiving 32-bit words. The
32-bit words on the internal picoBl$ are multiplexed as two 16-bit data on the interface
itself.

A.W.G. Duller et al. / Parallel Processing — the picoChip way! 131

RACH I/F Rake
RACH Finger
Manager
SRCH I/F
SRCH A A
1.5kHz
Y Y
4 x 3.84MHz RAKE/CHAN EST I/F
ADI |_o| RxFiltes |_»| AGC RAKE Channel | Symbol Rate
Estimate processing
8 x 3.84MHz 960kHz

Figure 5: Typical data rates

2.5.2 Asynchronous data interface

The asynchronous data interface (ADI) allows data to be exchanged between the internal
picoBus™ and external asynchronous data streams such as those input and output by data
converters or control signals between the base band processor and the RF section of a wireless
base station.

2.6 Low-power considerations

Potentially, a device such as the PC101, which contains 430 processors and a TDM intercon-
nect, could use a lot of power. A number of methods have been used to enable the power
consumption of the picoArrd} to be reduced. For example, individual processors are able
to ‘sleep’ when they are waiting for communications events, thus consuming minimal power,
and parts of the picoArrd) which are not used in a particular design are switched off.

2.7 Array layout

As can be seen from section 3 the target applications are fairly varied although they have
many common attributes. The layout of the array in terms of quantities and locations of
processors was determined to match these attributes as far as possible. Since any realistic
system will make use of many picoArr8¥ devices, 4, 8, 16 or more, the layout has to be

a compromise between the different types of processing that are required within a wireless
infrastructure system. At the input to the system the data rates are very high but the processing
is simple, as data flows through the system the data rates reduce, the control becomes more
complex and the operations become more complex.

Figure 5 shows a typical piece of processing from the front end of the receive chain in a
base station. At the input to the system, through the ADI, the data rate is high during which
the incoming signals are filtered. This is then transformed into a symbol rate stream of data
at a much lower rate, this rate can vary between the 960kHz given, down to 15kHz depending
on the type of signal. It should be noted that this rate is for each user of the base station and
typically there will be 64 users or more. In addition, multiple antennas will be used making
the initial input data rate even higher.

The majority of the array, 360 processors (STAN and MAC processors), are designed for
stream based processing and therefore have small amounts of local memory. The split be-
tween STAN and MAC was determined largely by the requirement for the specialist spread
and de-spread operations (present in the STAN processor) required by CDMA. The target ap-
plications tend to have a smaller requirement for block based processing and this is supported
by the 68 MEM processors which have more local storage and can be used in conjunction

132 A.W.G. Duller et al. / Parallel Processing — the picoChip way!

with the SRAM interface. The low level control requirements of application systems are han-
dled by the provision of 2 CTRL processors. Each processor has a performance comparable
to an ARM 9 for control type functionality, or a TI C55XX for DSP tasks.

3 Target applications

The picoArrayM is targetted at providing the processing solution for a wide range of com-
munications systems, specifically those related to wireless infrastructure. These include the
UMTS FDD/TD-SCDMA [2], IEEE 802.16 [3] and CDMA2000 [4] standards. While the
details of these standards vary considerably the style of processing and algorithmic require-
ments have many similarities. The typical functions are:

¢ Signal filtering and conditioning for both transmit and receive paths (adjacent channel
rejection, digital pulse shaping, Inter-Symbol-Interference minimisation)

e Multiple access processing: including both mux and demux, and its management
(CDMA/OFDMA/TDMA)

e Signal synchronisation (timing acquisition and tracking and local oscillator offset com-
pensation)

e Equalisation: compensation for channel distortion (terrestrial mobile radio channel is
probably the most severe of any communications channel)

e Forward error correction: Encode and decode. CRC, Maximum Likelihood Viterbi
and Turbo (the many flavours!). Interleaving and de-interleaving to make distribution
of raw channel errors amenable to FEC.

e Control functions: Cellular systems have a huge amount of event-driven signal process-
ing and adaptation of that signal processing (Call setup/teardown, closed loop control
of transmission time/power/frequency/code and channel equalisation in dynamic con-
ditions for example)

These applications typically consist of a mixture of DSP functionality which is both
stream based and block based. In addition there is a requirement for distributed control
of the DSP operations. The picoArfdyarchitecture provides stream based support by hav-
ing a large number of processors which have small amounts of local instructions and data.
Block based support is provided by having a number of the processors which have increased
local data and if this is insufficient then there is also access to an external memory. Con-
ventional architectures (and some newer ones) force designers to fit the algorithm to the ar-
chitecture rather than choose the algorithm implementation to suit the performance required
(e.g., block-based approaches incur latency overheads unpalatable in some systems but con-
ventional DSPs are only efficient when operating block based).

Previous approaches to these applications have used ASIC, DSP and FPGA to produce
a solution. Often they require a combination of these technologies which in itself produces
problems with co-design and co-simulation. In addition, the most cost effective method,
ASIC, is extremely inflexible, which causes problems when wireless standards change or
algorithmic improvements need to be made. The DSP/FPGA solution can be flexible but
tends to be expensive, power hungry and combining the two technologies appears never to
be simple. The picoArra)! produces a reprogrammable solution to a wide range of these
applications using a single tool chain, rather than having to combine DSP tool chains with
FPGA and perhaps ASIC.

A.W.G. Duller et al. / Parallel Processing — the picoChip way! 133

To provide someidea of the compleity of this type of applicationfigure 6 shavs the
major softwarecomponentsn atypical UMTS basebandystem.Many of the blocksin the
diagramarecomplex systemsn their own right andthe blocksmay needto bereplicatedor
eachuserof abase-station.

4 Programming the picoArray ™ - the tool chain

The designof thetool chainstronglyreflectsthe applicationdomainof the picoArray’™ and
this hasbeenusedto simplify the tool flow. For example,the C compilerdealswith the
codefor asingleprocessoandno attemptis currentlymadeto automaticallyparallelisecode
acrossnultiple processorsin additionthereis considerableiseof assemblyanguagesoding
andexperiencehasshawvn thatthis canbe achieved efficiently (from the users perspectie)
dueto the high degreeof replicationof the code.

ThepicoArray™ is programmedisinga mixture of VHDL [5], ANSI/ISO C andassem-
bly languageTheVHDL is usedto describehestructureof theoverall systemjncludingthe
relationshipbetweerprocessesndthesignalswhich connecthemtogether Eachindividual
processs programmedn corventionalC (albeitwith additionalcommunicatiorfunctions),
or in assemblyfanguage A simpleexampleis givenin figure7.

A comprehense tool chainexiststo corverttheinput VHDL into aform suitablefor ex-
ecutionon oneor morepicoArray™ chips. Thetool chainincludesacompile; anassembler
aVHDL parseya cycle-accuratesimulator dehuggers,a place-and-switchool, designpar
tition tools andverificationtools. Therelationshipbetweerthesetoolsis shavn in figure 8.
Thefollowing sectionssxamineeachof thesetoolsin turn.

4.1 VhdIParser

The VHDL parseris the main entry point for the users sourcecode. A completeVHDL
designis givento the parser which coordinategshe compilationand assemblyof the code
for eachof theindividual processesAn internalrepresentationf the machinecodefor each
processoandits signalsis created.

4.2 C Compiler

The C compileris a port of the GNU Compiler Collection (GCC) [6]. A few simple ex-
tensionshave beenprovidedto supportcommunicationput the compilerotherwisesupports
conventionalANSI/ISO C. GCCis designedrimarily for 32-bit generalpurposegprocessors
capableof usinglarge amountsof memory makingit a challengeto support16-bit embed-
dedprocessorwith justafew kilobytesof memory Thecompilerusesa DeterministicFinite
Automataschedulingalgorithm[7] to generateefficient VLIW schedules.

In additionto beingcalledby the VhdlParserto compilecodefor processeshecompiler
may be usedstand-alondo generatdibrary files. Theselibraries can be linked with the
processes a VHDL design,allowing effective codereuse.

4.3 Cycle accurate simulation

The cycle accuratesimulatorcanbe constructedlirectly from the outputof the VhdIParser
sincethereis no needto determinenow a designmustbe partitionedbetweernchips,or how
processeareallocatedo processorsThe simulatorcanbeusedin two modesfunctionalor
cycle accuratedependingon therequirementsf theuser

the picoChip way!

A.W.G. Duller et al. / Parallel Processing

134

A
Cyunumoq
A 4 :
UAS/HOd quITopey [P (€
NN |
v 0 5 Jaera < >
: M f : sonsoubeip
o | 4 HOS/HOQ - m ue Bn
4401 X1 m UO WO " Bussa0.1d < m 0 HoOL P p! ed
| PIEXL € ene loquiAs 1a < i
: Buipealds puueyd m f .
4 uowwo) a QUi e E —————
f |2 oeIL XL
<« [0nu0D 4y 10 AHd 8
4401 , S| E
D
“““ g —
m [01ueD
Cyundn 5
ol
D Ing | SiuBWRINSEs N > 5
(=
o f | £
p B3 UUD 4P m, = Inera >
s = SjuBWBINSED I\
<«>» T »| Bussscoid S ”
> ord P S > loquis 1n © 1N HO9L >
T =
S H wv f ,
: B BYRSS <> m 1N UDILDD . >
S wouy Xy NAN f : aueIL X
.y OV® » HOVY e 7y 1N AHd >
” Bl xXd
A
v v
VS VS

Figure 6: Diagram showing software components in a typical UMTS baseband system.

A.W.G. Duller et al. / Parallel Processing — the picoChip way!

entity Producer is -
port (channel:out integer32@8);
end entity Producer; -

architecture ASM of Producer is --
begin MEM --
CODE --
COPY.0 O,RO \ COPY.1 1R1 --
loopStart:
PUT R[0,1],channel \ ADD.0O RO0,1,R0
BRA loopStart
ENDCODE;
end; -

entity Consumer is --
port (channel:iin integer32@8);
end;

architecture C of Consumer is --
begin STAN --
CODE
long array[10]; --

int main() { --
int i = 0; -
while (1) {
array[i] = getchannel(); --
i=(@{+ 1) % 10;
}
return O;
}
ENDCODE;

end Consumer; -

use work.all; -

entity Example is --
end;

architecture STRUCTURAL of Example is
signal valueChannel: integer32@8;
begin
producerObject: entity Producer --
port map (channel=>valueChannel);
consumerObject: entity Consumer
port map (channel=>valueChannel);
end;

135

Declare a producer

-- 32-bit output signal

with @8 rate
Define the ‘Producer’ in ASM
use a ‘MEM’ processor type
Start code block
Note use of VLIW

communication

End Producer definition.

Declare a consumer

-- 32-bit input signal

Define the ‘Consumer’ in C
Use a ‘STAN’ processor

Normal C code

‘main’ function - provides
entry point

Note use of communication.

End Consumer definition

Use previous declarations

Declare overall system

-- Structural definition
-- One 32-bit signal...

...connects Producer

-- ...to Consumer

Figure 7: Example source program

136 A.W.G. Duller et al. / Parallel Processing — the picoChip way!

VHDL File
Y
Analyser
Elaborator
C Compiler functional
Assembler mode
Y
: picoPartition
split across cycle accurate
multiple picoArrays mode
Y
Y
Load file
I I I
— — — — Yy
I I I
4 H H = e picoGdb Simulator EXE
I I I
I I I
Hardware Software

Figure 8: Tool Structure

A.W.G. Duller et al. / Parallel Processing — the picoChip way! 137

In functionalmodeit canmodelthelogical functionality of a designwith cycle accurag
only provided within eachindividual processqrthe timing of the communicationss not
modelledaccurately This canbe usedearlyin the designprocessasit is not necessaryo
determinewhereprocessesareto be placedon the hardware andeven which chip they will
resideon.

In cycle accuratemodethe designmustbe partitionedbetweenchips (seeSection4.4),
processesnust be placedonto specific processorsand the signalsmust be routedon the
picoBusM (seeSection4.5). This allows inter-chip timing information and signal timing
informationto be backannotatednto the simulationto producea fully cycle accuratesimu-
lation.

4.4 Chip partitioning

If a designrequiresmore processorshanare availablein a single picoArray™, the design
mustbe partitionedacrossmultiple chips. This processs currently manual,with the user
specifyingwhich processemapto which chip, althoughthe splitting of signalsbetweerthe
chipsis automated.

4.5 Place and Switch

Oncea designhasbeenpartitionedbetweerchipsa processakin to placeandroutein ASIC
designshasto be donefor eachchip. This assignsa specificprocessoto eachentity in the
designandroutesall of the signalswhich link entitiestogether The routing mustusethe
given bandwidthrequirement®f signalswhile routing. The routing algorithmshouldalso
addresghe power requirementf a design,by reducingthe numberof bus segmentsthat
signalshave to traverse,enablingunusedous segmentsto be switchedoff. This processs
performedusingthe Plastic(PLaceAnd SwitchTo IC) tool.

When a successfuplace and switch hasbeenachieved a “load file” canbe produced
which canbeloadeddirectly ontothe hardware.

4.6 Debugging

Thedehuggingtoolsallow anentiredesignto be easilydelugged eitherasa simulation,or
usingrealhardware. Thetools supportcommondehuggingoperationsuchassettingbreak-
points, single and multi-step execution, halt-on-erroy statusdisplay and memory/rgister
tracing. A port of the GNU Delugger(GDB) [8] allows source-lgel delugging,usingei-
therC or assemblyanguageFor flexibility , bothgraphicalandcommand-linenterfacesare
provided.

Deluggingparallelprocessess notoriouslydifficult, so somespecialdetuggingopera-
tions are provided to aid the user including “spies” andtraffic analysis. Spiesare special
processesvhich areinsertedin the middle of a signal,andallow the flow of datathrough
thatsignalto bemonitored.Traffic analysids usedto identify how muchbandwidthis being
usedin differentpartsof the picoArray™, andcanfind hot-spotsn the bandwidthusage pr
detectdeadlock.

5 Curr ent Statusand Performance

The currentimplementatiorof the picoArray™, the PC101,runsat 160MHz andis imple-
mentedusing 130nmtechnology A PC101ldevice runningat 160 MHz can execute206

138 A.W.G. Duller et al. / Parallel Processing — the picoChip way!

GIPS, excluding acceleration from the application-specific instructions. A demonstrator sys-
tem consisting of 16 devices is capable of approximately 3,300 GIPS. Comparison of per-
formance with other architectures is notoriously difficult but a Texas Instruments TMS320-
C6416 running at 600 MHz can execute approximately 9.6 GIPS.

The main application area that has been chosen to demonstrate the technology is a UMTS
base-station and much of this has been coded using PC101 hardware and the tool chain de-
scribed above. First silicon for PC101 was received in December 2002 and the first telephone
call through a demonstration base-station using this silicon was made in May 2003. This uses
a system consisting of 4 PC101’s with 740 processors being used.

6 Conclusion

The basic ideas behind the picoArf¥yconcept together with the links to the application
domain have been described. A pragmatic approach has been demonstrated to the tool chain
in which the expertise of the user and the specific application domain has been used where
possible rather than trying to create “magic” tools which would be complex, time consuming
to create and may never materialise. This is not to say that approaches to automatic partition-
ing and automatic code scheduling are not being investigated but picd®rtaghnology
does not stand or fall on the basis of the existence of such tools.

The creation of a major application, a UMTS base-station, in only a few months using
the technology demonstrates the power of the approach taken in terms of ease of use due to
the single design flow.

7 Acknowledgements

Thanks in particular to Peter Claydon and Doug Pulley who co-founded picoChip Designs
Ltd. Thanks to all who have worked on the huge variety of tasks that have made PC101
systems a reality.

References

[1] P. Claydon. Picoarray Switch Matrix. Patent number GB 0030993.0, 2002.

[2] 3GPP.3GPP TS25 Series (FDD + TD-SCDMA)

[3] IEEE. 802.16 IEEE Standard for Local and metropolitan area networks

[4] TIA/EIA. TIA/EIA-1S-2000 series

[5] Peter Ashenden. The Designer’s Guide to VHDL. Morgan Kaufmann, ISBN 1-55860-270-4, 1996.

[6] Richard Stallman. Using and porting the GNU compiler collection. ISBN 059510088&//gcc.
gnu.org/onlinedocs/gcc/ , 2000.

[7] Vladimir Makarov. The finite state automaton based pipeline hazard recognizer and instruction scheduler
in GCC. The 2003 GCC Developers’ Summit Conference Proceedirtigs//www.linux.org.
uk/~ajh/gcc/gccsummit-2003-proceedings.pdf , May 2003.

[8] Richard Stallman, Roland Pesch, and Stan Shebs. Debugging with GDB. ISBN 18821h#p84,
/Isources.redhat.com/gdb/current/onlinedocs/gdb.html , 2002.

