
Communicating Process Architectures – 2003
Jan F. Broenink and Gerald H. Hilderink (Eds.)
IOS Press, 2003

125

Parallel Processing — the picoChip way!

Andrew DULLER Gajinder PANESAR Daniel TOWNER
picoChip Designs Ltd., Bath, UK

Abstract. This paper describes a new approach to parallel processing within the
well targetted application domain of wireless communications systems, using the
picoArrayTM . The picoArrayTM is a tiled-processor architecture, containing 430 het-
erogeneous processors, connected through a novel, compile-time scheduled intercon-
nect. We show how the features of the picoArrayTM allow deterministic processing to
be achieved, and how the tool chain allows programming to be performed effectively
in a combination of high level assembly language and C. By handling a wide vari-
ety of types of processing within the picoArrayTM a single design flow can be used
to produce complex communications systems. The effectiveness of this approach is
demonstrated through the use of the picoArrayTM to build a working 3G base-station.

1 Introduction

Within the applications space of wireless communications, systems are typically designed
using a mixture of DSPs, FPGAs and custom ASICs, resulting in systems that are awkwardly
parallel in nature. In addition, the tool chain forces the user to regard the systems from
several different perspectives, introducing problems with specification, implementation and
verification. All these factors result in solutions that are complex, non-deterministic, and
difficult to debug.

The picoArrayTM architecture [1] was developed to create a massively parallel system
which did not suffer from many of the problems of conventional general purpose parallel
systems. There was no intention to create a general purpose parallel processor but one which
provided an alternative to creating an ASIC in a range of applications within the wireless
communications domain. In some senses it can be thought of as a “programmable ASIC”.
The fundamental attributes of the approach are that communications between processes have
to be fixed at compile time and therefore no support for dynamic communications is required
and problem partitioning is largely done by the user since this is what would occur during an
ASIC design process.

The design of both the picoArrayTM and the tool chain strongly reflect the application
domain whose attributes are:

• application partitioning is traditionally done by the user and is well understood,

• high degree of replicated code due to multi-user and multi-antenna systems,

• considerable use of stream based processing1,

• hand coding of assembly language is often used to achieve compactness of code and
efficiency.

1Stream based processing is where data is passed at high rate through a chain of processes each of which do
relatively simple operations on the data before passing them on to the next stage.



126 A.W.G. Duller et al. / Parallel Processing — the picoChip way!

This paper consists of an overview of the picoArrayTM architecture, an introduction to
the applications domain and a summary of the tool chain. Finally, the current status of the
work is described which helps to show the effectiveness of the approach through the goals
that have been achieved.

2 Overview of the picoArrayTM architecture

The picoArrayTM is a tiled processor architecture in which 430 heterogeneous processors are
connected together using a deterministic interconnect as shown in figure 1. The interconnect
consists of bus switches joined by picoBusTM connections. To simplify the diagram the in-
terconnect is only drawn between the switches, each processor is actually connected directly
to the picoBusTM above and below it (an enlarged view of part of the interconnect is shown
in figure 2, again to simplify the diagram only two of the four vertical bus connections are
shown).

The level of parallelism is relatively fine grained with each processor having a small
amount of local memory. There are four RISC processor variants which share a common core
instruction set, but have varying amounts of memory and additional instructions to implement
certain wireless baseband control and digital signal processing functions. Each processor
runs a single process in its own memory space and they use “signals” to synchronise and
communicate. Multiple picoArrayTM devices may be connected together to form systems
containing thousands of processors using on-chip peripherals which effectively extend the
on-chip bus structure. A brief description of the four processor variants and a breakdown of
the internal memory distribution is given in table 1.

The initial version of the picoArrayTM, the PC101, is a large chip and it is therefore
necessary to use redundancy within the array to improve the yield.

The routing strategy used was determined largely by the real time nature of the intended
applications where the indeterminate latency due to bus arbitration would be unacceptable.
All of the communications are determined during the “compilation” of the system which
means that the communications bandwidth can be guaranteed.

2.1 Interconnect

Within the picoArrayTM , processors are organised in a two dimensional grid, and commu-
nicate over a network of 32-bit unidirectional buses (the picoBusTM) and programmable bus
switches. The physical interconnect structure is shown in figure 2. The processors are con-
nected to the picoBusTM by ports which contain internal buffering for signal data. These
act as nodes on the picoBusTM and provide a simple processor interface to the bus based on
put andgetcommands. The processors are essentially independent of the ports unless they
specifically use aputor aget instruction.

The inter-processor communication protocol implemented by the picoBusTM is based on
a time division multiplexing (TDM) scheme. There is no run-time bus arbitration, so com-
munication bandwidth is guaranteed. Data transfers between processor ports occur during
specific time slots, scheduled in software, and controlled using the bus switches. Figure 2
shows an example in which the switches have been set to form two different signals between
processors. Signals may be point-to-point, or point-to-multi-point. In the latter case, the data
transfer will not take place until all the processor ports involved in the transfer are ready.

Communication time slots throughout the picoBusTM architecture are allocated according
to the bandwidth required. Faster signals are allocated time-slots more frequently than slower
signals. The user specifies the required bandwidth for a signal by giving a rate at which the



A.W.G. Duller et al. / Parallel Processing — the picoChip way! 127

H
os

t 
P

ro
ce

ss
or

 I
nt

er
fa

ce

E
xt

er
na

l M
em

or
y 

In
te

rf
ac

e

IP
I/

A
D

I

ST
A

N
 (

x2
40

)

Sw
itc

h 
M

at
ri

x

M
E

M
 (

x6
8)

M
A

C
 (

x1
20

)

IP
I/

A
D

I

IP
I/

A
D

I
IP

I/
A

D
I

C
T

R
L

 (
1/

2)

C
T

R
L

 (
2/

2)
C

T
R

L
 (

2/
2)

C
T

R
L

 (
1/

2)
P

R
O

C
IF

P
R

O
C

IF

SR
A

M
IF

SR
A

M
IF

Figure 1: Top-level Diagram showing processors and interconnect



128 A.W.G. Duller et al. / Parallel Processing — the picoChip way!

Switch

Processor

Example signal path

Figure 2: Interconnect

signal must communicate data. For example, a transfer rate might be described as @4, which
means that every fourth time-slot has been allocated to that transfer.

The default signal transfer mode is synchronous; data is not transfered until both the
sender and receiver ports are ready for the transfer. If either is ready before the other then
the transfer will be retried during the next available time slot. If, during aput instruction no
buffer space is available then the processor will sleep (hence reducing power consumption)
until space becomes available. In the same way, if during aget instruction there is no data
available in the buffers then the processor will also sleep. Using this protocol ensures that no
data can be lost.

There is also an asynchronous signal mode where transfer of data is not handshaken and
in consequence data can be lost by being overwritten in the buffers without being read.

2.2 Processors

All of the processors in the picoArrayTM are 16-bit, and use 3-way VLIW scheduling. The
basic structure of the processors is shown in figure 3. Each processor has its own small mem-
ory (between 1KB and 32KB), which is organised as separate data and instruction banks (i.e.
a Harvard architecture). The processor contains a number of communication ports, which
allow access to the interconnect buses through which it can communicate with other proces-
sors. Each processor is programmed and initialised using a special configuration bus. The
processors have a very short pipeline which helps programming, particularly at the assembly
language level. The architecture of the four processor variants are shown in figure 4.

In addition to the general purpose processors, there are a number of special peripherals,
including a host interface, an SRAM interface, asynchronous data and inter-picoArray in-
terfaces. These peripherals are connected to the bus structure through ports, which enables
them to be treated as though they are special purpose processes. The overall distribution of
processors and peripherals is shown in figure 1 with the peripherals being placed in the top
and bottom rows of the array.



A.W.G. Duller et al. / Parallel Processing — the picoChip way! 129

Config

Data
Memory

Ports

Instruction
Memory Processor

32−bit picoBus
32−bit picoBus

Configuration bus

Figure 3: Processor Structure

Unit
Comms

ALU.0
Branch

Unit

Application
Specific Unit

Unit
Comms

ALU.0
Branch

Unit
MAC
Unit

Unit
Comms

ALU.0
Branch

Unit
Multiply

Unit

LIW.0 LIW.1 LIW.2

LIW Fields/Execution UnitsProcessor Type

STANdard

MAC

MEMory/Control
Memory

Access Unit/
ALU.1

Memory
Access Unit/

ALU.1

Memory

ALU.1
Access Unit/

Figure 4: VLIW and execution unit structure in each processor



130 A.W.G. Duller et al. / Parallel Processing — the picoChip way!

Type Description Number Memory
(bytes)

STAN Standard: A standard processor optimized for
CDMA spread and de-spread and other wire-
less base station signal processing functions

240 768

MAC Multiply accumulate: A processor that in-
cludes a multiply-accumulate unit and which
supports additional multiply-accumulate in-
structions

120 768

MEM Memory: A processor having a multiply unit
and additional data memory

68 8,704

CTRL Control: A processor with a multiply unit and
larger amounts of data and instruction mem-
ory optimized for the implementation of con-
trol functionality

2 32,768

Table 1: PC101 processor variants and memory distribution

2.3 Host interface

The Host or microprocessor interface is used to configure the picoArrayTM device and to
transfer data to and from the picoArrayTM device using either a register transfer method or a
DMA mechanism. The DMA memory-mapped interface has a number of ports mapped into
the external microprocessor memory area. Two ports are connected to the configuration bus
within the PC101 and the others are connected to the internal picoBusTM. These enable the
external microprocessor to communicate with the internal array elements using signals.

2.4 SRAM interface

Each picoArrayTM has an amount of memory distributed amongst the processors for data and
instruction storage. However, an external SRAM interface is provided to supplement the on-
chip memory. This interface allows processors within the core of the picoArrayTM to access
external SRAM across the internal picoBusTM.

2.5 Asynchronous data/Inter-picoArray interfaces

There are four interfaces on each device which can be configured in one of two modes: either
the inter picoArray interface (IPI) mode or the asynchronous data interface (ADI) mode. The
choice of interface mode is made for each interface separately during device configuration.

2.5.1 Inter picoArray interface

The four IPI interfaces are bidirectional and designed to allow each picoArrayTM to exchange
data with up to four others. Using this feature, a grid of picoArrayTM devices can be con-
structed to implement highly complex and computationally intensive signal processing sys-
tems. The IPI interface operates in full duplex, sending and receiving 32-bit words. The
32-bit words on the internal picoBusTM are multiplexed as two 16-bit data on the interface
itself.



A.W.G. Duller et al. / Parallel Processing — the picoChip way! 131

ADI Rx Filters AGC Channel
Estimate

RAKE/CHAN EST I/F

RAKE

RACH I/F

RACH

SRCH I/F

SRCH

Symbol Rate
processing

Rake
Finger 

Manager

4 x 3.84MHz

8 x 3.84MHz

1.5kHz

960kHz

Figure 5: Typical data rates

2.5.2 Asynchronous data interface

The asynchronous data interface (ADI) allows data to be exchanged between the internal
picoBusTM and external asynchronous data streams such as those input and output by data
converters or control signals between the base band processor and the RF section of a wireless
base station.

2.6 Low-power considerations

Potentially, a device such as the PC101, which contains 430 processors and a TDM intercon-
nect, could use a lot of power. A number of methods have been used to enable the power
consumption of the picoArrayTM to be reduced. For example, individual processors are able
to ‘sleep’ when they are waiting for communications events, thus consuming minimal power,
and parts of the picoArrayTM which are not used in a particular design are switched off.

2.7 Array layout

As can be seen from section 3 the target applications are fairly varied although they have
many common attributes. The layout of the array in terms of quantities and locations of
processors was determined to match these attributes as far as possible. Since any realistic
system will make use of many picoArrayTM devices, 4, 8, 16 or more, the layout has to be
a compromise between the different types of processing that are required within a wireless
infrastructure system. At the input to the system the data rates are very high but the processing
is simple, as data flows through the system the data rates reduce, the control becomes more
complex and the operations become more complex.

Figure 5 shows a typical piece of processing from the front end of the receive chain in a
base station. At the input to the system, through the ADI, the data rate is high during which
the incoming signals are filtered. This is then transformed into a symbol rate stream of data
at a much lower rate, this rate can vary between the 960kHz given, down to 15kHz depending
on the type of signal. It should be noted that this rate is for each user of the base station and
typically there will be 64 users or more. In addition, multiple antennas will be used making
the initial input data rate even higher.

The majority of the array, 360 processors (STAN and MAC processors), are designed for
stream based processing and therefore have small amounts of local memory. The split be-
tween STAN and MAC was determined largely by the requirement for the specialist spread
and de-spread operations (present in the STAN processor) required by CDMA. The target ap-
plications tend to have a smaller requirement for block based processing and this is supported
by the 68 MEM processors which have more local storage and can be used in conjunction



132 A.W.G. Duller et al. / Parallel Processing — the picoChip way!

with the SRAM interface. The low level control requirements of application systems are han-
dled by the provision of 2 CTRL processors. Each processor has a performance comparable
to an ARM 9 for control type functionality, or a TI C55XX for DSP tasks.

3 Target applications

The picoArrayTM is targetted at providing the processing solution for a wide range of com-
munications systems, specifically those related to wireless infrastructure. These include the
UMTS FDD/TD-SCDMA [2], IEEE 802.16 [3] and CDMA2000 [4] standards. While the
details of these standards vary considerably the style of processing and algorithmic require-
ments have many similarities. The typical functions are:

• Signal filtering and conditioning for both transmit and receive paths (adjacent channel
rejection, digital pulse shaping, Inter-Symbol-Interference minimisation)

• Multiple access processing: including both mux and demux, and its management
(CDMA/OFDMA/TDMA)

• Signal synchronisation (timing acquisition and tracking and local oscillator offset com-
pensation)

• Equalisation: compensation for channel distortion (terrestrial mobile radio channel is
probably the most severe of any communications channel)

• Forward error correction: Encode and decode. CRC, Maximum Likelihood Viterbi
and Turbo (the many flavours!). Interleaving and de-interleaving to make distribution
of raw channel errors amenable to FEC.

• Control functions: Cellular systems have a huge amount of event-driven signal process-
ing and adaptation of that signal processing (Call setup/teardown, closed loop control
of transmission time/power/frequency/code and channel equalisation in dynamic con-
ditions for example)

These applications typically consist of a mixture of DSP functionality which is both
stream based and block based. In addition there is a requirement for distributed control
of the DSP operations. The picoArrayTM architecture provides stream based support by hav-
ing a large number of processors which have small amounts of local instructions and data.
Block based support is provided by having a number of the processors which have increased
local data and if this is insufficient then there is also access to an external memory. Con-
ventional architectures (and some newer ones) force designers to fit the algorithm to the ar-
chitecture rather than choose the algorithm implementation to suit the performance required
(e.g., block-based approaches incur latency overheads unpalatable in some systems but con-
ventional DSPs are only efficient when operating block based).

Previous approaches to these applications have used ASIC, DSP and FPGA to produce
a solution. Often they require a combination of these technologies which in itself produces
problems with co-design and co-simulation. In addition, the most cost effective method,
ASIC, is extremely inflexible, which causes problems when wireless standards change or
algorithmic improvements need to be made. The DSP/FPGA solution can be flexible but
tends to be expensive, power hungry and combining the two technologies appears never to
be simple. The picoArrayTM produces a reprogrammable solution to a wide range of these
applications using a single tool chain, rather than having to combine DSP tool chains with
FPGA and perhaps ASIC.



A.W.G. Duller et al. / Parallel Processing — the picoChip way! 133

To provide someideaof the complexity of this type of applicationfigure 6 shows the
majorsoftwarecomponentsin a typical UMTS basebandsystem.Many of theblocksin the
diagramarecomplex systemsin theirown right andtheblocksmayneedto bereplicatedfor
eachuserof abase-station.

4 Programming the picoArray TM - the tool chain

Thedesignof thetool chainstronglyreflectstheapplicationdomainof thepicoArrayTM and
this hasbeenusedto simplify the tool flow. For example,the C compilerdealswith the
codefor asingleprocessorandnoattemptis currentlymadeto automaticallyparallelisecode
acrossmultipleprocessors.In additionthereis considerableuseof assemblylanguagecoding
andexperiencehasshown that this canbeachievedefficiently (from theuser’s perspective)
dueto thehighdegreeof replicationof thecode.

ThepicoArrayTM is programmedusingamixtureof VHDL [5], ANSI/ISOC andassem-
bly language.TheVHDL is usedto describethestructureof theoverallsystem,includingthe
relationshipbetweenprocesses,andthesignalswhichconnectthemtogether. Eachindividual
processis programmedin conventionalC (albeitwith additionalcommunicationfunctions),
or in assemblylanguage.A simpleexampleis givenin figure7.

A comprehensive tool chainexiststo convert theinputVHDL into a form suitablefor ex-
ecutionononeor morepicoArrayTM chips.Thetool chainincludesacompiler, anassembler,
a VHDL parser, a cycle-accuratesimulator, debuggers,a place-and-switchtool, designpar-
tition toolsandverificationtools. Therelationshipbetweenthesetools is shown in figure8.
Thefollowing sectionsexamineeachof thesetoolsin turn.

4.1 VhdlParser

The VHDL parseris the main entry point for the user’s sourcecode. A completeVHDL
designis given to the parser, which coordinatesthe compilationandassemblyof the code
for eachof theindividualprocesses.An internalrepresentationof themachinecodefor each
processorandits signalsis created.

4.2 C Compiler

The C compiler is a port of the GNU CompilerCollection (GCC) [6]. A few simpleex-
tensionshave beenprovidedto supportcommunication,but thecompilerotherwisesupports
conventionalANSI/ISO C. GCCis designedprimarily for 32-bit generalpurposeprocessors
capableof usinglargeamountsof memory, makingit a challengeto support16-bit embed-
dedprocessorswith justafew kilobytesof memory. ThecompilerusesaDeterministicFinite
Automataschedulingalgorithm[7] to generateefficientVLIW schedules.

In additionto beingcalledby theVhdlParserto compilecodefor processes,thecompiler
may be usedstand-aloneto generatelibrary files. Theselibraries can be linked with the
processesin aVHDL design,allowing effectivecodereuse.

4.3 Cycle accurate simulation

Thecycle accuratesimulatorcanbeconstructeddirectly from theoutputof theVhdlParser,
sincethereis no needto determinehow a designmustbepartitionedbetweenchips,or how
processesareallocatedto processors.Thesimulatorcanbeusedin two modes,functionalor
cycleaccurate,dependingon therequirementsof theuser.



134 A.W.G. Duller et al. / Parallel Processing — the picoChip way!

SR
A

M
SR

A
M

C
ha

n.
 E

st
.

R
ak

e

R
A

C
H

Se
ar

ch
er

Pw
r 

C
tr

l

R
x 

Fi
lte

r
&

 A
G

C

U
L

 S
ym

bo
l

Pr
oc

es
si

ng

M
M

U

M
M

U

D
L

 S
ym

bo
l

Pr
oc

es
si

ng

SR
A

M

C
ha

nn
el

C
om

m
on

R
F 

C
on

tr
ol

PC
H

/S
yn

c

Sp
re

ad
in

g
an

d 
Sl

ot
Fo

rm
at

io
n

T
X

 F
ilt

er

Application Programming Interface (MTP)

D
C

H
/S

C
H

R
X

 f
ro

m
 R

F

T
X

 to
 R

F

to
 R

F

R
x 

T
ra

ff
ic

M
ea

su
re

m
en

ts

C
on

tr
ol

T
x 

T
ra

ff
ic

D
eb

ug
 a

nd
di

ag
no

st
ic

s

D
ow

nl
in

k

U
pl

in
k

PH
Y

 D
L

C
C

T
rC

h 
D

L

T
cC

H
 D

L

D
at

a 
D

L

C
el

l R
ad

io
 L

in
k

PH
Y

 U
L

C
C

T
rC

h 
U

L

T
cC

H
 U

L

D
at

a 
U

L

M
ea

su
re

m
en

ts

Uplink Control Downlink Control

Rake Finger Manager

Figure 6: Diagram showing software components in a typical UMTS baseband system.



A.W.G. Duller et al. / Parallel Processing — the picoChip way! 135

------------------------------------------------------------------------
entity Producer is -- Declare a producer

port (channel:out integer32@8); -- 32-bit output signal
end entity Producer; -- with @8 rate

architecture ASM of Producer is -- Define the ‘Producer’ in ASM
begin MEM -- use a ‘MEM’ processor type

CODE -- Start code block
COPY.0 0,R0 \ COPY.1 1,R1 -- Note use of VLIW

loopStart:
PUT R[0,1],channel \ ADD.0 R0,1,R0 -- Note communication
BRA loopStart

ENDCODE;
end; -- End Producer definition.

------------------------------------------------------------------------

entity Consumer is -- Declare a consumer
port (channel:in integer32@8); -- 32-bit input signal

end;

architecture C of Consumer is -- Define the ‘Consumer’ in C
begin STAN -- Use a ‘STAN’ processor

CODE
long array[10]; -- Normal C code

int main() { -- ‘main’ function - provides
int i = 0; -- entry point

while (1) {
array[i] = getchannel(); -- Note use of communication.
i = (i + 1) % 10;

}

return 0;
}
ENDCODE;

end Consumer; -- End Consumer definition

------------------------------------------------------------------------

use work.all; -- Use previous declarations

entity Example is -- Declare overall system
end;

architecture STRUCTURAL of Example is -- Structural definition
signal valueChannel: integer32@8; -- One 32-bit signal...

begin
producerObject: entity Producer -- ...connects Producer

port map (channel=>valueChannel);
consumerObject: entity Consumer -- ...to Consumer

port map (channel=>valueChannel);
end;
------------------------------------------------------------------------

Figure 7: Example source program



136 A.W.G. Duller et al. / Parallel Processing — the picoChip way!

Analyser
Elaborator
C Compiler
Assembler

picoPartition

picoGdb Simulator EXE

functional
mode

split across
multiple picoArrays

cycle accurate
mode

VHDL File

Load file

SoftwareHardware

Figure 8: Tool Structure



A.W.G. Duller et al. / Parallel Processing — the picoChip way! 137

In functionalmodeit canmodelthelogical functionalityof a designwith cycle accuracy
only provided within eachindividual processor, the timing of the communicationsis not
modelledaccurately. This canbe usedearly in the designprocessasit is not necessaryto
determinewhereprocessesareto beplacedon thehardwareandevenwhich chip they will
resideon.

In cycle accuratemodethe designmustbe partitionedbetweenchips(seeSection4.4),
processesmust be placedonto specificprocessorsand the signalsmust be routedon the
picoBusTM (seeSection4.5). This allows inter-chip timing informationandsignal timing
informationto bebackannotatedinto thesimulationto producea fully cycle accuratesimu-
lation.

4.4 Chip partitioning

If a designrequiresmoreprocessorsthanareavailablein a singlepicoArrayTM, the design
mustbe partitionedacrossmultiple chips. This processis currentlymanual,with the user
specifyingwhich processesmapto which chip,althoughthesplitting of signalsbetweenthe
chipsis automated.

4.5 Place and Switch

Oncea designhasbeenpartitionedbetweenchipsa processakin to placeandroutein ASIC
designshasto bedonefor eachchip. This assignsa specificprocessorto eachentity in the
designandroutesall of the signalswhich link entitiestogether. The routing mustusethe
given bandwidthrequirementsof signalswhile routing. The routing algorithmshouldalso
addressthe power requirementsof a design,by reducingthe numberof bus segmentsthat
signalshave to traverse,enablingunusedbus segmentsto be switchedoff. This processis
performedusingthePlastic(PLaceAnd SwitchTo IC) tool.

When a successfulplaceand switch hasbeenachieved a “load file” can be produced
whichcanbeloadeddirectlyontothehardware.

4.6 Debugging

Thedebuggingtoolsallow anentiredesignto beeasilydebugged,eitherasa simulation,or
usingrealhardware.Thetoolssupportcommondebuggingoperationssuchassettingbreak-
points, single and multi-stepexecution,halt-on-error, statusdisplay, and memory/register
tracing. A port of the GNU Debugger(GDB) [8] allows source-level debugging,usingei-
therC or assemblylanguage.For flexibility , bothgraphicalandcommand-lineinterfacesare
provided.

Debuggingparallelprocessesis notoriouslydifficult, sosomespecialdebuggingopera-
tions areprovided to aid the user, including “spies” andtraffic analysis. Spiesarespecial
processeswhich are insertedin the middle of a signal,andallow the flow of datathrough
thatsignalto bemonitored.Traffic analysisis usedto identify how muchbandwidthis being
usedin differentpartsof thepicoArrayTM, andcanfind hot-spotsin thebandwidthusage,or
detectdeadlock.

5 Curr ent Statusand Performance

Thecurrentimplementationof thepicoArrayTM, thePC101,runsat 160MHzandis imple-
mentedusing 130nmtechnology. A PC101device running at 160 MHz can execute206



138 A.W.G. Duller et al. / Parallel Processing — the picoChip way!

GIPS, excluding acceleration from the application-specific instructions. A demonstrator sys-
tem consisting of 16 devices is capable of approximately 3,300 GIPS. Comparison of per-
formance with other architectures is notoriously difficult but a Texas Instruments TMS320-
C6416 running at 600 MHz can execute approximately 9.6 GIPS.

The main application area that has been chosen to demonstrate the technology is a UMTS
base-station and much of this has been coded using PC101 hardware and the tool chain de-
scribed above. First silicon for PC101 was received in December 2002 and the first telephone
call through a demonstration base-station using this silicon was made in May 2003. This uses
a system consisting of 4 PC101’s with 740 processors being used.

6 Conclusion

The basic ideas behind the picoArrayTM concept together with the links to the application
domain have been described. A pragmatic approach has been demonstrated to the tool chain
in which the expertise of the user and the specific application domain has been used where
possible rather than trying to create “magic” tools which would be complex, time consuming
to create and may never materialise. This is not to say that approaches to automatic partition-
ing and automatic code scheduling are not being investigated but picoArrayTM technology
does not stand or fall on the basis of the existence of such tools.

The creation of a major application, a UMTS base-station, in only a few months using
the technology demonstrates the power of the approach taken in terms of ease of use due to
the single design flow.

7 Acknowledgements

Thanks in particular to Peter Claydon and Doug Pulley who co-founded picoChip Designs
Ltd. Thanks to all who have worked on the huge variety of tasks that have made PC101
systems a reality.

References

[1] P. Claydon. Picoarray Switch Matrix. Patent number GB 0030993.0, 2002.

[2] 3GPP.3GPP TS25 Series (FDD + TD-SCDMA).

[3] IEEE. 802.16 IEEE Standard for Local and metropolitan area networks.

[4] TIA/EIA. TIA/EIA-IS-2000 series.

[5] Peter Ashenden. The Designer’s Guide to VHDL. Morgan Kaufmann, ISBN 1-55860-270-4, 1996.

[6] Richard Stallman. Using and porting the GNU compiler collection. ISBN 059510035X,http://gcc.
gnu.org/onlinedocs/gcc/ , 2000.

[7] Vladimir Makarov. The finite state automaton based pipeline hazard recognizer and instruction scheduler
in GCC. The 2003 GCC Developers’ Summit Conference Proceedings,http://www.linux.org.
uk/˜ajh/gcc/gccsummit-2003-proceedings.pdf , May 2003.

[8] Richard Stallman, Roland Pesch, and Stan Shebs. Debugging with GDB. ISBN 1882114884,http:
//sources.redhat.com/gdb/current/onlinedocs/gdb.html , 2002.


