Architectures, Languages and Patterns 211
P.H. Welch and A.W.P. Bakkers (Eds.)
I0OS Press, 1998

Parallel Graph Coloring using JAVA

Thomas UMLAND*
Deutsche Telekom Berkom GmbH, Goslarer Ufer 35,
10589 Berlin, Germany

Abstract. In this paper a parallel, pipeline oriented version of a well-known
sequential graph coloring heuristic is introduced. Runtime and speedup results
of an implementation in JAVA on a four processor machine are presented and
discussed.

1 Introduction

The idea of this paper is to introduce a parallel version of a well-known sequential graph
coloring heuristic which could be easily implemented on a shared memory multiproces-
sor system when using an appropriate programming language like for instance JAVA
[1]. The next section shall help to understand the sequential algorithm. In section 3 the
parallel version is presented while in section 4 runtime and speedup results of a JAVA
implementation running on a four processor SUN SPARC Workstation are given.

2 The sequential first fit algorithm

For a graph G = (V, E) with vertices V = {vy,...,v,} and edges E C V x V a function
f:V—={1,...,k},v eV f(v) is called a coloring (of the vertices) of G if for all
pairs of vertices u,v € V, u # v, (u,v) € E = f(u) # f(v). If we call the value f(v)
the color of the vertex v € V then coloring the graph G = (V, FE) simply means that
every vertex of G has to be assigned a color with the restriction that adjacent vertices
—i.e. those connected by an edge — must get different colors. The minimal value of &
so that f:V — {1,...,k} is a coloring of the graph G = (V, E) is called the chromatic
number of that graph.

Coloring the vertices of a graph is a problem needed to be solved in a variety of
applications e.g. scheduling, register allocation, printed circuit testing etc. Unfortu-
nately, the task of finding a coloring with the minimal number of colors is not solvable
in polynomial time for an arbitrary graph (as known so far). Therefore one is looking for
coloring algorithms, so-called heuristics, which do not always find an optimal coloring
but have polynomial runtime.

The first fit algorithm is a well-known heuristic with polynomial runtime for coloring
the vertices of a graph. It requires an initial ordering of the vertices of the input graph.
The first vertex according to this order gets the color 1 while the other vertices are
processed sequentially, assigning each vertex the least possible color which does not
produce a conflict with the vertices already colored. For a detailed description see for
example [4, 5].

*Author’s new address since 1 March 1998 is: Deutsche Telekom AG, Entwicklungszentrum Nord,
Willy-Brandt-Platz 3, 28215 Bremen, Germany, E-Mail: Thomas.Umland@telekom.de.

212 T. Umland / Parallel Graph Coloring

Figure 1: First fit coloring of a graph with 8 vertices.

Figure 1 shows a graph with 8 vertices for which the algorithm produces a coloring
with 5 different colors. In this figure each circle symbolizes a vertex and each line an
edge between two vertices. The name of each vertex is written outside and the color
produced by the algorithm is written inside the circle. From the indices of the vertices
the initial ordering can be deduced, i.e. vertex v; is the i-th vertex of the ordering.!
Because the algorithm is not too complicated this example shall suffice for illustrating
its operation.

3 Parallelizing sequential first fit

Although the first fit algorithm is often called inherently sequential because of its strictly
ordered procedure, we will now present a parallel variant which in practice yields not
too bad speedup results on a parallel machine.

3.1 Basics

To get an idea how our parallel algorithm works we take at first a look at a possible
implementation of the sequential first fit algorithm. The coloring of a vertex v; could
be implemented using two main steps:

1. Determine a list of all possible colors for v; i.e. exclude those colors already
used by vertices v;, j < 4 adjacent to v;. This could be implemented using a
boolean array L; — called the possibility list of vertex v; — with the property
L;[k] = FALSE < Jv; with j <4, (v;,v;) € E and f(v;) = k.

This step can be performed by a procedure Build(L;, v;) which excludes the color
of vertex v; from the possibility list L; of vertex v;,

2. Determine the smallest of all possible colors for vertex v;, i. e. look for the smallest
entry in L; with L;[k] = TRUE and assign color k to v;.

We put this step into a procedure Color(L;, v;) which colors vertex v; in depen-
dence on its possibility list L;.

To color a graph with n vertices we therefore have to execute the following actions:

L Obviously the given graph could be colored using only 2 colors while first fit produces a coloring
with 5 colors — as mentioned earlier the first fit heuristic does not always find the optimal coloring.
Among others in [4, 5, 6] bounds for the difference of the chromatic number of a graph and the number
of colors produced by first fit can be found. But this topic is not of interest in this context.

T. Umland / Parallel Graph Coloring 213

e Color(L;,v;) fori=1,...,n and
e Build(L;,v;) fori=1,...,nresp. j=1,...,i— 1

Of course these actions cannot be executed all in parallel because there are time
dependencies resulting from the access to the possibility lists:

1. For all j < 4 the action Build(L;, v;) must be executed before Color(L;, v;) and

2. Color(L;, v;) must be executed before Build(L;, v;) for j > 1.

3.2 A first parallel approach

Next we distribute these actions over n processors and get a parallel algorithm which
overall needs 2n — 1 steps. To make the description easier we distinguish between even
and odd steps:

1. For 1 <4 < n during the odd steps 2i — 1 the action Color(L;, v;) is executed on
processor F;;

in parallel to these actions Build(Lg;_;,v;) are executed on processors P; for 1 <
j <.

2. During the even steps 2 for 1 < i < n the actions Build(Ly;_;11,v;) will be
executed on processors P; with 1 < 7 <.

It can be easily verified that this distribution of the actions over the processors
does not violate the above time dependencies. Of course, this algorithm could also be
derived in a more formal way from the recurrences implied by the time dependencies.
This method is demonstrated e. g. in [3] where parallel algorithms for the matrix multi-
plication are obtained from a set of recurrences describing the multiplication. However,
because the dependencies here are quite easy to understand we omit this step. Figure 2
shows the distribution of the actions over 5 processors for a graph with 5 vertices. The
actions of each column in the picture have to be executed sequentially on the corre-
sponding processor while the actions listed in each row can take place in parallel at the
specified time step of the algorithm.

The arrows in the picture indicate the points where the control over a possibility
lists changes between two processors. In this representation we see that the control over
the possibility lists flows through the processors in a pipelined fashion. We also see the
typical pipeline behavior at the beginning and at the end of the execution where the
pipeline has to be filled resp. emptied and therefore only a few processors are busy.

3.3 A generalized parallel approach

The first parallel approach of section 3.2 has the major disadvantage that it requires as
many processors as there are vertices in the graph. The generalized version presented
now allows any number of processors Pj,..., Py (1 < N < n) to be used. In this case
every processor is responsible for coloring a whole subgraph with n/N vertices instead
of a single vertex in the previous version of the algorithm.?

2To simplify the notation we assume that N divides n.

214 T. Umland / Parallel Graph Coloring

Step Processor; Processorg Processorg Processory Processorg
1. Color(Ly,v1)
2. Build(Lz,v1)
3. Build(L3,v;) Color(Ls,vs)

4. Build(L4,v;) Build(Ls,vs)

5. Build(L5, ’1)1) Build(L4, ’1)2) COIOI‘(Lg, '113)

N

S LSS

6. Build(Ls,v;) Build(Ly,vs)

7. \Build(L5, 113)\Color(L4, v4)

8. \Build(L5, v4)

9. \Color(L5, v5)

Figure 2: Parallel first fit with 5 vertices and 5 processors.

The execution of the generalized parallel algorithm is illustrated in figure 3. One
can see clearly the partition of the graph into N blocks with n/N vertices each. Each
processor now has to color all the vertices of his corresponding block under consider-
ation of the possibility lists prepared on the previous processors. This action is done
by a procedure again named Color. The action Build(L;, V) used in the generalized
version performs the exclusion of the colors of all vertices V; = {v14G—1)n/Ns- - - Vjn/N}
contained in the j-th subgraph from the possibility list L; of vertex v; which will be
colored later by another processor.

Again the pipelined behavior of the algorithm which is caused by the flow of control
over the possibility lists can be seen in the picture. Compared to the first approach the
last phase of the algorithm where the pipeline empties is not as long in this version.

If you interpret the picture of figure 3 as a state/time diagram you recognize that
only roughly half of the possible computing resources are used by this algorithm — due
to the filling and emptying process of the pipeline many processors are idle for quite
a long time. Therefore the speedup achieved by an implementation is not expected to
significantly exceed half of the number of processors used. Nevertheless the resulting
efficiency of about 50% is not too bad for this type of algorithm.

4 Runtime results of a JAVA implementation

In the generalized parallel first fit algorithm of section 3.3 we assumed that the algorithm
runs on N processors. Nevertheless that approach is still valid if we take N as the
number of concurrent processes — so-called threads in JAVA — which are scheduled
by the operating system on possibly less than N physical processors. Therefore we
can combine any number of concurrently running threads with any number of physical
Processors.

T. Umland / Parallel Graph Coloring 215

Processory Processory Processorg Processory

COIOI‘(Ll, ’1)1)
Color(Ls, vs
Color L3, V3
Color(Ly,vs

Build(Ls, Vi)

Bu}ldELe;,Vlg X | Color(Ls,vs)
Build(L;, V4 * | Color(Lg,vg
Build(Ls, V1) | Color L7:U7
Color(Lg,vg
Build(Lg, 1)
gu}ﬁ flo,gl "X | Build(Lg, V3)
Bu}ld L11,V1 D | Build(Lqg, Vo X | Color(Lg, vg)
uild(Lq2, V3 | Build(Li1, Va . | Color L?:) 19110
Build(Ly2, Va N ColorELu:Ull
Build(Ly3, V3) Color(La2, v12)
gu}ﬁgﬁm,&g X | Build(Ly3, Va
Build(Lm,Vl) * | Build(L14, V3 N Build(Ly3, V3)
u 165 V1 N Build(L15, V2 . | Build L14:V3 N
Build(Lig, V2) |\ Build(L1s, V3 88%81{ %i?zﬁ
Build(Lig, V3 | Color L15:1115
Color(Ls,v16)

Figure 3: Generalized parallel first fit (16 vertices, 4 processors).

The representation of the graph as a boolean n x n matrix as well as the possibility
lists of the vertices and the list of the already determined colors are located within an
object of a new class called Graph. The actions Build and Color which have to be
performed by each process can be implemented easily in JAVA and are also integrated
as methods in the Graph class.

As the JAVA programming model allows shared objects between threads we generate
only one (shared) instance of the Graph class which is accessible by all N concurrently
running threads. The flow of control over the possibility lists — illustrated as arrows
in figure 3 — is implemented by passing tokens from thread to thread via objects of a
channel class CHAN which implements a directed point-to-point connection between
exactly two threads. This is similar to the way communication takes place in the pro-
gramming language OCCAM [2]. The class CHAN provides one method for sending and
another for receiving data over the channel in order to hide the explicit synchronization
constructs available in JAVA. The implementation of the CHAN class is similar to that
used in JavaPP3 which provides a lot more OCCAM and CSP mechanisms via JAVA
packages. As our JAVA implementation of the coloring algorithm uses a shared graph
object we do not really need to send data objects via the channels but instead transmit
only a token to pass the control over a possibility list to the next thread. Therefore our
channels are used simply as an elegant way to synchronized two threads in a rendezvous
fashion.

The JAVA version used for this implementation was the JDK 1.1.5 with native
thread support i.e. concurrently running threads are scheduled over the available pro-
cessors by the operating system; a just-in-time compiler was not available. Finally the

3See http://www.cs.bris.ac.uk/"alan/javapp.html for details.

216 T. Umland / Parallel Graph Coloring

Parallel graph coloring (graph with 2000 vertices)

70000 FT léllrl)rlol:esslo}sl QI_ | | | | | ™=
3 processors H—

60000 - o processors A— 7
1 processor ©—

50000 .

40000 —

Runtime [ms]

30000 & N

20000 S a

10000 - —

0 N | L1 1 | | | | | | |

123456 891012 15 20 25 30 35 40
Number of concurrent threads

Figure 4: Runtime of the parallel algorithm measured on 1-4 processors.

implementation was tested on a multiprocessor workstation with four processors of the
type SPARC-40 MHz and 128 MBytes of memory running SOLARIS 2.5.1.

The kind of graph used as input has a similar structure to that shown in figure 1.
It has 2000 vertices, 999001 edges and first fit yields a coloring with 1001 colors; the
structure and size of the input graph has only an impact on the absolute execution
time but not on the speedup behavior of the algorithm as experiments showed. The
runtime needed to color this graph was measured for a different number of concurrently
running threads N. The scheduling of the threads and the distribution over the physical
processors has been carried out by the operating system. At first the program was
allowed to use all four processors, then the same experiment has been repeated while
disabling one, two and finally three processors. The runtime results are shown in
figure 4: Each curve® corresponds to a fixed number of physical processors and shows
the execution times for N = 1,...,40 concurrently running threads. The diagram
shows that the program indeed runs faster when using more than one processor.

To measure the behavior of the parallelization, the speedup for each curve relative
to the runtime of one thread has been calculated and is shown in figure 5. The diagram
clearly shows different speedups depending on the number of processors used. If we
have only one physical processor in operation and start more than one thread only
semi-parallel execution is possible; therefore the time needed to administrate and switch
the threads is dominant and slows down the obtainable speedup. This effect can be
seen in the lower-most curve of the diagram. When using more physical processors they
could be utilized to execute threads in parallel and the speedup increases. In this case
the administration overhead is only dominant if the number of threads is much greater
than the number of processors. As expected the speedup is better if more physical

4 Although nowadays this is a quite slow machine, the measured speedup effects should be inde-
pendent of the processors speed and are expected to be the same on machines with more up-to-date
processors.

5The separate data points have only been connected to ease the identification of points belonging
together.

T. Umland / Parallel Graph Coloring 217

Parallel graph coloring (graph with 2000 vertices)
TTTTTT TTT 1 T T T
OO

4 process'ors é—'

3 processors H— |
2 processors A—
1 processor ©—

2_

1.5

Speedup

0.5

OIIIIIIIIII | | | | | |

123456 891012 15 20 25 30 35 40
Number of concurrent threads

Figure 5: Speedup of the parallel algorithm using 1-4 processors.

processors are available. In section 3.3 was mentioned that the maximum speedup of
this algorithm is restricted to only about half the number of processors. If we take this
fact into account the achieved speedup is quite good.

5 Conclusions

In this paper we showed how an algorithm which seems to be inherently sequential could
be converted to a parallel one. The resulting pipeline structure could be implemented
easily in JAVA. The runtime and speedup results have been quite satisfactory. For
future work it would be interesting to benchmark the implementation on a machine
with more than four processors in order to test whether even more processors could be
utilized or to see when the impact of the shared memory architecture prevents a further
increase of the speedup.

References

[1] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Addison-Wesley Publish-
ing Company, Reading, Massachusetts, 1996.

[2] INMOS Limited. Occam 2 Reference Manual. Prentice Hall International, Englewood Cliffs, 1988.

[3] H. T. Kung. The structure of parallel algorithms. In M. C. Yovits, editor, Advances in Computers,
volume 19, pages 64-112, New York, 1980. Academic Press.

[4] David W. Matula, George Marble, and Joel D. Isaacson. Graph coloring algorithms. In Ronald C.
Read, editor, Graph Theory and Computing, pages 109-122, New York, 1972. Academic Press.

[5] T. Umland, Uber heuristische Verfahren zur Losung des Firbungsproblems, Ph.D. Thesis, Univer-
sity of Karlsruhe, VDI-Verlag, Diisseldorf, 1996.

[6] D. J. A. Welsh and M. B. Powell. An upper bound for the chromatic number of a graph and its
application to timetabling problems. The Computer Journal, 10:85-86, 1967.

218 T. Umland / Parallel Graph Coloring

