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Abstract. We describe a tool, programmed in Java, for the formal verification of
the absence of deadlock and livelock in networks of CSP processes. The innovative
techniques used scale well to very large networks, unlike the exhaustive state checking
method employed by existing tools.

1 Introduction

As computer programs become increasingly vast and complex and are used for more and more safety-
critical applications the use of formal mathematical methods in their development is becoming crucial.
Lives may depend on it. However there are two important barriers to overcome. Firstly the large
amount of work required in applying rigorous formal methods might seem infeasible. Secondly, com-
puter programmers come from diverse backgrounds, and the level of mathematics involved will be
off-putting to many, and also increase the chance of error. For these reasons various tools have been
developed which automate the application of formal methods in particular circumstances.

A particularly serious problem of networks of parallel processes is deadlock — A state where each of
the processes becomes permanently blocked. This paper describes the program Deadlock Checker, a
tool which uses various innovative techniques to prove deadlock and livelock-freedom for networks of
CSP[7] processes. It provides a vital safeguard against human error in the construction of parallel and
distributed systems.

The FDR tool[6], of Formal Systems Europe, is often used to check for deadlock freedom. The
method employed involves constructing a single transition system for the entire network and then
checking each global state for deadlock. The main drawback to this approach is that the number of
states of a system usually increases exponentially with the number of processes, and so this method
is suitable only for analysis of rather small systems. Deadlock Checker operates by testing properties
of individual CSP processes, or pairs of processes, within a network. This is done using a separate
transition system for each process. The algorithms employed by Deadlock Checker, described below,
scale efficiently to networks of arbitrary size. For instance, to check a network of 700 Dining Philoso-
phers and Forks by exhaustive state analysis would require the construction of a transition system
with 10~ states, whereas, using our methods, it is necessary only to construct a digraph with 800
vertices and then check it for circuits.

The price for this level of efficiency is incompleteness — there exist networks which are free of deadlock
but that may not be proven so using this tool. This is not a high price as, despite this limitation,
Deadlock Checker has no problem with proving deadlock-freedom for networks constructed using the
following design rules: the client-server protocol[11], the resource-allocation protocol[15] and the cyclic
protocol[10, 15, 18], and hybrid forms of these. The combination of these simple design rules and
efficient machine verification would seem to be a powerful weapon against deadlock in large-scale
process networks.

In section 2 we describe the basic operation of the Deadlock Checker program illustrated with the
example of the Dining Philosophers network. In section 3 we explain the novel algorithm it uses
for deadlock analysis. Section 4 covers several techniques for extending the power of this algorithm.



Table 1: Machine Readable CSP
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In section 5 we explain the algorithm used for livelock analysis, which is derived from a theorem
of Roscoe. Section 6 comprises two interesting case studies. The first is a message routing system
prototyped in CSP, verified by Deadlock Checker, and then implemented in occam. The second is a
published algorithm which is shown to deadlock. Finally, in section 7, we discuss the current state of
Deadlock Checker and how it may be extended in the future, possibly to analyse source code written
in occam, Ada and Java.

2 Using Deadlock Checker

Programs to be analysed by Deadlock Checker are coded in the CSP language. These are compiled to
networks of transition systems using a program which invokes the FDR tool. Interactive analysis may
then proceed, using algorithms based on graph theoretical techniques.

Network Compilation

Deadlock Checker has a companion program called compile which is used to convert from a network
program written in CSP (in the machine-readable format of Scattergood [16]) to a set of individual
transition systems — one for each process in the network. These are then used by Deadlock Checker
for performing various local checks in order to prove deadlock-freedom. Deadlock Checker is written
entirely in Java. Program compile is implemented in ML on top of FDR version 1.4. which performs
the actual compilation.

The main difference between machine readable CSP and the algebraic form is that, in the former,
the type of communication channels has to be explicitly defined using a pragma statement. The repre-
sentation of various CSP operators in ASCII format is given in table 1. Comment lines beginning with
-—+ are used to specify to compile exactly which processes constitute the network to be analysed. There
is no need to define the alphabets of these processes as the compiler calculates them automatically®
(as being exactly those events that each process may ever perform).

Dijkstra’s classic Dining Philosophers network may be defined as follows.

—-—- CSP process definitions

PHILNAMES = {0,1,2,3,4}

FORKNAMES = {0,1,2,3,4}

pragma channel eats:PHILNAMES

pragma channel takes,drops:PHILNAMES.FORKNAMES

PHIL(i) = takes.i.i -> takes.i.((i-1)%5) -> eats.i ->
drops.i.((i-1)%5) -> drops.i.i -> PHIL(i)

IHowever, there are circumstances where one might wish to define the process alphabets explicitly, and this feature
will be included in a future version of the program.



FORK(i) = takes.i.i -> drops.i.i -> FORK(i) []
takes. ((i+1)%5).i -> drops.((i+1)%5).i -> FORK(i)

-—- Define network for Deadlock Checker

--+ PHIL(0),PHIL(1),PHIL(2),PHIL(3),PHIL(4)
--+ FORK(0) ,FORK(1) ,FORK(2) ,FORK(3) ,FORK (4)

This file, which is called phils.csp is processed by compile into a file phils.net containing a cor-
responding set of transition systems — one for each process in the network. Figure 1 illustrates the
transition structures created from this network.

Figure 1: Transition Systems for Dining Philosophers
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Network Analysis

Following compilation the interactive analysis may proceed. We start up the main Deadlock Checker
program (see figure 2) and press its Load Network button. A file browser is displayed which is used
to load the compiled network. Two properties are immediately checked which are required for all the
network analysis techniques.



Firstly the network must be busy. This means that each individual process is non-stopping — it would
run forever if executed in isolation. This is checked by ensuring that every state of each transition
system has at least one outgoing arc.

Secondly the network must be triple-disjoint. This means all communication is strictly between two
processes. There are no events that are shared by three or more processes.

Pressing the Run button commences execution of the CSP network (see figure 2). Whenever deadlock
ensues it is detected by the program. However this feature is intended only as a debugging aid — it can
be used to show that a network deadlocks but never that it is deadlock-free.

Figure 2: Execution of the Dining Philosophers Network
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The View Network button is another debugging feature. It enables us to explore the structure of the
various processes comprising the network and also to visualise their intercommunication topology, as
shown in figure 3.

The Begin Analysis button is used to initiate each of the various network analysis options which are
selected from the menu above it. Figure 4 shows what happens when the SDD test, which is described
in the next section, is applied to the Dining Philosophers.

This network is not deadlock-free, and Deadlock Checker reveals the problem. A standard way to
fix this deadlock is to make one of the philosophers change the order in which he picks up his forks.
In that case Deadlock Checker has no problem in proving the network deadlock-free, using the SDD
technique, which will now be explained.

3 The SDD Algorithm

A well-known characteristic of deadlock-states of busy, triple-disjoint networks, is that they involve
a cycle of ungranted requests, i.e. a ring of processes each of which is blocking its predecessor and is
blocked by its successor. (See, for example, [10].) This fact is the cornerstone of the SDD algorithm.



Figure 3: The Network Viewer
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We shall attempt to show deadlock-freedom by proving the impossibility of existence of a cycle of
ungranted requests.

Definition: Consider two process transition systems P and P’ within a network (P;,.., Py). When
process P is in state o and process P’ is in state o’ we say that P has an ungranted request to P’ if P
is ready to communicate with P’ but P’ is not ready to perform any event that P’ is ready to perform,
and neither P nor P’ can perform any event other than to communicate with another process in the
network. Ungranted requests may be thought of as the building blocks of deadlock.

A network’s state dependence digraph (SDD) is defined as follows. It contains a vertex P.c for each
state o of each process P in the network.
It contains an arc (P.o, P'.¢") if, and only if, the following conditions apply

e Processes P and P’ communicate with each other, i.e. aP NaP’ # {}
e Within the subnetwork (P, P') P can be in state o at the same time as P’ is in state o'.
e When P is in state o and P’ is in state o/, P has an ungranted request to P’.

It is easy to see that if the network could ever exhibit a cycle of ungranted requests then this
phenomenon would show up as a circuit in the SDD. Hence if the SDD has no circuits the network is
deadlock-free. A formal proof of this result is found in [9].

The basic algorithm for constructing the SDD of a network is as follows

1. Start with a network of transition systems (P, Pa,...Py). Form a digraph, SDD, the vertices of
which are the states of the various processes P;. Initially the digraph contains no arcs.

2. For each pair of communicating processes (P, P') we form the set D(P,P’') of all state pairs
(0,0") that processes P and P’ can be in simultaneously.

3. For each pair (0,0') in each D(P, P') if P has an ungranted request to P’, when in these respective
states, add arc (P.o, P'.0’) to digraph SDD. And if P’ has an ungranted request to P, add arc
(P'.o', P.o).

If the SDD is circuit-free then the network is stated to be deadlock-free, otherwise a potential cycle
of ungranted requests is reported.

The SDD for our Dining Philosophers network is shown in figure 5. The single circuit that it contains
corresponds to the single possible deadlock state. (This arises when each philosopher is holding exactly
one fork.)



Figure 4: Deadlock Analysis of the Dining Philosophers
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4 Eliminating Bogus Circuits from the SDD

The main advantage of our SDD test over the exhaustive global state analysis used by other tools is
its efficiency. The algorithm has been shown (in [9]) to scale with near linear efficiency in the number
of processes, for suitably well-constructed networks. However it is clear the property tested for by the
SDD algorithm is somewhat stronger than deadlock-freedom. Firstly, if a circuit exists in the SDD it
is not necessarily the case that the ungranted requests it represents can all occur at the same time in
the network as a whole, and secondly, even if they can, a cycle of ungranted requests is not a sufficient
condition for deadlock — it is merely a necessary condition. A network may exhibit a cycle of ungranted
requests which is subsequently broken by the action of a process from outside the cycle.

Despite this the SDD algorithm may be used successfully to prove deadlock-freedom for a wide
range of useful networks. In particular it can always prove deadlock-freedom for networks that obey
the client-server protocol[11] or the resource-allocation protocol[15]. This is proven in [9].

But there are useful classes of network that cannot always be proven deadlock-free by this technique.
For instance cyclic networks[4, 10, 15, 18] which are widely used for computationally intensive tasks.

In this section we explore ways to increase the power of the SDD technique to address these short-
comings, either by adding extra information to the digraph or by performing radical surgery to it.

The Coloured State Dependence Digraph (CSDD)

We define the number of iterations of a process at a particular point in its execution (i.e. following a
certain trace of events) as the number of times that it has returned to its initial state. We then colour
arcs (P.o, P'.¢") in the SDD as follows

Red: P can only be in state o at the same time as P’ is in state ¢’ if both processes have performed
the same number of iterations.
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Figure 5: Construction of SDD for Dining Philosophers
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Green: P can only be in state o at the same time as P’ is in state ¢’ if it has performed at least one
more iteration.

Blue: Neither of the above properties is established.

A circuit containing some green and some red arcs but no blue ones cannot represent a real cycle of
ungranted requests. We can prove that the ungranted requests that correspond to its arcs cannot all
occur simultaneously by reductio ad absurdum reasoning about the number of iterations performed by
each process in the circuit. However we cannot eliminate any circuit which either consists entirely of
red arcs or contains at least one blue arc.

So we test for deadlock-freedom as follows. First we partition the vertices of SDD into strongly
connected components, using an efficient algorithm from [5], and remove all arcs whose vertices lie
in different components. This leaves us with exactly those arcs which lie on a circuit in the original
SDD. Then if any blue arc remains there must be a circuit containing a blue arc and hence a possible
deadlock. If no blue arc remains we remove the rest of the green arcs and check whether the remaining
(all-red) digraph is circuit-free. If it is so the network is reported as being deadlock-free.

This particular colouring is sufficiently powerful for proving networks of cyclic processes deadlock-
free[9].

The Flashing State Dependence Digraph (FSDD)
Alternatively we set arcs in the SDD to be flashing or non-flashing according to the following criterion

An arc (P.o, P'.0") is set to be flashing only if it is known that whenever P is in state o and P’ is in
state ¢’ then P’ must have communicated with P at least once and more recently than with any other
process.

A circuit consisting entirely of flashing arcs cannot represent a real cycle of ungranted requests for,
if they did, we would know that each process in the circuit had communicated with its predecessor
more recently than its successor, and following this argument around the circuit would lead to a
contradiction. So we can state that a network is deadlock-free if all the arcs which lie on a circuit on
its SDD are flashing. This graph property is tested in a similar manner to the coloured SDD check.

This extension to the SDD algorithm enables automatic proof of deadlock-freedom for the class of
message routing networks introduced by A. W. Roscoe in [14].

Strong Conflict Freedom

It is sometimes useful to allow deadlock-free networks to exhibit cycles of requests of length 2. These
are known as conflicts.

Definition: If when process P is in state o and process P’ is in state ¢’ there are ungranted requests
both from P to P' and from P’ to P we say that (P.o, P'.c') is a conflict. In other words a conflict
is a cycle of ungranted requests of length two. Unless P in state o is also ready to communicate with
some process other than P’ and P’ in state ¢’ is also ready to communicate with some process other
than P we say that the conflict between P and P’ is strong.

Definition: A network is strong-conflict-free if there is no strong conflict of any subnetwork (P, P')

Testing whether a network is strong-conflict-free may be done for a little extra effort during the
construction of the SDD. It is shown in [1] that a deadlock state of any busy, triple-disjoint, strong-
conflict-free network must have a cycle of ungranted requests of length at least three. This means that
we can establish deadlock-freedom for such a network by showing that its SDD contains no circuits of
length three or more. Circuits of length two are not a problem in this case.

Checking for the existence of a circuit in the SDD of length three or more is performed using the
following algorithm devised by A. W. Roscoe. First partition the digraph into strongly connected
components. Then for each component calculate the undirected simple graph which is induced. The
original digraph contains no circuit of length three or more if, and only if, the induced simple graph of
each strongly connected component is a tree. (The justification for this algorithm is left as an exercise
to the interested reader.)

This particular extension to the SDD proof technique, which we call SDD3, enables us to prove
deadlock-freedom for networks which might sometimes have conflicts (although not strong conflicts).



For example one can imagine a message routing network where an individual pair of neighbouring
processes might sometimes each be waiting for the other one to pass across a message across. We have
used this algorithm to prove deadlock-freedom for the switching system described in [15] which was
also of this nature.

Vertex Colouring

Another form of bogus circuit that may be found in the SDD is one which passes through two or more
states of the same process. It is clearly impossible for a process to be in two states at the same time
so such a circuit cannot represent a real cycle of ungranted requests.

Suppose that we now colour the vertices of the state dependence digraph, where each colour repre-
sents the states of a particular process. To avoid the problem described above we are looking for an
algorithm to determine whether this digraph contains a circuit in which every vertex has a different
colour. At the time of writing no efficient algorithm has been found to decide this question in general.
However even an inefficient algorithm would be useful in cases where the state-dependence digraph
contains only a small number of circuits. Further investigation is in progress.

The Edge Selection Principle

Perhaps a more promising approach involving the aforementioned vertex colouring is based on the
concept of request selector functions[2]. Suppose that there is some vertex of the state dependence
digraph, P.o, which has outgoing arcs to vertices which have two or more different colours. Now
suppose that we choose one particular such colour C(P.c) and delete every outgoing arc from P.o
that points to a vertex with a different colour from C(P.c). If the stripped down version of the state
dependence digraph which results contains no circuit then it is still the case that the network must be
deadlock-free. The result still holds no matter how many vertices are treated in this manner. There is
insufficient room here to justify the edge-selection principle, but the interested reader should refer to
[9] for further details of the theory on which it is based.

This property is potentially useful as follows. Suppose that a state-dependence digraph has been
constructed and is found to contain circuits. An artificial-intelligence style algorithm is envisaged which
would attempt to find a sequence of vertex and colour selections leading to the removal of sufficient
arcs to render the digraph circuit-free, and hence prove deadlock-freedom. Finding the correct set of
edge deletions appears to be difficult — it is rather like playing solitaire. At the moment we have tried
an algorithm which works by trying to break as many circuits as possible at each stage. This appears
promising, but it does not, as yet, play a strong end-game and is prone to leaving a few circuits behind
that could have been broken through a wiser choice of edges to delete.

We are now investigating the possibility of using edge selection can in a different way to help remove
circuits where each vertex has a different colour, as described in the previous section. This might be
an interesting avenue for future research.

5 Proving Livelock Freedom

Deadlock Checker does not overlook the important property of livelock-freedom. We implement the
proof rule of Roscoe (described in [2]) which works in many cases. First we need to check that each
individual process in the network is itself free of livelock. We use FDR to check this at the time of
network compilation. (It checks that there is no circuit of hidden actions in the transition system
that is generated.) Then we need to show that no process can communicate indefinitely with those
before it in the network list. These two properties can be shown to guarantee livelock freedom for
the network by induction. The order in which the processes are supplied affects the success of this
particular technique.
We check the condition as follows

1. Start with a network of processes (P; .. P,) For each process P; we calculate the subset of its
alphabet shared with predecessors in the process list and call this N;.

2. We then consider the subgraph of the transition system of each P; containing only those arcs
labelled with events which lie in N;. If this subgraph contains no circuit then P; cannot commu-
nicate indefinitely with its predecessors in the network list.



6 Case Studies

A Cube Router

Traditionally one of the most laborious tasks in parallel programming has been the routing of mes-
sages between processes which run on non-adjacent physical processors. Using a deadlock-free routing
algorithm it is possible to implement unlimited virtual channels between transputers that are semanti-
cally equivalent to synchronous hardware links[14]. This work can be performed by a compiler, either
partially or totally, freeing the programmer from much low-level effort.

We now consider the design of a deadlock-free routing algorithm for a network of eight transputers
configured as a cube. The guiding principle that we shall use is to assign a level to each link between
processors, and then to ensure than any message arriving at a processor on level n can only depart
on a level greater than n. In this way deadlock can be avoided by ensuring that all messages travel
“upwards” to their destination, which guarantees the free-flow of messages through the system. The
system actually conforms to the client-server design rule for deadlock-freedom[11].

Figure 6 illustrates the router process topology superimposed on top of the processor topology. Each
processor runs a separate process to control each of its input and output links. It also runs two interface
processes, 70 and FROM. The former collects messages which have arrived at their destination, and
passes them to the local application process. The latter routes messages from the local application
destined for other processes.

Links in the z direction are assigned level one, those in the y direction level two, and those in the z
direction level three. In order to send a message to its destination the strategy used is first to get the
z coordinate right, then the y coordinate, and finally the 2z coordinate.

The abstract CSP design of the program is listed below.

coords = {0,1}

direction = {dx, dy, dz}

change_direction = {xy,xz,yz}

-- 3 input links for each transputer

pragma channel i : coords.coords.coords.direction

-— Internal channels

pragma channel in, out : coords.coords.coords.direction
pragma channel q : coords.coords.coords.change_direction

-— Channels for interface to applications program
pragma channel to, from : coords.coords.coords
-- Processes to service input links

INX(x,y,2)

i.x.y.z.dx -> (out.x.y.z.dx -> INX(x,y,z) |~I
q.x.y.z.xy -> INX(x,y,z) |~|
q.x.y.z.xz -> INX(x,y,2))

INY(x,y,2z) = i.x.y.z.dy -> (out.x.y.z.dy -> INY(x,y,z) |~|
q.x.y.z.yz -> INY(x,y,2))

INZ(x,y,z)

i.x.y.z.dz -> out.x.y.z.dz -> INZ(x,y,z)
-- Processes to service output links
0UTX(x,y,z) = in.x.y.z.dx -> i.((x+1)%2).y.z.dx -> OUTX(x,y,z)

OUTY(x,y,z) = in.x.y.z.dy -> i.x.((y+1)%2).z.dy -> 0UTY(x,y,z) []
q.x.y.z.xy -> i.x.((y+1)%2).z.dy -> 0UTY(x,y,z)



Figure 6: Cube Router




0UTZ(x,y,z) = in.x.y.z.dz -> i.x.y.((z+1)%2).dz -> 0UTZ(x,y,z) []
q.x.y.z.xz -> i.x.y.((z+1)%2).dz -> OUTZ(x,y,z) []
q.x.y.z.yz -> i.x.y.((z+1)%2).dz -> 0UTZ(x,y,z)

-- Interface to application program

TO(x,y,z) = out.x.y.z.dx -> to.x.y.z -> TO(x,y,z) []
out.x.y.z.dy -> to.x.y.z -> TO0(x,y,z) []
out.x.y.z.dz -> to.x.y.z -> T0(x,y,2)

FROM(x,y,z) = from.x.y.z -> ( in.x.y.z.dx -> FROM(x,y,z) |~|
in.x.y.z.dy -> FROM(x,y,z) |~|
in.x.y.z.dz -> FROM(x,y,z) )

-— Now specify network for Deadlock Checker. The processes are
-- listed according to their "client-server" ordering.

--+FROM(0,0,0) ,FROM(0,0,1) ,FROM(0,1,0) ,FROM(0,1,1),
--+FROM(1,0,0) ,FROM(1,0,1) ,FROM(1,1,0) ,FROM(1,1,1),
--+0UTX(0,0,0) ,0UTX(0,0,1),0UTX(0,1,0) ,0UTX(0,1,1),
--+0UTX(1,0,0),0UTX(1,0,1),0UTX(1,1,0),0UTX(1,1,1),
--+INX (0,0,0),INX (0,0,1),INX (0,1,0),INX (0,1,1),
--+INX (1,0,0),INX (1,0,1),INX (1,1,0),INX (1,1,1),
--+0UTY(0,0,0),0UTY(0,0,1),0UTY(0,1,0),0UTY(0,1,1),
--+0UTY(1,0,0),0UTY(1,0,1),0UTY(1,1,0),0UTY(1,1,1),
--+INY (0,0,0),INY (0,0,1),INY (0,1,0),INY (0,1,1),
--+INY (1,0,0),INY (1,0,1),INY (1,1,0),INY(1,1,1),

--+QUTZ(0,0,0) ,0U0TZ(0,0,1),0UTZ(0,1,0) ,0UTZ(0,1,1),
--+0UTZ(1,0,0),00TZ(1,0,1),0UTZ(1,1,0) ,0UTZ(1,1,1),
--+INZ (0,0,0),INZ (0,0,1),INZ (0,1,0),INZ (0,1,1),
--+INZ (1,0,0),INZ (1,0,1),INZ (1,1,0),INZ (1,1,1),
--+T0 (0,0,0),TO0 (0,0,1),T0 (0,1,0),T0 (0,1,1),
--+T0 (1,0,0),T0 (1,0,1),T0 (1,1,0),T0 (1,1,1)

This initial design avoids the issue of how to make routing decisions. When a message arrives on an
input channel at a particular process it is redirected non-deterministically along any one of its output
channels. Despite this disregard for any routing information the design is sufficiently robust to be
proven deadlock-free by the SDD algorithm. The system is also shown to be livelock-free (see figure
7). The order in which the processes were supplied was crucial to proving livelock-freedom.

It is interesting to note that each of the sixty-four processes of this network may, or may not, be
holding a message at any given time, which means that the system as a whole has at least 2%4 states.
This would put it well out of the range of any program using exhaustive state checking, such as FDR.

This application is a good example of the proper use of Deadlock Checker. The network was
designed according to a tried and tested design rule which guarantees deadlock-freedom — the client-
server protocol. Deadlock Checker was then able to give a formal guarantee that the no deadlock had
crept into the system due to human error.

From the abstract design we were able to develop a working occam[8] implementation without
difficulty. For instance, here is the process INX which runs on each transputer.

PROC INX(VAL INT x, y, z, processor)
local declarations

WHILE TRUE
SEQ
i[x] [yl [z] [dx] 7 length :: packet
IF
packet[0] = processor -- Arrived at destination

out [x] [y] [z] [dx] ! length :: packet
ycoord(packet[0]) <> y -- Need to fix Y coordinate
qlx]1 [yl [z] [xy] ! length :: packet
TRUE -- Need to fix Z coordinate



qlx1[yl[z] [xz] ! length :: packet

The technique of assigning levels to processor links in order to effect a routing strategy can be
generalised to processor networks of arbitrary construction. (Details are given in [3] and [13].) For
certain topologies it is necessary to multiplex a number of virtual links on different levels, along a
particular hardware link, in order to guarantee that there is always an upwards path between each
pair of processors.

Figure 7: Deadlock and Livelock Analysis of the Cube Router
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A Television Studio Control System

Now we consider an algorithm developed by N. Miller and Y. Bouchlaghem for the control of audio
communications in a television studio [12]. The system, which is called Commander, consists of up to
384 control panels each of which has an associated analogue audio sound channel. The control panels
are each connected to one of four central racks via a 96-way multiplexor. Each of these racks is then
connected up to a cross-bar switch which is used to control audio connections between users. The four
racks are also connected to each other so as to pass on switching requests from users, and to request
information.

The hardware is based on transputers. There is one behind each control panel, and there are
three in each rack: one to manage the multiplexor, one to control the cross-bar switch, and the third
responsible for communication with the other racks, and the implementation of the high level system
functionality. Apart from the inter-rack connections, all message passing conforms to the client-server
paradigm. Each control panel runs a process PANEL which is a client of a multiplexor control process
PANELMGR. This in turn is a client of a rack management process RACKMGR which is a client of
a process XBARMGR which controls a cross-bar switch.



The only place where Miller and Bouchlaghem diverge from the client-server paradigm is in the
inter-rack communications. Unfortunately we shall see that their system can deadlock because of this.
The machine-readable CSP definition of this core subnetwork is as follows.

rack = {0,1,2,3}

pragma channel signal:rack

pragma channel arc:rack.rack.{req,ack}
sigma = {| arc, signal |}

RACKMGR(i) = ([1 j:{x| x <- rack, x != i} @ arc.j.i%?req ->
arc.i.jlack -> RACKMGR(i)) []
signal.i -> || j:{x| x <- rack, x != i} @ SEND(i,j,req)

SEND(i,j,x) = arc.i.j!x —->
([0 k:{x|] x <- rack, x '= i} @ arc.k.i?z ->
(if z == ack then RACKMGR(i) else SEND(i,k,ack))) [
(00 k:{x| x <- rack, x != i} @ arc.k.i?z ->
arc.i.jl!x ->
(if z == ack then RACKMGR(i) else SEND(i,k,ack)))

-—+ RACKMGR(0), RACKMGR(1), RACKMGR(2), RACKMGR(3)

Each rack manager process is initially waiting either for a signal to arrive from its panel manager, or
a request from another rack. If it receives a request from another rack, this is immediately answered.
If it receives a signal from its panel manager it may need to communicate with another rack. In this
case it goes into “action” mode. First it sends out its request, and in parallel waits for a message to
arrive from another rack. This message could either be the required answer to its request, or another
request requiring an answer. In the former case the process returns to its initial state, in the latter it
begins another cycle of parallel input and output. This time the output is an answer to the request
that has just been received. The process continues with cycles of parallel inputs and outputs until an
answer has been received to its original request.

When this network is analysed by Deadlock Checker, using the SDD algorithm, a potential cycle of
ungranted requests is reported. This does not necessarily mean that the system actually does deadlock.
However executing the network by pressing the Run button results in global deadlock — usually after a
few minutes. Miller and Bouchlaghem report that their software has been running without problems
on a system with over one hundred users, for some time. Perhaps this indicates that there is a very
low probability of deadlock occurring in practice, where all action sequences need to be initiated by a
human flicking a switch. However this type of uncertainty could certainly not be tolerated in a safety
critical application, such as an air traffic control system.

It is possible to modify the system in order to render it deadlock-free, through adherence to the client-
server protocol. Deadlock Checker can then be used to verify deadlock-freedom. This is explained in
[9] where there is a more detailed analysis of this particular network.

The system that has been considered here is in many ways a very fine piece of engineering. The fact
that it has such a fundamental flaw is by no means a reflection on its developers. But it serves as a
good example as to why tools like Deadlock Checker are so important.

7 Prospects for the Future

The main thread of this paper has been putting formal methods into action. We have described a
tool which enables software engineers to design, implement and debug concurrent systems which are
guaranteed free of deadlock, with the aid of design rules such as those described in [4, 9, 10, 11, 14, 15,
18, 19]. Existing tools which do this only work on a very small scale due to the problem of exponential
state explosion, but our techniques overcome this restriction by being based on local analysis of process
pairs rather than global states.

At the time of writing, Deadlock Checker incorporates our SDD, CSDD, FSDD and SDD3 deadlock
tests, as well as Roscoe’s livelock test. Testing for exact adherence to the cyclic-po design rule[10]
is also included. Experimental code for removing circuits from the SDD involving edge-selection and
vertex-colouring is under development but not yet part of the main program. Work is also underway
to interface the program to version 2 of FDR, which offers a more flexible network input format.



Figure 8: Execution of Commander Resulting in Deadlock
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The performance of the program is impressive. A network of 100 Dining Philosophers and Forks can
be tested for deadlock in under 10 seconds on a Sun Sparcstation. It is predicted that Java compilers
will produce code that runs 10 to 20 times faster in the future so there should be much improvement
to come for no effort. The time required for the various checks appears to scale almost linearly in the
number of processes for well-defined networks (see [9]).

It would be nice to use the tool to analyse source code for real programming languages such as
occam, Ada, and perhaps Java. A tool has been developed by Formal Systems UK for extracting the
CSP communication patterns from occam[17] so it should certainly be possible to analyse occam code.
Ada also uses the CSP model for parallelism, so there is hope that something similar could be done.
The designers of Java appear to have rejected CSP for Hoare’s earlier system of monitors, which was
superseded by CSP. So there would appear to be less hope for analysing Java programs with Deadlock
Checker unless those programs incorporate an implementation of the CSP channel model, which is one
of the important themes of this conference.
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