
Concurrent Computing – Architectures, Languages and Techniques
B. M. Cook (Ed.)
IOS Press, 1999

47

BSP Modelling of Two-Tiered Parallel
Architectures

Jeremy M.R. MARTIN
Oxford Supercomputing Centre

Wolfson Building
Parks Road

Oxford OX1 3QD, UK

Alexandre V. TISKIN
Oxford University Computing Laboratory

Wolfson Building
Parks Road

Oxford OX1 3QD, UK

Abstract. In recent years there has been a trend towards using standard workstation
components to construct parallel computers, due to the enormous costs involved in
designing and manufacturing special-purpose hardware. In particular we can expect
to see a large population of SMP clusters emerging in the next few years. These are
local-area networks of workstations, each containing around four parallel processors
with a single shared memory.

To use such machines effectively will be a major headache for programmers and
compiler-writers. Here we consider how well-suited the BSP model might be for
these two-tier architectures, and whether it would be useful to extend the model to
allow for non-uniform communication behaviour.

1 Introduction

The structure of this paper is as follows. First we shall review the existing Bulk Synchronous
Parallel (BSP) model of computation and illustrate its cost-prediction model with a suitable
example. Then we shall consider how the BSP computer differs from emergent hierarchi-
cal supercomputing architectures. Next we define a two-tiered BSP computer, with a refined
cost-prediction model. A representative selection of algorithms are parallelised using the
new model, and their performance is analysed to see whether any significant gain in scalabil-
ity is achieved with respect to the existing model.

The BSP computation model

The BSP computer[3] consists of a number of processor/memory pairs connected by a com-
munications network. Each processor has fast access to local memory and uniformly slow
access to remote memory.

/ / / / / /P P P P P P
M M M M M M

The BSP programming model is a prominent example of the use of remote memory trans-
fer. This is an alternative to message passing, in a distributed memory environment. Each
process can directly write and read to the memory of a remote process. These actions are
one-sided with no action by the remote process and hence there is no potential for deadlock.

Execution of a BSP program proceeds in supersteps separated by global synchronisa-
tions. A superstep consists of each process doing some calculation, using local data, and/or

48 Martin and Tiskin / Two-Tiered Parallel Architectures

communicating some data by direct memory transfer. The global synchronisation event guar-
antees that all communication has completed before the commencement of the next super-
step.

BSP programs are SPMD, which stands for single program multiple data. Each processor
runs an identical program, but the programmer has access to the current process id (which is
in the range 0 to ���������
	��� , where ����������	 is the total number of processes) to allow different
behaviour to be implemented at each node if required.

The main BSP commands are as follows:

bsp begin, bsp end define start and end of SPMD code

bsp pid get local process id

bsp nprocs get total number of threads

bsp sync perform barrier synchronisation

bsp put, bsp get transfer data to/from other processes. In some implementations this may
take place at any time during superstep so one must not use/change the data until after
the next global synchronisation.

Let us consider a FORTRAN program for the numerical solution to Laplace’s equation
over a rectangular domain, with fixed values on the boundary, using the technique of Jacobi
iteration[1]. The sequential code for a single iteration is as follows:

DO J = 1, JMAX
DO I = 1, IMAX

UNEW(I,J) = 0.25 * (U(I-1,J) + U(I+1,J)
+ U(I,J-1) + U(I,J+1))

END DO
END DO

We could parallelise this using BSP by arranging the grid into overlapping strips, each to
be worked on by a separate process.

Each iteration involves a computation phase, then a communication phase, and finally a
global synchronisation.

ME = BSP_PID()
NPROCS = BSP_NPROCS()
...
DO J = 1, JMAX / NPROCS
DO I = 1, IMAX
UNEW(I,J) = 0.25 * (U(I-1,J) + U(I+1,J)

Martin and Tiskin / Two-Tiered Parallel Architectures 49

+ U(I,J-1) + U(I,J+1))
END DO

END DO
IF (ME .GT. 0) THEN
CALL BSP_PUT... ! update process to the left

END IF
IF (ME .LT. NPROCS - 1)
CALL BSP_PUT... ! update process to the right

END IF
CALL BSP_SYNC()

BSP cost modelling

Perhaps the most important feature of BSP is its cost-prediction model, which makes it rel-
atively easy to evaluate the potential efficiency of an algorithm prior to implementation. In
this model the parallel computer is reduced to four constants � 	�������������� where	�� processor speed (Mflops)��� number of processors��� latency/synchronisation time

time for 1 floating point op��� time to get/send 1 fp. value
time to do 1 floating point op.

The cost of a single superstep is then �! #"$�&%'�(")�
and the predicted execution time is given by	�*�+ � �! ,"$�&%'�-")�'�
where�& = max number of f.p. operations performed by any process�&% = max number of real values communicated by any process
The BSP cost of the whole task is just the sum of the individual supersteps.

In the case of the above Jacobi iteration example we evaluate the BSP cost function as
follows. Let us assume that the grid has dimension . in each direction. Then the amount
of data points to be updated by each processor is /102 . Each update requires four arithmetic
operations so we have: �& 3�54 .76�
The most communication that any processor has to do is to output two complete columns to
neighbours (and simultaneously to input two new columns from the same parties). So we
have: �!%8�:9 .
This leads to an overall cost function, for a single iteration, of4 .76� ";9 . �(")�

50 Martin and Tiskin / Two-Tiered Parallel Architectures

Note that we could reduce the cost by partitioning the data grid into squares rather than strips.
In that case the cost would be 4 . 6� "<4 . �= � "$�

Using the Oxford implementation of BSP[2], parameters � 	7�>����������� have been measured
for a wide variety of architectures. These may be used to predict the likely performance of a
BSP algorithm prior to execution (or even program construction). Certain algorithms can be
immediately consigned to the waste-bin, perhaps avoiding months of futile effort.

Here are some examples of BSP parameters for some particular architectures, based on
the Oxford BSPlib benchmarks[4].

Machine s p l g
Origin 2000 101 4 1789 10.24

32 39057 66.7
Cray T3E 46.7 4 357 1.77

16 751 1.66
Pentium NOW 61 4 139981 1128.5
10Mbit shared ether 8 826054 2436.3
Pentium II NOW 88 4 27583 39.6
100Mbit switched ether 8 38788 38.7

2 Extending the model

The BSP model has been very successful as a reliable means of producing truly portable par-
allel software. A catalogue of efficient BSP algorithms, covering a wide spectrum of compu-
tational problems, has been constructed by researchers in Oxford and the rest of the world.

However real hardware may differ from the BSP model in certain important respects.

1. Local memory access times are variable – they are affected by the usual hierarchy of
memory, cache and registers.

2. Access times to remote memory may vary because of non-uniformity within the inter-
connection network.

Difference 1 may be absorbed into the BSP model, if required, by allowing the value of	 , the processor speed, to become application-specific. It may be measured for a particular
program by benchmarking on a single processor.

Difference 2 may also be concealed using random placement of processes to processors
and random message-routing, which involves diverting all messages via some arbitrary inter-
mediate location. However, to do this removes any possibility of improving performance by
exploiting fast local communications.

In an SMP cluster, the cost of communication between separate SMP units may far out-
weigh the cost of local communication, involving only processors within the same unit. So,
although we can make such a beast behave like a BSP computer by the above technique, we
may not wish to do so. Let us consider an extension to the BSP model, which allows for two
levels of synchronisation.

Martin and Tiskin / Two-Tiered Parallel Architectures 51

The BSP2 computer

A BSP2 computer consists of a number of BSP units, connected by a communication net-
work. Each BSP unit, in turn, consists of a fixed number of processor/memory pairs, con-
nected by a local network. Each processor has fast access to its local memory and uniformly
slow access to memory belonging to other processors within the same network. Each BSP
unit has uniformly slower access to the memory within other BSP units.

P
M

P
M

P
M

P
M

P
M

P
M

P
M

P
M

P
M

Execution of a BSP2 program proceeds in super-supersteps, separated by global synchro-
nisations. On each super-superstep each BSP unit performs a complete BSP computation
and/or communicates some data with other BSP units.

BSP2 cost model

The BSP2 computer is modelled by seven parameters � 	�������?������A@B���&�ACD� , where	�� processor speed (Mflops)��� number of processors in each BSP unit?E� number of BSP units (total processor count: �GFG?)��� latency/synchronisation time for BSP unit
time for 1 floating point op@H� latency/synchronisation time for all BSP units

time for 1 floating point op��� time to get/send 1 fp. value within a unit
time to do 1 floating point op.CI� time to get/send 1 fp. value between two units

time to do 1 floating point op.
The cost of a single super-superstep is JLK ";@G"$�!%1C
whereJ3K = max cost of BSP computation performed by any unit�&% = max number of real values communicated by all the processors within a BSP unit
to/from other units.

To realise programs in this extended model, additional BSP2 primitives would need to be
provided, e.g.

bsp uid get BSP unit id

bsp units get total number of BSP units, ?
bsp usync synchronise within a unit

bsp uput, bsp uget transfer data to/from processors within the same unit.

52 Martin and Tiskin / Two-Tiered Parallel Architectures

So we are now in a position to develop BSP2 algorithms and to calculate their perfor-
mance times. For the sake of comparison, we shall need some means of predicting how fast
ordinary BSP programs would run on the BSP2 computer too. This involves working out
BSP parameters � 	��������1�M�N� for the BSP2 machine � 	7�>����?������A@B���&�AC�� .

Clearly the 	 -parameter, representing processor speed, will be unchanged. The total pro-
cessor count will be ��? . Overall synchronisation of the system will require a local synchoni-
sation within each unit to be followed by global synchronisation, and therefore will have cost�N";@ . The sole difficultly arises in deciding upon a value for � .

Due to the random placement of processes on processors (in BSP not BSP2) we can
assume that communication will be remote rather than local. The cost of sending a single
real value from one processor to a processor in another unit must incorporate the local data-
transmission cost of � plus the cost of transmission between units. The rate at which the� individual processors, within a a unit, can transmit data to other units should be � times
slower than the rate C at which the unit as a whole can transmit data. These considera-
tions lead to a � -value of �E"O�NC . Thus the ordinary BSP parameters for the BSP2 machine� 	�������?������A@B���&�ACD� are � 	�����?�����"$@B���("P�NCD� .
3 BSP2 parallelisation and cost-analysis of representative algorithms

In this section we work out the BSP2 cost for the natural BSP2 parallelisation of certain
important algorithms. In each case this is compared with the cost of running the best-known
BSP algorithm on the BSP2 machine. From now on, for the purpose of clarity, we shall omit
certain small constants from cost expressions.

The algorithms we shall consider are as follows:

Diamond DAG: a computation with a dependence pattern shaped as an �QF-� regular square
grid.

The cost function for the natural BSP parallelisation of this algorithm is
� 6� "R�&�L"S��� .

T UV WX Y Z [
\]^ _` a b c
d ef gh i j k
l mn op q r s
t uv wx y z {

|
}~
��
��
�

�
��
��
��
�

�
��
��
��
�

�
��
��
��
�

�
��
�
¡¢
£¤�¤ ¤�¥

¥�¤ ¥�¥
Cube DAG: a computation with a dependence pattern shaped as an �$F¦�§F¦� cube grid.

The BSP cost is
�©¨� " � 6= � �(" = �ª� .

Martin and Tiskin / Two-Tiered Parallel Architectures 53

« « « «
« « « «
« « « «
« « « «

« « « «
« « « «
« « « «
« « « «

« « « «
« « « «
« « « «
« « « «

« « « «
« « « «
« « « «
« « « «¬ª¬ª¬

¬ªª¬ ¬ªª

ª¬ª¬ ª¬ª

ªª
®

Matrix-vector multiplication: assuming that the matrix data are predistributed across the
processors, the BSP cost is � 6� " �= � �¯"$�

Matrix-matrix multiplication: BSP cost
�©¨� " � 6� 0° �-")� .

Parallel sort by regular sampling: BSP cost
�(±³²�´8�� " �� �("$� .

For full details of these algorithms, and how they are parallelised using BSP, please see [6]
and [7].

The following table lists the BSP2 cost of each of the above algorithms against the cost
of running BSP code on the BSP2 machine.

Algorithm BSP2 cost BSP on BSP2 machine

Diamond DAG µ·¶¸º¹L» µN¼¾½ »À¿ÂÁ�» ¸�¹AÃ » ¹AÄ µ·¶¸�¹L» µN¼Å½ » ¸ ¿ÂÁ·» ¸º¹ ¼ Ã » Ä Á
Cube DAG µ·Æ¸º¹ » µ ¶ Ç ½È ¸�¹ » ¿È ¹�É » È ¸�¹AÃ » È ¹AÄ µ·Æ¸º¹ » µ ¶ Ç ½È ¸�¹ » È ¸ ¿È ¹ÀÉ » È ¸�¹ ¼ Ã » Ä Á
Matrix Ê vector µ ¶¸º¹Ë» µ Ç ½È ¸�¹Ì» ¿È ¹�É�» Ã » Ä µ ¶¸�¹L» µ Ç ½È ¸º¹3» È ¸ ¿È ¹ÀÉÍ» Ã » Ä
Matrix Ê matrix µ·Æ¸º¹L» µ ¶ Ç ½¼ ¸º¹ ÁÏÎÐ » ¿¹ ÎÐ ÉÀ» Ã » Ä µ·Æ¸�¹L» µ ¶ÒÑ ½¼ ¸�¹ ÁÏÎÐ » ¸�ÓÐ ¿¹ ÎÐ�Ô » Ã » Ä
PSRS µÖÕØ×ÚÙ�µ¸º¹ » µ Ç ½¸º¹3» ¿ ¹ÛÉÍ» Ã » Ä µÖÕØ×ÚÙ�µ¸º¹ » µ Ç ½¸º¹3» ¿ ¹ÛÉÍ» Ã » Ä

When these cost functions are analysed in detail they do not make any serious case for
using BSP2. If we assume that � and � are small, compared with @ and C respectively, then
the best speedup factor is achieved for the Diamond DAG algorithm – speedup by a factor of� in the communications. However this is a compute-bound algorithm – that is to say that the
dominant term in the BSP cost function is the computation element. So, there is no particular
benefit in speeding up the communications by, say, a factor of 10.

The only algorithm we have considered that is not compute-bound is PSRS. In this case
there is no benefit at all in BSP2 parallelisation anyway. In general, irregular problems can-
not benefit even from single-level BSP data locality, therefore the second level of data local-
ity is of little use.

54 Martin and Tiskin / Two-Tiered Parallel Architectures

4 Conclusions

The BSP model has proved a trusty tool in the discipline of parallel programming for pro-
ducing reliable and portable codes, with predictable efficiency. Now, however, additional
complexity in the hardware, forces a review of the model.

Here we have considered how to extend the BSP model hierarchically in an attempt to ex-
ploit fast local communications. However, none of the algorithms we have analysed shows
any significant benefit from this approach, even when local communication is several orders
of magnitude faster that remote communication. It seems that the scalability of each of the
wide range of algorithms considered is fundamentally constrained by the slowest communi-
cation paths in the hardware, and the presence of fast local links may be of little benefit.

The failure of the BSP2 model to provide any major performance gain provides a strong
case for using the existing, flat BSP model to program hierarchical architectures, such as
we have considered. Manufacturers’ effort should be directed towards improving the global
communication factors, in order to bring them as close as possible to those achieved locally.

One important design decision we took, when defining the BSP2 computer, was to as-
sume that all communication between BSP units is serialised through single points of con-
tact. The alternative would have been to allow each processor within a unit parallel access to
the outer world.

M
P

M
P

M
P

M
P

M
P

M
P

M
P

M
P

M
P

This model would require an adjustment to how ��% , the communication component of a
super-superstep, is calculated. Now it would be defined as the maximum amount of global
communication performed by any one processor in the system. We have analysed all the
algorithms from section 4 using this slight variant of the model, and we have found that it is
essentially equivalent to the BSP2 computer (with parameter C replaced with CÝÜÚ�). So there
is no extra information that is likely to be revealed.

One approach to programming SMP clusters, that has been already been investigated[5],
is to use a combination of shared memory programming (by compiler directives) at the level
of each SMP unit and explicit message passing (with MPI) between SMPs. This mixed-mode
style of coding would require the programmer to be proficient in both forms of parallelisa-
tion. The use of a single consistent model, such as BSP, should be appealing to programmers
when contrasted with this hybrid approach considered by others. The existence of a metric
for performance prediction is also a major bonus.

Acknowledgements

We have enjoyed the considerable benefit of discussions with Bill McColl and Jon Hill while
preparing this paper.

References

[1] Gene Golub and James M. Ortega Scientific Computing: An Introduction with Parallel Computing, Aca-
demic Press, Inc 1993.

Martin and Tiskin / Two-Tiered Parallel Architectures 55

[2] Jonathan M. D. Hill, Bill McColl, Dan C. Stefanescu, Mark W. Goudreau, Kevin Lang, Satish B.Rao,
Torsten Suel, Thanasis Tsantilas, and Rob Bisseling BSPlib: The BSP Programming Library, Parallel
Computing, to appear

[3] W. F. McColl Scalable Computing, In J van Leeuwen, editor, Computer Science Today: Recent Trends
and Developments, Lecture Notes in Computer Science 1000, pages 41-61. Springer-Verlag 1996

[4] BSP Machine Parameters, see
URL: http://www.BSP-Worldwide.org/implmnts/oxtool.htm

[5] Stef Salvini, Brian T. Smith and John Greenfield Towards Mixed Mode Parallelism on the New Model
F50-based IBM SP System, Technical Report AHPCC98-003, Albuquerque High Performance Comput-
ing Centre 1998.

[6] A. Tiskin The bulk-synchronous parallel random access machine, Theoretical Computer Science,196,
1–2, pp. 109–130 Elsevier 1998

[7] A. Tiskin The design and analysis of bulk-synchronous parallel algorithms, Oxford University D.Phil
thesis, to appear 1999

