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Abstract. Conventional model-checking techniques for analysing concurrent systems
for deadlock or livelock are hampered by the problem of exponential state explosion:
the overall number of global states that needs to be checked may grow exponentially
with the number of component processes in the system. The state-of-the-art commer-
cial tool FDR provides deadlock and livelock analysis but it is limited at present to
analysing systems of up to one hundred million global states.

The Deadlock Checker tool is capable of analysing very much larger systems by
taking certain short-cuts. But this is achieved at the cost of incompleteness – there are
certain deadlock-free and livelock-free networks that may not be proven so using that
tool.

Here we investigate a different approach. We present parallelised model-checking
algorithms for deadlock and livelock analysis and describe their implementation. The
techniques are found to scale well running either on a conventional supercomputer or
on a PC cluster.

1 Introduction

In this paper we look at parallelising the algorithms that are used for model checking con-
current systems. The first algorithm that we consider is deadlock-checking by performing
an exhaustive breadth-first-search over all global states, looking for a deadlock-state. The
technique used is fairly simple: global states are distributed between processors using a hash
function. However this technique turns out to work very well and we shall demonstrate that
the parallel algorithm is highly scalable.

Next we consider the problem of checking for livelock. A livelock is characterised by a
cycle of hidden events in the global transition system under consideration. Normally depth-
first-search is used to solve this problem, but unfortunately nobody knows any way to paral-
lelise the depth-first-search effectively. So we present an alternative graph-pruning algorithm
for livelock-analysis, which has the potential to be parallelised.

2 A simple deadlock checking algorithm

We consider a transition system defined in terms of an initial state, initial, of abstract type
State, and a function successors � States � �

States, which calculates the set of states reach-
able by performing a single transition from a given state. Our task is to determine whether
the transition system contains any state s from which no further progress can be made, i.e.
successors � s �����
	 .
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The standard approach to solving this problem is to maintain two lists of states: pending
and checked. Initially pending contains only the initial state and checked is empty. Then the
algorithm proceeds by repeatedly removing a state x from pending, from which the successor
states are calculated. If there are no successors then x is a deadlock-state. Otherwise those
successors of x that have not already been seen, are merged into pending. The search termi-
nates either when a deadlock state is found or when pending is empty. This is summarised
by the following pseudocode (in the style of Morgan[1]).

var pending � checked � set of State �
pending � ��� initial 	�
checked � ���
	�
do � pending ����
	������

var x � State �
# select a pending state to check
x ��� pending 
pending � � pending ��� x 	�
checked � � checked ��� x 	�
if successors � x �����
	 then output x  stop else skip fi 
pending � � pending ��� successors � x ��� checked �

od

Although the basic algorithm is simple, there are a number of major implementation is-
sues. First of all the successors function is non-trivial. Typically each state of the global
transition system will consist of a vector of states from each individual component of the
concurrent system. For instance figure 1 shows transition systems for a deadlock-free ver-
sion of the famous Dining Philosophers network. In figure 2 we see how these are com-
bined in parallel. Working out the successor states of a particular global state vector will
involve looking up the possible transitions of each component process and applying the laws
of CSP to see which transitions are globally enabled. The initial global state of the system is� � � � � � � � � � � � � � � � � � � ��! : each component process is in its initial state. From that global state
there are five possible transitions, each corresponding to a different philosopher picking up a
fork. And each possible transition results in two of the component processes changing state,
while all the rest remain in the same state.

There are also important data-refinement issues involved in efficient implementation of
the potentially huge sets of global states. There may well be a requirement for using disk-
based storage.

In the above deadlock-checking algorithm, the order in which states are removed from
set pending has not been specified. Note that the search can be made strictly depth-first by
choosing the most-recently discovered state, and breadth-first by choosing the least-recently
discovered state.

Unless a strictly depth-first search (DFS) is required, we can decouple the discovery of
new states from the process of inserting them into the pending pool. This is useful as it can
be more efficient to insert states in large batches than to do so individually.

Here is a modified ‘batch’ version of the algorithm. A new variable bucket has been added
to represent the buffer of newly discovered states. We assume the existence of a predicate
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Figure 1: Individual transition systems for Dining Philophers Network
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Figure 2: Global transition system for Dining Philophers
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full to indicate when this buffer is full.

var pending � checked � bucket � set of State �
pending � ��� initial 	�
checked � ���
	�
do � pending ����
	������
# empty the bucket
bucket � ���
	�
do � not full � bucket � and pending ����
	������

var x � State �
x ��� pending 
pending � � pending �"� x 	�
checked � � checked ��� x 	�
if successors � x �#���
	 then output x  stop else skip fi 
# store successor states in the bucket
bucket � � bucket � successors � x �

od 
# merge bucket into pending set
pending � � pending ��� bucket � checked �

od

This is the algorithm that is used by the FDR tool for deadlock checking CSP programs.[2].

3 Parallelisation of the deadlock-checking algorithm

In order to parallelise the deadlock-checking algorithm we shall use the Bulk Synchronous
Parallel computation model (BSP). Each processor runs the same code, and communication
is by asynchronous remote-memory access. However periodic barrier-synchronisations may
be applied, after which point a consistent global view of the data is guaranteed.
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Figure 3: A BSP superstep

There are two key design decisions in our parallelisation strategy.
$ The number of global states is likely to be large so we distribute them between pro-

cesses,
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$ The number of states of individual processes is relatively small, and we need to access
them quickly to calculate successor states, so we copy them to each processor.

The parallel model-checking algorithm depends on the existence of a ‘hash’ function hash
which randomly and uniformly distributes states between N parallel processes. Each process
i checks only those states y for which hash � y �%� i. However, in the process of checking its
own states, a process will probably discover new states that belong to other processes. So,
rather than a single bucket of new states, an N & N array of buckets is maintained. States
which have been discovered by process i but which actually belong to process j are stored
temporarily in bucket ' i ()' j ( .

On each iteration every process works on its own data until either it has all been checked,
or its N local buckets are collectively full. Then the buckets must be swapped around so that
each process only possesses buckets containing its own states. This is achieved by a stan-
dard all-to-all communication[3], which has the effect of transposing the matrix of buckets.
Finally a global ‘reduction operation’ is performed to discover the total number of pending
states which remain in the system as a whole, which is used to decide whether the search is
complete. (This is illustrated in figure 4.)

4 Implementation

Based on the above a parallel program has been developed for checking concurrent systems
for deadlock-freedom. An important part of the implementation was to design efficient and
compact data structures, and various bit-maps, compression techniques, and hash functions
were used in order to extract good serial performance.

Each global state consists of a compressed vector of states of individual processes within
the concurrent system being analysed, plus a pointer to a parent state which is used to re-
construct traces when deadlocks are discovered. The information required to calculate the
successors of a particular state is stored in a number of hash-indexed lookup tables.

Parallelisation was achieved using the BSP communications library[4, 5]. The main issue
was to choose a good hash function for distributing global states

�+*-, �.�/�0� * M
!

between N
processes, evenly and randomly. Each global state is bit-packed into several words W

, �/�.� Wk.
The hash function chosen was

�1� 2�3 W
,54 2�376 W 6

4 �.� 4 2�3 kWk � modulo 298:3;8<3�� moduloN

This seems to work fine in practice.

Note that the data relating to the individual transition systems within the network (alpha-
bet, states, and transitions) is duplicated on each parallel processor. This seems reasonable as
we would expect the size of this data to be dwarfed by the eventual size of the global states
of network V .
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Running the parallel program

The program that we have developed, called bspchecker, prints statistics about the distribu-
tion of global states after each superstep. Initially one BSP process holds the initial state and
all the rest hold none.

oscar 107% ./bspchecker
How many processors?

8
Type data file name:

okphils13.dat
Input data broadcasting complete
Derived data structures complete
Process: 0 hashing 0 global states.
Process: 1 hashing 0 global states.
Process: 2 hashing 0 global states.
Process: 3 hashing 0 global states.
Process: 4 hashing 1 global states.
Process: 5 hashing 0 global states.
Process: 6 hashing 0 global states.
Process: 7 hashing 0 global states.
Process: 0 now has 0 global states.
Process: 1 now has 0 global states.
Process: 2 now has 0 global states.
Process: 3 now has 0 global states.
Process: 4 now has 1 global states.
Process: 5 now has 0 global states.
Process: 6 now has 0 global states.
Process: 7 now has 0 global states.

After a while a good load balance is achieved.

Process: 0 hashing 40359 global states.
Process: 1 hashing 39671 global states.
Process: 2 hashing 40410 global states.
Process: 3 hashing 39846 global states.
Process: 4 hashing 39786 global states.
Process: 5 hashing 40036 global states.
Process: 6 hashing 39882 global states.
Process: 7 hashing 40037 global states.
Process: 0 now has 350025 global states.
Process: 1 now has 350054 global states.
Process: 2 now has 349919 global states.
Process: 3 now has 349774 global states.
Process: 4 now has 350130 global states.
Process: 5 now has 350016 global states.
Process: 6 now has 350321 global states.
Process: 7 now has 349572 global states.

Finally the program prints out the any deadlock trace that has been discovered, or, if none
exist, the total number of global states and transitions,

Deadlock free: 5564522 global states 46200973 transitions
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Timing results

The above Dining Philosphers network, expanded to 13 philosophers and forks, was used
as input data to evaluate the efficiency of the program. Running on a single processor our
program was found to outperform FDR by a factor of around 4. Timing results for parallel
execution follow. We checked 13 dining philosophers on a MIPS R10000 processor SGI
Origin computer. The total number of global states was 5,564,522 and the number of global
transitions was 46,200,973.

Number of processors Execution time(s) Speedup Parallel efficiency
1 478.4 1.0 100.0%
2 249.0 1.92 96%
4 128.7 3.72 93%
8 66.34 7.21 90%
16 40.52 11.81 74%
32 23.40 20.44 64%
48 18.40 26.0 54.2%

These figures indicate a near-linear speedup factor using up to 48 processes. But this
is highly dependent on the communication characteristics of the machine being used. BSP
profiling can be used to predict performance on other architectures[6, 7]. We have observed
similar scalability and performance on a low-cost network of PCs, connected by switched
fast ethernet.

5 A new livelock checking algorithm

The technique that we have used for parallelising deadlock-analysis can be applied to various
other forms of model-checking. It has already been adapted to check refinement between two
processes in the CSP failures model. However livelock-analysis is more challenging.

Livelock is a state of a concurrent system from which an unbounded sequence of internal
events might occur, without interaction with its environment. In a finite transition system the
presence of such a state implies that there must exist a cycle of transitions of hidden events
in the graph. Such events are generally referred to as = events. Usually we would consider
events that are shared between two or more processes to be hidden = events and those events
that are performed by a single process to be visible to the environment. So, for instance, in
the case of the Dining Philosophers network we would take all the takes and drops events to
be = events, and just the eats events to be visible.

We define the = -graph of a transition system to be its subgraph of = transitions. (This
may well be disconnected.) Thus the task of determining livelock-freedom of a concurrent
system comes down to deciding whether its = -graph is acyclic.

The standard approach to testing acyclicity is to use a depth-first-search (DFS), and this is
certainly the approach used by FDR[2] and SPIN[8] in livelock-checking. However the DFS
is essentially a serial algorithm: no known effective parallelisation exists[9]. So we need to
use a different algorithm.

An alternative way of checking for cycles in a digraph is to use ‘graph-pruning’[10]. The
approach is simply to delete nodes from the graph which have no outgoing arcs until none
remain. Once this process is complete either the entire graph will have been deleted, in which
case it is acyclic, or the residual graph will contain a cycle.

This technique would appear to parallelisable in the same-way as the breadth-first search,
as nodes may be pruned off in layers and each layer can be processed in parallel. Figure 5
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illustrates the pruning algorithm being applied to the = -graph for three dining philosophers.
However the DFS has a major advantage: it does not require that all the = transitions of

the graph be held in memory. We have come up with three possible strategies for avoiding
this problem.

Strategy 1: incremental pruning

This is the simplest algorithm as described above: nodes with no outgoing arcs are removed
from the graph until none remain. This can be done in stages as the transition graph is built
up, to try to cut down the number of transitions that need to be stored at any time. The hope
here is that the memory needed for the transitions and states during the process will be less
than the space required for the total number of states. We investigated this for networks of
Dining Philosophers and buffers. Figure 6 shows the build up of the number of transitions
with the number of states with and without pruning, for networks of 8 buffers and 8 dining
philosophers. Figure 7 shows the space that would be needed to hold states and transitions,
pruning in stages as the graph is built up. From these graphs it is clear that this algorithm
is feasible for certain networks: holding the transitions and pruning in stages does not need
much more space (if any) than is necessary for states only.

Strategy 2: predecessors function

This version assumes the existence of a ‘predecessors’ function for calculating the immedi-
ate = -predecessors of a state. A full breadth first search of the state space is constructed, and
each state s is annotated with a = -successor count tcount � s � . The pruning is then conducted
by removing each state s such that tcount � s �>� �

from the graph, and decrementing the = -
successor count of each predecessor of s. The advantage of this version is that the transitions
do not have to be stored - we only need one extra integer per state for the = -successor count.
The difficulty with this method is that the predecessor function may be complicated to cal-
culate. Also, it is possible that the predecessor function may calculate some states that are
‘imaginary’ in that they cannot actually be reached from the initial state, which would affect
the efficiency of the algorithm.

Strategy 3: pruning in reverse direction

In this version there is no need to store the transitions and there is no complicated prede-
cessor function. A complete breadth first search is conducted, annotating each state with a
= -predecessor count. Then for any state s with no = -predecessors, s is removed from the
graph and each of its successors has its = -predecessor count decremented. This will leave
some non-divergent states and remove some divergent states, but it will decide livelock free-
dom. This is the version that will is being coded as it is the simpler than strategy 2, and does
not have the memory problems associated with strategy 1.

6 Conclusions and directions for further work

We have described how model-checking for deadlock analysis and livelock analysis may be
effectively parallelised. The existing BFS algorithm used in deadlock-analysis was found to
be suitable for parallelisation. However the DFS algorithm that is conventionally used for
livelock analysis was not and so had to be discarded in favour of a graph-pruning algorithm.
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It is hoped that the techniques described in this paper will soon be directly applied to
parallelise the FDR tool. A refinement check between two processes essentially requires a
livelock analysis followed by a BFS of the combined state-spaces of the two processes.

This work will have major implications for the size of system that may be model checked
in the future. At the time of writing the largest system to have ever been verified by FDR
had around one hundred million states, and required a full week to perform on a powerful
PC. Using sixty-four processors of an SGI Origin supercomputer we deadlock-checked six
hundred million states in under an hour. However state-explosion will continue to be a major
obstacle. Simple concurrent systems can easily have more states than there are atoms in the
Universe. There will always be a need for short cuts.
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