
Communicating Process Architectures 2002 285
James Pascoe, Peter Welch, Roger Loader and Vaidy Sunderam (Eds.)
IOS Press, 2002

The “Honeysuckle” Programming
Language: Event and Process

Ian EAST
Department of Computing, School of Technology

Oxford Brookes University, Wheatley Campus, Oxford, England OX33 1HX
ireast@brookes.ac.uk

Abstract. A new language for programming systems with Communicating Process
Architecture [1] is introduced which builds upon the success of occam [2]. Some
of the principal objectives are presented and justified. The means employed to
express behaviour are then described, including a transfer primitive, which conveys
object ownership as well as value [3], and an alternation1 construct. The latter re-
places PRI PAR and PRI ALT, and affords explicit expression of conflict-free
prioritized reactive (event-driven) behaviour, including exception response [4].
HPL also offers source-code modularity, object encapsulation, and the recursive
definition of both object and process. Despite such ambition, a primary aim has
been to retain simplicity in abstraction, expression, and implementation.

1 Introduction

Over the last decade, object-orientation has come to dominate both the literature and the
lore of programming [5]. The origin of object-orientated programming (OOP) can be traced
back to the late 1960s, when Simula established the principles of hierarchical data
abstraction and encapsulation [6-8]. However, these powerful ideas have become
inextricably mixed up with their interpretation, and have been carried to an extreme.
Abstraction is limited to passive objects.

Communicating Process Architecture (CPA) [1], on the other hand, implies hierarchical
process abstraction. CPA is made manifest via dedicated theory (CSP) [9] and the occam
programming language [2]. These combine to offer the possibility of unprecedented
software integrity, making CPA far better suited to the demands of safety-critical, and
consumer, applications. Unfortunately, exploitation of its formal basis currently requires
additional tools and skills. As a result, it rarely achieved its full potential.

 occam suffers from a few other problems which, together, help to explain its limited
commercial success. Perhaps the most serious is the inefficiency that can arise out of the
ability to communicate only a value and never a reference. Objects are immobile and must
always be copied, rather than passed, between processes. occam also offers only very
limited data abstraction, placing it in apparent conflict with the OOP juggernaut.

Finally, occam lacks many features now considered de rigueur for commercial use,
such as source-code modularity and exception-handling. It also fails to deliver any decisive
advantage in the rapidly expanding market for high integrity reactive (event-driven)
systems. For example, the expression of prioritized alternation1 [9, #5.4.3] is imprecise and
obscure.

1 Not to be confused with the alternative construct, which merely selects a process once.

286 Ian East / The “Honeysuckle” Programming Language: Event and Process

Honeysuckle PL (HPL) has been designed with three aims. First, it exploits design rules
which encapsulate formal analysis and obviate additional tools or skills. Any system pro-
grammed in HPL is automatically guaranteed never to deadlock. All necessary analysis is
performed a priori. All that is required of the programmer is the definition of service
protocol between all communicating processes. This is described in detail in a companion
paper [10].

Second, HPL restores the balance between process and object abstraction. In doing so, it
eliminates inefficiency in inter-process communication and enhances regularity. HPL
emphasizes old wisdom [11]:

programs = processes + objects
Just as one passes either value or object to a Pascal procedure, in HPL one may pass ei-

ther value or object to a concurrent process. HPL introduces regularity in expressing the
transfer of ownership between processes, running in sequence or parallel. This is achieved
without introducing explicit reference, thus rendering object identity and value distinct.

Explicit transfer lies in contrast with the implicit transfer which follows distinguishing
mobile from immobile data upon declaration [12]. It is argued that implicit transfer is both
irregular and less transparent. It also interferes inappropriately with object abstraction.

Third, HPL facilitates professional software development by including source-code
modularity and exception-handling. It also introduces the means by which prioritized alter-
nation may be directly programmed, without the possibility of conflict [4]. This novel
construct provides the basis for programming reactive behaviour in general, and exception
response in particular. (Exceptions are regarded as signals made by a watchman process to
alert us to impending disaster, as would a neighbour seeing our house on fire.)

Inclusion of explicit alternation reflects three guiding principles:
• transparency;
• alternation is the essence of a reactive system, not concurrency;
• priority must be defined for any reactive system.

Transparency implies clarity. The meaning of any command should be immediately ap-
parent to the reader. It should also imply ease of expression, without the need to introduce
unwarranted operational complexity, which will obscure intent. Finally, it implies that the
evolution of process state is clearly visible through the program text (procedure).

Unlike occam, HPL does not permit prioritization local to any single process. Instead,
prioritization forms part of the protocol between communicating processes. In other words,
it is an attribute of a relation, not of a process. This denies the possibility of conflict.

The principles above lie in addition to those which clearly guided the design of occam,
as they did its precursors, Algol and Pascal – above all, simplicity in structure and abstrac-
tion, and security, as defined by Hoare [13].

Dijkstra’s famous criticism of the GOTO command [14] perhaps best argues the case for
both abstraction and transparency. However, Knuth later argued effectively that both ab-
straction and efficiency demand control structure beyond that offered by Algol, and thus
justify the controlled use therein of GOTO. To meet (most of) the needs he described, HPL
defines a single repetition construct allowing multiple points of exit, positioned at the start
of, end of, or within, an embedded sequence. Like occam, HPL affords no direct reference
to a point within either control or data memory.

Lastly, HPL aspires to gaining a worthy programming environment (PE). One of the
many lessons from the occam experience was the potential for, and of, tight integration
between compiler and PE. Folding was an innovation as important as any in occam itself.
Note, however, that a PE should not extend to the maintenance of both ‘debug’ and ‘release’

Ian East / The “Honeysuckle” Programming Language: Event and Process 287

versions of a program, which Hoare once likened to wearing a life-jacket right up to the
time one puts to sea [13]. Security should instead be sought in the vessel.

Space permits only a summary here of the elements of HPL which owe the most to oc-
cam and CPA. Implementation will be reported when enough experience has been gained. It
is hoped that the reader will find none of the simplicity, security, or sheer elegance, of
occam sacrificed “on the altar of ambition”.

2 Block Structure

2.1 Sequential and Parallel Composition

A block in HPL is a process composition combined with its context, which describes how
components communicate.

{
 ... declare objects

 sequence
 ... do this
 ... do that
}

{
 ... declare channels

 parallel
 ... do this
 ... do that
}

Components of a sequential composition communicate asynchronously via objects.
Each object acts as a buffer between a pair of processes, running in sequence. Components
of a parallel composition communicate synchronously via channels.

Objects and channels may be declared only above sequential and parallel composition
respectively. They are declared before use to aid transparency and readability, by rendering
the context of any block explicit. Object creation is postponed until first assignment.

Many errors are denied by constraining the way in which each object and channel may
be used. First, the type of message conveyed is defined, though it need not be unique.
Variant protocol is sometimes useful but requires caution. Pascal supported variant objects,
and occam variant channels. HPL allows both but subject to certain constraints.

Channels are not declared directly. Instead, a service is declared, which defines, not just
a set of channels, but also the order in which they are used. Multiple services may be
declared above each parallel composition. Furthermore, they may each be attributed a
relative priority. The theory and consequences of service protocol are addressed in a
companion paper [10].

Process replication is permitted, with automatic declaration and creation of cardinal
indices.

{
 ... declare services

 parallel
 for each i from m for n
 ... do this
 for each j from p for q
 ... do that
}

{
 ... declare services

 parallel
 for each i from m for n
 replicate
 for each j from p for q
 ... do this
}

Neither m nor n (expressions) need be computable upon translation.

288 Ian East / The “Honeysuckle” Programming Language: Event and Process

2.2 Object Declaration, Lifespan, and Visibility

Explicit variable declaration, and the association of scope and construct (“block structure”),
was introduced in 1960 with the revolutionary Algol-60 [15, 16]. Some time later, Dijkstra
published a thorough discussion of how process context may, and should, be programmed
[17]. He demanded that:

• the entire context of every block be rendered apparent;
• references are not automatically acquired2 from the context of an outer block;
• proper (not arbitrary) initialization of every variable be verified upon

compilation.
The advantages of meeting these demands are profoundly significant:

• the opportunity for variable misuse is reduced as far as possible;
• transparency is greatly enhanced;
• a procedure becomes merely a named block (thus naming a process).

These seem well worth exchanging for a little convenience. Note that it still remains
possible to misuse a variable. One may omit reassignment prior to reuse. However, failure
to properly initialize is by far the most common error. Block structure tends to reduce reuse.

Declaration, in HPL, does not indicate the start of an object’s life. This would imply one
of two consequences. First, the value of a variable (state of an object) would have to be un-
defined between declaration and first assignment. Exposing a variable without proper value
is obviously dangerous. Status may be rendered determinable if the domain of each variable
type is extended to include an appropriate ‘undefined’ pseudo-value. Dijkstra rejected any
such notion, suggesting, for example, that “one might discover a case of bigamy when
meeting two bachelors married to the same nobody”. Second, one might postpone declara-
tion until the moment the object is required, allowing its initial value to be immediately
assigned. He rejected this also, on the grounds that it would promote block nesting to unac-
ceptable depths. It would also fragment context nomenclature.

The design of HPL follows Dijkstra’s advice, enforcing simultaneous creation and first
assignment via a dedicated primitive. Once created, an object may be explicitly destroyed or
transferred to another process (see below). Otherwise it is destroyed automatically at block
end.

{
 cardinal x

 sequence
 ... x doth not exist
 x != 4
 ... x now exists
 destroy x
 ... x doth not exist
}

{
 cardinal x

 sequence
 ... x doth not exist
 x != 4
 ... x now exists
 transfer x via pipe
 ... x doth not exist
}

Each object must be created before it can be:
• used in a repetition or selection;
• given as an argument to any function;
• transferred to another process.

2 Dijkstra referred to variables being “inherited” by an embedded block. Here, we favour “borrow” partly

to avoid confusion with type inheritance, and partly for clarity. An inheritance is always a gift. See #4.2.

Ian East / The “Honeysuckle” Programming Language: Event and Process 289

Objects can be declared over neither repetition nor selection, because it is never
necessary so to do. In the case of a repetition, an embedded block may introduce its own
private state. Because a repetition is inherently sequential, it may itself require a variable
via which to pass information between iterations. However, any such variable must
inevitably be read before assignment upon each and every iteration, including the first. Its
prior intialization is thus a logical necessity. As a result the repetition must form part of a
sequential composition.

Equally, there is no sensible justification for creating an object within a selection,
except where its scope may be confined within a single clause. In which case, it may be the
property of a block subtended there. Conditional creation would require subsequent
conditional use, inviting disaster, and preventing the required compile-time guarantee that
every reference is to an initialized variable. There remains the possibility that initial value is
subject to selection, even though creation is not. Some might then prefer to express
creation/ initialization in every clause. However, a single creation, followed by a selection
between substitute ‘initial’ values is just as logical, retains simple rules, and removes the
need to further complicate the compiler.

Objects acquired from an outer (calling) block may be renamed upon declaration,
exactly as a formal parameter may rename an actual parameter upon Pascal procedure
invocation. However, since, unlike a procedure (named block), an embedded (unnamed)
block is invoked just once, it is rarely as attractive to do so.

{
 cardinal x

 sequence
 x != 4
 {
 borrow z alias x
 integer y

 sequence
 y != z
 ... use z and y

{
 cardinal x

 sequence
 {
 return z alias x
 integer y

 sequence
 z != 4
 y != z
 ... use z and y

 }
 ... use x
}

 }
 ... use x
}

Each procedure above expresses precisely the same computation, conducted in precisely
the same way. Only the expression differs. On the left, the object x (alias z) is created and
then transferred to the embedded block, on loan. On the right, the same object is created
within the embedded block and then passed back to the parent.

Note the automatic numeric type promotion, from (unsigned) cardinal to (signed)
integer.

2.3 Procedures and Functions

In Pascal or occam, a procedure3 binds to every variable ‘free’ upon definition. As a result
it may carry a lot of excess baggage, all of which is accessible. HPL simply limits the
baggage to that required, and compels a baggage-list. This means that procedures may be

3 occam used the term ‘PROC’ to blur the distinction between procedure and process. With HPL, the term

‘procedure’ is preferred, partly because it is familiar to a wider (Pascal) audience, but also to preserve the
distinction between run-time behaviour (process) and its description (procedure).

290 Ian East / The “Honeysuckle” Programming Language: Event and Process

defined without reference to any external context. They stand alone, and may thus be
located, or relocated, within in any collection.

So, if we have:

procedure dispense
{
 receive cardinal value denomination // constant parameter
 borrow cardinal balance // variable parameter
 return cardinal notes // return

 sequence
 notes := balance div denomination
 balance := balance mod denomination
}

Then:

{
 cardinal myBalance
 cardinal twentyCount

 sequence
 myBalance != 104
 dispense (20, myBalance, twentyCount)
 ...
}

is precisely equivalent to:

{
 cardinal myBalance
 cardinal twentyCount

 sequence
 myBalance != 104
 {
 cardinal value denomination is 20
 borrow balance alias myBalance
 return notes alias twentyCount

 sequence
 notes != balance div denomination
 balance := balance mod denomination
 }
 ...
}

HPL, like occam, affords only constant and variable parameters. Each parameter
names, or renames, either an expression or an object. There is no equivalent to a “value
parameter” in C or Pascal, which is free to vary within the subroutine. However, a HPL
procedure can also give birth to new objects, named by its parent.

Functions can be defined, under the same constraints as in occam. For example, …

cardinal function dispensed
 of
 cardinal value denomination
 integer value balance
 is
 notes
 {

Ian East / The “Honeysuckle” Programming Language: Event and Process 291

 sequence
 notes != 0
 if
 balance > 0
 notes := balance div denomination
 otherwise
 skip
 }

Recursion is permitted in both procedure and function. However, the compiler is re-
quired to detect and record this, so that the PE may inform the programmer that the memory
requirement may only be determined dynamically. This remains an attached attribute.

3 Programming Constructs

3.1 Repetition

occam opted for regularity with replication, allowing replicated sequence and parallel in
syntactic harmony. However, regularity should not be confused with simplicity. HPL puts
clear blue water between sequence and repetition. A specific construct must be employed
for each, rendering repetition explicit and as transparent as possible.

The history of the development of structured programming (procedure abstraction) is
now a matter for textbooks, e.g. [18]. One might begin with Dijkstra’s famous missive con-
cerning the use of GOTO [14]. He argued therein that the relation between a position in the
program text (“textual index”) and process state should remain at all times apparent. The
unrestrained use of GOTO quickly destroyed this. Dijkstra went on to embellish his ideas in
a seminal work [19]. Here, we incorporate his constraint in our requirement for trans-
parency.

The debate concerning the use of jumps within the program text can be traced further
back in time to the earliest attempts to improve upon machine language. The desire is to
simplify both intuitive and formal reasoning about programs through control flow abstrac-
tion. Knuth published a lengthy assessment, often misinterpreted as favouring the retention
of GOTO [20]. In fact, he advocated retention only until a set of programming constructs has
been identified which obviates its use.

Knuth’s corollary is perhaps best understood as adding that only unconstrained use of
GOTO leads to a hyper-dimensional mapping from procedure to process, and thus
unmanageable complexity. Constructs do not eliminate jumps, they merely constrain them
to certain patterns. Without a complete set, explicit use of GOTO remains justifiable. The
RISC revolution in processor design is highly relevant. A similar revolution in process
design is called for – a reduced, carefully chosen, but complete, command set is needed.

Maddux [21] analysed control flow (as visualized using the familiar, but now
unfashionable, “flow chart”) constrained to proper programs, which have:

• a single entry arc
• a single exit arc
• a path from entry to exit through each node.

He then enumerated prime programs, which cannot be subdivided. After eliminating
those which do nothing, or which may never terminate, one is left a set of control structures
from which to compose any program. Curiously, one construct has been repeatedly ignored
by language designs over the years since. It is often referred to as DO-WHILE-DO (Figure 1).

The “Structure Theorem” [22] guarantees that any proper program can be converted to
an equivalent composed solely using SEQUENCE, WHILE, and IF. However, the price is

292 Ian East / The “Honeysuckle” Programming Language: Event and Process

measured all too often in both efficiency and clarity. Knuth, among others, has pointed out
its limited significance [20]. Effective abstraction needs more.

Figure 1. Control flow in DO-WHILE-DO construct.

HPL offers a single repetition construct, strongly inspired by DO-WHILE-DO syntax
which Knuth recommended, and attributed to Ole-Johan Dahl [20].

repeat
 while thisCondition
 ... do this

Experience testifies to the utility of multiple exit points within an embedded sequence.
HPL provides them, with the embedded sequence implicit (as in Pascal’s REPEAT-UNTIL).

repeat
 while thisCondition
 ... do this
 while thatCondition
 ... do that
 ...

Exit occurs at the first failed condition. The embedded sequence may thus be broken. It
may well be concern over this that led so many language designers to exclude DO-WHILE-
DO.

A null guard, or null command, may be omitted. DO-WHILE (Pascal REPEAT-UNTIL) and
DO-WHILE-DO can thus be expressed easily and transparently.

repeat
 ... do this
 while thatCondition

repeat
 ... do this
 while thatCondition
 ... do that

Indexing may be added, with the index created automatically at point of first use, with
scope confined to clauses which lie beneath. Any type derived from CARDINAL (the set of
natural numbers) may be used.

repeat
 for each Week day
 ... do this
 for each day from Monday for 3
 ... do that
 while (pay > Minimum)

A little care is needed to avoid confusion with C or Pascal syntax. Only REPEAT causes
repetition. FOR merely introduces further description, governing a single clause.

Ian East / The “Honeysuckle” Programming Language: Event and Process 293

Indexing over an entire subrange or enumeration, as in line 2 of the above, allows a tie
between data and control structure. One can easily express array traversal without defining
the same bounds twice.

3.2 Selection

A choice between alternative behaviours may be expressed via a single construct that
allows any mixture of three different kinds of criteria: condition, value of an expression, or
readiness to communicate a value. To ease expression, certain criteria may be combined on
consecutive lines. An offer to communicate may be prefaced by a precondition, which must
conclude on the preceding line.

if
 enCongé and fineWeather
 ... play
 inTheMood and
 receive money via creditLine
 ... work
 otherwise
 ... relax

if
 asciiCode & #20
 ‘a’..’z’
 ... add to buffer
 #2D
 ... swap buffers
 otherwise
 ... beep

As with occam, the first successful guard, from the top of the list down, will be se-
lected. Any offer to communicate, not excluded by a failed precondition, will remain open
until a selection is made. If no guard succeeds then the result is STOP.

HPL draws no distinction between a condition and an expression of any other type. It
just allows omission when the expression type is Boolean. If one wished, one could list
‘true’ and ‘false’ alternatives below the condition.

Replication is permitted, of either expression or communication, indexing an element of
an object or channel array respectively. A replication may suffer a precondition.

if
 cashRequired and
 for one i from 1 for n
 acceptable[i]
 ... thank donor[i]
 otherwise
 skip

if
 for one i from 1 for n
 secure[i] and
 receive orders via line[i]
 ... carry ‘em out
 otherwise
 ... improvise

Control will pass via the successful guard with the lowest index.
Unlike occam, which allows only conditional receipt via a channel, HPL allows either

sending or receiving to be subject to selection. To avoid the need for negotiation [23], HPL
instead bars selection at both ends of any single communication. Service protocol, which
governs the use of channels, enables compile-time verification .

3.3 Alternation

Any reactive system must respond to events signalled by its environment, alternating its be-
haviour accordingly. These shared events {gi} fully describe process-environment
interaction, and exhibit a varying degree of priority (which, say, increases with i). Note that
any such ordering is a property of neither process nor environment. It describes a protocol
between the two.

A common misconception is to confuse alternation with an ‘alternative’ construct –
ALT or PRI ALT in occam. It is possible only to approach the required behaviour using this:

294 Ian East / The “Honeysuckle” Programming Language: Event and Process

WHILE running
 PRI ALT i = 0 FOR n
 input[i] ? request
 ... respond to request

PRI PAR i = 0 FOR n
 WHILE running
 SEQ
 input[i] ? request
 ... respond to request

To obtain pre-emption, a programmer typically resorts to prioritized scheduling of mul-
tiple concurrent processes – PRI PAR in occam. However, it is only necessary, and
meaningful, to introduce priority when concurrency is denied. The one thing two alternating
processes cannot be is concurrent. Furthermore, applying prioritization locally invites
conflict.

A fundamental axiom of CSP is that no two events are ever considered simultaneous.
However, the model does allow two events to be offered simultaneously. Even without pri-
oritization, any parallel composition of ALT and/or PAR processes, sharing more than one
event, requires resolution via either protocol or negotiation. HPL prefers protocol.

Service protocol established above each parallel construction defines channels, the order
in which they are used, the data types of values and objects conveyed, and a prioritization
between distinct services. Prioritized response is implemented using a dedicated alternation
construct.

when
 ... this happens
 ... respond
 ... that happens
 ... respond

when
 send copy via postBox
 ... celebrate
 acquire draft via letterBox
 ... edit it

At least two clauses must be given. The lowest priority clause may employ a null (SKIP)
guard. No clause is re-entrant. Part of each response may be to deny further interruption by
either the same, or any other, event. Note that a disabled clause does not terminate until all
interruption is denied. An alternation terminates only when all guards are disabled.

Clauses are listed in order of priority, even though prioritization is dictated by protocol.
This might usefully be assisted by the PE, which could sort clauses according to protocol.

Priority is defined by interruptibility. Hoare [9] denotes a process P1, interruptible by P2,
by:

P1^P2

The process thus formed starts and continues behaving as specified by P1 until some
event with which P2 can start occurs. It then behaves as P2. A natural meaning to priority
can be inferred directly. Since each interrupting event is necessarily unique, an ordering can
be imposed which precisely interprets prioritization. This is reflected simply in the suffix of
the component process:

�

(P1 ^P2)^P3()�^Pn

Following interruption, no process resumes, and only the last of the given list may ter-
minate. In practice, we wish no response to disappear after completion. The solution is to
consider each process cyclic about interruption, as indeed most interrupt service routines ef-
fectively are. Thus, P2 starts with interruption of P1. Upon completion of response, it awaits
another instance of its guard event, while P1 resumes. Such behaviour may be precisely de-
fined, and denoted by a new operator:

�

(P1↵P2)↵P3()�Pn

When process P2 interrupts P1, one must consider the possibility that P1 is blocked
awaiting synchronization with the environment. P1 may also comprise multiple concurrent
processes, each of which may be blocked. Upon interruption, all offers of shared events

Ian East / The “Honeysuckle” Programming Language: Event and Process 295

must be withdrawn, pending completion of the response, whereupon they must be re-estab-
lished.

A more detailed discussion of the new construct4, its relation to interruption and alterna-
tion in CSP, and its use in programming exception response, is available [4].

4 Primitives

4.1 Assignment

Any program describes the behaviour of a system that is discrete in both time and space.
States are delimited in time by a single class of physical event, where:

• first: one or more registers are read;
• second: some function of the values represented by their state is computed;
• third: the result is written into one or more registers.

Such an event is considered indivisible (atomic), and is commonly referred to as an as-
signment. It may be thought of as a bead upon a thread of control.

Process abstraction identifies a single control thread with a specific context. Each thread
retains full control over its own private context. When a variable belonging to one process
must be assigned a value that is a function of the context of another, synchronization takes
place. One may imagine then a bead lying upon both threads.

occam and HPL require three primitive commands to describe assignment – direct
assignment, send and receive:

day := Monday
send (day + 2) via pipe

receive appointment via pipe

Expressions are formed in a manner very similar to occam. The notation used for direct
assignment follows the Algol/Pascal/occam tradition. However, transparency is best served
by employing a familiar word, rather than cryptic symbols for communication. This is
considered well worth a little extra typing.

Algol notation for assignment is now familiar to generations of professional
programmers, and is usually readily accepted by the dwindling minority who are happy with
mathematics. However, there is a desperate need to empower a wider population with the
ability to program. So-called “script” languages, beginning with Apple’s Hypercard™ [26],
have demonstrated what can be achieved.

HPL thus also accepts a second, more verbose, syntax for creation and assignment:

create thisDate with value [4, July, 2002]
assign thisDate.day value 24

4.2 Transfer

In abstraction, all objects are dynamic. They appear and disappear over time. This is as true
with C or Pascal as it is with HPL. Block structure merely emphasizes the fact. Hence, one
should think of the surface beneath a control thread as varying in width along its length.
HPL adds one valuable refinement – the boundary between contexts can move. Any such
change is inherently synchronous.

4 … with slightly different syntax.

296 Ian East / The “Honeysuckle” Programming Language: Event and Process

It should be immediately apparent that a transfer of ownership has no effect upon the
context itself. It merely allows secure expression of certain behaviour. As a result, only
appropriate synchronization requires implementation.

As stated earlier, the motivation here is efficiency. A common observation of occam
was the inefficiency which can result from channel communications between processes. An
occam communication is always conducted by copying a value. Experience with other
languages strongly suggests passing a reference instead. The choice mirrors that between
the two types of Pascal procedure parameter. A reference parameter represents controlled
aliasing, and reduces to simple renaming. Introducing the communication of references
between processes, however, has the potential for uncontrolled aliasing and to wreak havoc
with abstraction.

Traditional “structured” programming relies simply upon procedure abstraction. Any
program may be expressed as a composition of standard constructs, and thereby reduced.
Data is modelled very simply, in a manner familiar to anyone who has ever used algebra. A
name refers only to a value, hiding the complications associated with machinery.

Object-oriented programming (OOP) changes this picture, somewhat subtly. It adds new
meaning to a name. Sometimes it refers solely to a value – that which may be assigned. On
other occasions it refers to something which can be created, destroyed, and even moved be-
tween contexts. Such responsibilities imply an owner.

HPL abstraction regards every object as dynamic, but admits no detail regarding
memory allocation. After declaration, an object begins life only when explicitly created,
when it is simultaneously assigned value. If not transferred, an object disappears when the
end of its block is encountered, or when it is explicitly destroyed.

Just as there is no need for pointers in HPL, there is no need either for the notion of a
reference. When invoking a procedure, one passes either a value or an object. When
transmitting to another process, one has the same choice. In designing the syntax for HPL,
the possibility of distinguishing between references to value and object was seriously
considered. However, this was rejected for two reasons. First, the elegance and clarity of…

name := “fred” x := 4

would be lost. Second, distinguishing operator, rather than operand simplifies the language,
yet appeals equally to intuition.

{
 this Thing
 ...
 sequence
 ... create this
 transfer this via pipe
 ...
}

{
 that Thing
 ...
 sequence
 ...
 acquire that via pipe
 ... use that
}

Note that a name must be declared for an object in both contexts, sending and receiving.
Just as communication and assignment are equivalent in their effect, transfer between

processes is precisely equivalent to renaming within a process. However, there is one
important difference. When an object is renamed, the effect lasts only until end-of-block,
exactly as happens with a reference parameter in a Pascal procedure. The object is only on
loan. An object transferred across a channel is a gift. The effect lasts until it dies.

Each is appropriate to its use. For example, it is often useful, and efficient, to transfer a
single object between processes, each of which uses or modifies it differently, as on a pro-
duction line. Within a process, lending affords recursive processing of an object recursively
defined.

Ian East / The “Honeysuckle” Programming Language: Event and Process 297

4.3 Use of Transfer

Transfer and Repetition:
Suppose a process repeatedly creates and then transfers an object. It thus forms a source of
new objects, all of which must be found a new home. A similar loop in a recipient might act
as a sink for objects generated in this way. Each must employ either repetition or recursion.

// Process A
repeat
 {
 this thing
 sequence
 create this ...
 transfer this via pipe
 ...
 }

// Process B
{
 that thing
 sequence
 ...
 repeat
 acquire that via pipe
 destroy that
 ...
}

It is not legitimate to acquire the same object twice in succession. One may, however,
acquire a second object, with the same name, after destroying or transferring the first.

Constraints placed upon the interface between processes, together with the illegitimacy
of repeatedly acquiring the same object, ensure both sense and transparency.

Transfer and Selection:
Should a transfer be rendered conditional:

if
 someThingOrOther
 transfer that ...
 ...
... now dangerous to refer to that

one invites the equivalent of the dangling pointer problem. However, it makes no sense to
refer to an object which may not then exist. Sense demands the later reference to lie in an
alternate clause within the selection. All reference to an object is therefore denied following
a transfer, even a conditional one. Adherence to this constraint can be verified by the
compiler. No dynamic verification is required.

5 Conclusions

An introduction has been given to that part of a new programming language which derives
most of its inspiration from occam. It is at a highly experimental stage. Help is required to
determine all the consequences of its novel features, and particularly any that arise from
their combination. A language is necessarily holistic.

Among novel features introduced is a primitive that allows the transfer of ownership of
objects between concurrent processes. This allows a degree of symmetry with their passing
between processes in sequence (procedure invocation), and removes (arguably) the primary
objection to occam – the inability to efficiently pipeline object processing. Transfer should
also improve abstraction by clarifying the relation between process and object.

While experience with occam provides evidence of the utility of transfer, that of the
two new control constructs (alternation, and repetition with multiple exits) can only be
demonstrated in practice. They should both improve algorithmic efficiency and deny any
need for GOTO. A companion paper [10] details with the abstraction of object (data) and
protocol.

298 Ian East / The “Honeysuckle” Programming Language: Event and Process

Acknowledgements

The author is grateful for the helpful insight offered in discussions with Jeremy Martin and
David Lightfoot, and acknowledges the overwhelming influence of C. A. R. Hoare, David
May, and Peter Welch. He hopes he understood them.

References

[1] East, I. R., Parallel Processing with Communicating Process Architecture. 1995: UCL Press.
ISBN 1-85728-239-6.

[2] Inmos Ltd., occam 2 Reference Manual. 1988: Prentice Hall International. ISBN 0-13-629312-3.

[3] East, I. R., Towards a Successor to occam, in Communicating Process Architectures 2001, A.
Chalmers, M. Mirmehdi, and H. Müller (Editors). 2001, IOS Press. pp. 231-241.
ISBN 1-58603-202-X.

[4] East, I. R., Programming Prioritized Alternation, in Proceedings of the 2002 International Conference
on Parallel and Distributed Processing Techniques and Applications, H.R. Arabnia (Editor).
2002, CSREA Press.

[5] Meyer, B., Object-Oriented Software Construction. 1997: Prentice-Hall. ISBN 0-13-629155-4.

[6] Dahl, O.-J., Simula - An ALGOL-Based Simulation Language. Comm. ACM, 1966. 9(9): pp. 671-678.

[7] Dahl, O.-J. and C.A.R. Hoare, Hierarchical Program Structures, in Structured Programming. 1972,
Academic Press. pp. 175-220. ISBN 0-12-200550-3.

[8] Nygaard, K. and O.-J. Dahl, The Development of the Simula Languages, in History of Programming
Languages. 1981, Academic Press.

[9] Hoare, C.A.R., Communicating Sequential Processes. 1985: Prentice-Hall. ISBN 0-13-153289-8.

[10] East, I. R., The "Honeysuckle" Programming Language: Object and Protocol, in Communicating
Process Architectures 2002. 2002, IOS Press.

[11] Wirth, N., Algorithms + Data Structures = Programs. 1976: Prentice-Hall. ISBN 0-13-022418-9.

[12] Welch, P.H. and F.R.M. Barnes, Mobile Data Types for Communicating Processes, in Proceedings of
the 2001 International Conference on Parallel and Distributed Processing Techniques and
Applications, H.R. Arabnia (Editor). 2001, CSREA Press. pp. 20-26. ISBN 1-892512-66-1.

[13] Hoare, C.A.R., Hints on Programming Language Design, in State of the Art Report: Computer Systems
Reliability, C.J. Bunyan (Editor). 1974, Pergamon/Infotech. pp. 505-534. Reprinted in [24].

[14] Dijkstra, E. W., The GOTO Statement Considered Harmful. Comm. ACM, 1968. 11(3): pp. 147-148.

[15] Naur, P. (Ed.), Report on the Algorithmic Language Algol 60. CACM, 1960. 3(5): pp. 299-314.

[16] Naur, P. (Ed.), Revised Report on the Algorithmic Language Algol 60. CACM, 1963. 6(1): pp. 1-17.

[17] Dijkstra, E., An Essay on the Notion "The Scope of Variables", in A Discipline of Programming. 1976,
Prentice-Hall. pp. 79-93. ISBN 0-13-215871-X.

[18] Pratt, T.W. and M.V. Zelkowitz, Programming Languages: Design and Implementation. Fourth ed.
2001: Prentice-Hall. ISBN 0-13-027678-2.

[19] Dijkstra, E.W., Notes on Structured Programming, in Structured Programming. 1972 (first published
1969), Academic Press. pp. 1-72.

[20] Knuth, D., Structured Programming with go to Statements. ACM Computing Surveys, 1974. 6(4): pp.
261-301. Reprinted in [25].

[21] Maddux, R., A Study of Program Structure. PhD Thesis. 1975, University of Waterloo.

[22] Böhm, C. and G. Jacopini, Flow Diagrams, Turing Machines, and Languages with only Two Formation
Rules. Comm. ACM, 1966. 9(5): pp. 366-371.

[23] Jones, G., On guards, in Proceedings of the 7th Technical Meeting of the occam User Group:
International Workshop on the Parallel Programming of Transputer-Based Machines. 1987.

Ian East / The “Honeysuckle” Programming Language: Event and Process 299

[24] Hoare, C.A.R. and C.B. Jones (Editor). Essays in Computing Science. 1989, Prentice-Hall.
ISBN 0-13-284027-8.

[25] Knuth, D., Literate Programming. CSLI Lecture Notes, Vol. 27. 1992: Center for the Study of
Language and Information, Stanford University. ISBN 0-937073-81-4

[26] Apple Computer, HyperCard Script Language Guide: The HyperTalk Language. 1988, Addison-
Wesley. ISBN 0-201-17632-7.

300

	The “Honeysuckle” Programming Language: Event and Process
	1	Introduction
	2	Block Structure
	2.1	Sequential and Parallel Composition
	2.2	Object Declaration, Lifespan, and Visibility
	2.3	Procedures and Functions

	3	Programming Constructs
	3.1	Repetition
	3.2	Selection
	3.3	Alternation

	4	Primitives
	4.1	Assignment
	4.2	Transfer
	4.3	Use of Transfer
	Transfer and Repetition:
	Transfer and Selection:

	5	Conclusions
	Acknowledgements
	References

