
Communicating Process Architectures 2007
Alistair A. McEwan, Steve Schneider, Wilson Ifill, and Peter Welch
IOS Press, 2007
c© 2007 The authors and IOS Press. All rights reserved.

399

A Step Towards Refining and Translating
B Control Annotations to Handel-C

Wilson IFILL a,b and Steve SCHNEIDERb
a AWE Aldermaston, Reading, Berks, England;

b Department of Computing, University of Surrey, Guildford, Surrey, England.

{W.Ifill , S.Schneider }@surrey.ac.uk

Abstract. Research augmenting B machines presented at B2007 has demonstrated
how fragments of control flow expressed as annotations can be added to associated
machine operations, and shown to be consistent. This enables designers’ understand-
ing about local relationships between successive operations to be captured at the point
the operations are written, and used later when the controller is developed. This paper
introduces several new annotations and I/O into the framework to take advantage of
hardware’s parallelism and to facilitate refinement and translation. To support the new
annotations additional CSP control operations are added to the control language that
now includes: recursion, prefixing, external choice, if-then-else, and sequencing. We
informally sketch out a translation to Handel-C for prototyping.

Keywords. B Method, CSP, Hardware Description Language,

Introduction

Annotating B-Method specifications with control flow directives enables engineers to de-
scribe many aspects of design within a single notation. We generate proof obligations (pobs)
to demonstrate that the set of executions allowable by the annotations of a B [1] [2] machine
do not cause operations to diverge. The benefit of this approach is that only the semantics of
the machine operations are required in checking the annotations, and these checks are similar
in size and difficulty to standard B machine consistency checks. Controllers written in CSP,
which describe the flow of control explicitly, can be checked against the annotations. There
is no need to check the CSP [3] [4] [5] directly against the full B description. Once the an-
notations are shown to be correct with respect to the B machine we can evaluate controllers
against the annotations without further reference to the machine. Machines can be refined and
implemented in the normal way while remaining consistent with the controller. In previous
work [6] we presented theNEXT andFROM annotations, which permitted simple annotated B
specifications and controllers to be written. Before that [7] we presented a route to VHDL [8],
a hardware description language, from B. In this paper we present three more annotations:
NEXT SEQ, NEXT PAR and NEXT COND and add input and output to the operations. We
also begin to present an informal refinement theory for annotations and a route to implemen-
tation via Handel-C. The refinement theory outline in this paper allows the annotations to be
independently refined and remain consistent with the Machine.

Previous work obtaining hardware implementations from B approached the problem by
using B as a Hardware Description Language (HDL) that translates to VHDL [9] [10]. Our
approach achieves the goal of obtaining hardware via Handel-C as an intermediate stepping
stone, which means that the B that is translated does not require the same degree of HDL
structural conformance as does the B for VHDL translation. Approaches that translate HDLs
to B for analysis [11] do not support the development process directly. Event B [12] has been

400 W. Ifill and S. Schneider / Refining and Translating B Control Annotations

used to support the development of hardware circuits [13] that includes refinement but not the
code generation process. Not only are we working towards code generation, but we wish to
work with specifications that model both state and control equally strongly. CSP‖B [14] [15]
has the capability to model state and event behaviour, but the CSP controller must be instan-
tiated with B components to verify the combination. We break the verification of controllers
down into manageable stages, and offer an approach to refinement and translation. Integra-
tions of CSP and Z (CSP-Z) by Moto and Sampaio [16] and CSP and Object Z (CSP-OZ) Fis-
cher [17] require a CSP semantics to be given to Z in order for integration to be analysable as
a whole. Our approach differs to other formal language integrations in two ways. Firstly, The
control flow behaviour is capture during the development of the state operation in the form
of annotation. The annotations are control specifications. Only later is a complete controller
developed that satisfies the annotations. In this way the developer of the state operations in
B can constrain controller behaviour, but full controller development can be postponed and
possibly performed by a different engineer. Secondly, there is no notion of executing the
models together and analysing this integration for deadlocks. In this approach the different
formal notations provide different views of the system, and both views are required to obtain
a executable model.

This paper describes extensions to the work presented in B2007 [6]. This papers con-
tribution is the introduction of additional next annotations, incorporation of I/O into the an-
notations, and an informal treatment of refinement and translation. In Section 1, the general
framework is introduced. In Section 2 a B machine is introduced along with theNEXT anno-
tation. The proof obligations associated with the annotations and control language are given
in Section 3. The consistency of the annotations are given in Section 4. A refinement and
translation outline is given in Section 5. An example illustration of some refinements and
translations are given in section 6. A discussion on the benefits and future work is had in
Section 7.

We restrict our attention in this paper to correct B machines: those for which all proof
obligations have already been discharged. We useI to refer to the invariant of the machine,
T to refer to the machine’s initialisation,Pi to refer to the precondition of operationOpi , and
Bi to refer to the body of operationOpi .

Controllers will be written in a simple subset of the CSP process algebraic language
[3,5]. The language will be explained as it is introduced. Controllers are considered aspro-
cessesperformingevents, which correspond to operations in the controlled B machine. Thus
operation names will appear in the controller descriptions as well as the B machine defini-
tions. The Handel-C translations are shallow and in a few cases performed in accordance with
existing translation work [18] [19].

1. The General Framework

The approach proposed in this paper introducesannotationson B operations as a mecha-
nism for bridging the gap between B machines and CSP controllers, while maintaining the
separation of concerns. The approach consists of the following components:

• Machine definition: the controlled component must first be defined.
• Annotations: the initialisation and the operations in the machine definition are anno-

tated with fragments of control flow.
• Annotation proof obligations: verification conditions that establish consistency of

the annotations with the controlled machine. This means that the fragments of control
flow captured by the annotations really are appropriate for the machine.

• Controller : this is a process that describes the overall flow of control for the B ma-
chine.

W. Ifill and S. Schneider / Refining and Translating B Control Annotations 401

• Consistency checking: establishing that the controller is consistent with the annota-
tions by showing that that every part of the control flow is supported by some annota-
tion.

• Refine/Translate: refinement may be needed before a translations can be achieved.
The translation is the final step and requires additional annotation directives to set
type sizes and I/O ports.

Checking a CSP controller against a machine is thus reduced to checking it against the an-
notations and verifying that the annotations are appropriate for the machine. The relationship
between the different parts of the approach are given in Figure 1.

Machine
Definition

?
H

HHY

Annotated
Machine

Discharge
pobs
Between
Definitions

HHHj
Annotated
Machine
Definition

?

Define
Controller

HHHY

Demonstrate
Consistency
Between
Definitions

HHHj Controller
Definition

?

Refine and
Translate

Handel-C
Implementation

Figure 1. The Process Flow in the Approach.

The framework presented here is quite general, in that it may be applied to both Event-
B and classical B. Additional annotations maybe added along with supporting control op-
erations as required. Provided that a consistency argument can be developed. The first step
to be taken is therefore to fix on the control language and the associated annotations to be
incorporated into the B machine descriptions.

2. The Approach

We will demonstrate the approach with a simple model to illustrate aspects of the approach.
The annotation we consider first is theNEXT annotation. An extremely simple controller
language consisting only of prefixing, choice, parallel, if-then-else, and recursion is used to
develop the example.

2.1. A B Machine

The B-Method [1] has evolved two major approaches: classical B and Event-B. Annotations
can be used in either classical B machines, or Event-B systems. Classical B approaches fo-
cus on the services that a system might provide, whereas Event-B focuses on the events

402 W. Ifill and S. Schneider / Refining and Translating B Control Annotations

that occur within the system. B Machines are used in the examples. The generic classical B
MACHINE S , given below, has variables, invariant, initialisation, and a set of operations
OP1 through toOPn that have inputs and outputs.v describes a set of inputs andy describes
a set of outputs to and from an operation, respectively.

MACHINE S

VARIABLES v

INVARIANT v

INITIALISATION v :∈ u

OPERATIONS

y ←− OP1(z1) =̂ P1 | B1;

y2 ←− OP2(z2) =̂ G2 =⇒ B2;

...

yn ←− OPn(zn) =̂ Pn | Bn

END

The operations are defined in Guarded Substitution Language (GSL). It is asserted that the
machine is consistent when each operation can be shown to establish the machine invariant,
I , and the machine cannot deadlock. Every operation must be either guarded,G , or have a
precondition,P , but all must have a next annotation (not shown). In Event-B, unlike classical
B, new operations can be added during refinement. In the examples we anticipate the need for
operations in the later stages of refinement by introducing the signature of the operation with
a body defined by theskip operation. We do not in this paper adapt the proof obligations for
Event-B refinement. The refinement process may involve adding detail to the specification
in a consistent way to realise an implementation, which is a key notion in B. Refinement
involves removing non-determinism and adopting concrete types. We add to the concept of B
refinement with the annotations, by adding the notion of annotation control flow refinement.

3. The Annotation with I/O

We annotate operations of B machines with aNEXT annotation that supports operations with
I/O. If the conjunction of proof obligations for all the annotations are discharged then we say
that the annotations are consistent with the machine. A consistent controller that evolves in
accordance with the next annotations steps will not diverge or deadlock. ANEXT annotation
on the current operationOPi (whereOPi representsyi ←− Opi(zi) andyi is the output
vector,y1 . . . yn , andzi is the input parameter vector,z1 . . . zm) introduces another operation
OPj , or set of operationsOPj1 , . . . ,OPjn , which will be enabled afterOPi has executed
(where an operation in the annotationOPj representsOpj (ej) andej is the input expression
vector,e1 . . . em). In the NEXT annotationej is a list of expressions which serves as inputs
on whichOPj can be called next. In this paper we will restrict the expressions to variables
v defined in the B machines. The variables become ports in the hardware implementation.
The value of these variable is not considered when calculating the proof obligations. Only
the type of the variables is checked.

3.1. The BasicNEXT Annotation

OPi =̂ PRE Pi THEN Bi END /* {OPj1 , . . . ,OPjn} NEXT */ ;

W. Ifill and S. Schneider / Refining and Translating B Control Annotations 403

Definition 3.1 (Proof Obligations of the Basic NEXT on INITIALISATION) Given the
following B initialisation:

INITIALISATION T /* {Opj ?vj } NEXT */ ;

the related proof obligations follow:

[T]((vj ∈ Tj) ⇒ Pj)

The NEXT annotation following the initialisation indicates the first enabled operation.
There can be more than one operation in the annotation. The example illustrates only one
next operation. The variables used as input parameters in the annotation (?vj1 ... ?vjm) must
be of the type required in the operation definition.

Definition 3.2 (Proof Obligations of the Basic NEXT on Operations)Given the follow-
ing B operation:

yi ←− Opi(zi) =̂ PRE Pi THEN Bi END
/* { Opj (vj1), . . . ,Opjn (vjn) } NEXT */ ;

the related proof obligations follow:

(Pi ∧ I ⇒ [Bi]((vj1 ∈ Tj1) ⇒ Pj1)) ∧

. . .

(Pi ∧ I ⇒ [Bi]((vjn ∈ Tjn) ⇒ Pjn))

where the elements ofvi andvj are free inBi ,Pi , and I.

3.2. The NEXTPAR Annotation

I/O operations can be annotated to indicate parallel executionNEXT PAR. Two or more sets
are introduced (only two illustrated below). Any operation of a respective set can run in
parallel with any other operation from any of the other sets.

Definition 3.3 (Proof Obligations of NEXT PAR) Given the following B operation:

yi ←− Opi(zi) =̂ PRE Pi THEN Bi END
/* { Opj1(vj1), . . . ,Opjn (vjn) }
{ Opp1(vp1), . . . ,Oppm

(vpn
) } NEXT PAR */ ;

the related proof obligations follow:

(Pi ∧ I ⇒ [Bi]((vj1 ∈ Tj1) ⇒ Pj1)) ∧

. . .

(Pi ∧ I ⇒ [Bi]((vjn ∈ Tjn) ⇒ Pjn)) ∧

(Pi ∧ I ⇒ [Bi]((vp1 ∈ Tp1) ⇒ Pp1)) ∧

. . .

(Pi ∧ I ⇒ [Bi]((vpn
∈ Tpn

) ⇒ Ppn
)) ∧

variable used({OPj1 , . . . ,OPjn}) ∩ variable used({Opp1 , . . . ,OPpn
}) = {}

The parallel annotation offers the option to execute two or more operations in parallel after
the current operation, provided they do not set or read any variables in common. The proof
obligation ensures that all the operations in the annotations are enabled after the current
operation. Only one from each set will be executed in parallel.

404 W. Ifill and S. Schneider / Refining and Translating B Control Annotations

3.3. The NEXTSEQ Annotation

Operations can be annotated to indicate a requirement for a particular sequential execution:
NEXT SEQ.

Definition 3.4 (Proof Obligations of NEXT SEQ) Given the following B operation:

yi ←− Opi(zi) =̂ PRE Pi THEN Bi END
/* { Opj1(vj1), . . . ,Opjn (vjn) }
{ Opp1(vp1), . . . ,Oppn (vpn) } NEXT SEQ */;

the related proof obligations follow:

(Pi ∧ I ⇒ [Bi]((vj1 ∈ Tj1) ⇒ Pj1)) ∧

. . .

(Pi ∧ I ⇒ [Bi]((vjn ∈ Tjn) ⇒ Pjn)) ∧

(Pj1 ∧ I ⇒ [Bj1]((vp1 ∈ Tp1) ⇒ Pp1)) ∧

. . .

(Pj1 ∧ I ⇒ [Bj1]((vpn ∈ Tpn) ⇒ Ppn)) ∧

. . .

(Pjn ∧ I ⇒ [Bjn]((vp1 ∈ Tp1) ⇒ Pp1)) ∧

. . .

(Pjn ∧ I ⇒ [Bjn]((vpn
∈ Tpn

) ⇒ Ppn
))

where the elements ofzi andvj andvp are free inBi ,Pi , and I.

TheNEXT SEQannotation is conceptually different from theNEXT annotation, because
it captures specific paths of executions that must exist in a controller. The current operation
Opi must enable each operation in{Opj1(vj1), . . . ,Opjn (vjn)}, and each operation in that set
must enable each operation in the set{Opp1

(vp1
), . . . ,Oppn (vpn)}. Practically, this annota-

tion should be used to depict particular paths: one operation per set.

3.4. The NEXTCOND Annotation

To enable the current operation to conditionally select one set of operations next as opposed
to some other set theNEXT COND annotation is used. The conditionNEXT COND annotation
is an extension to theNEXT annotation that supports conditional next path selection.

In definition 3.5 if the output of the current operation istrue then all the operationsOPj1

through toOPjn are guaranteed to be available to execute. If however the current operation
returns false then the operationsOPp1

through toOPpn are guaranteed to be available to
execute. The proof of this claim can be verified by discharging the following proof obligation
given in definition 3.5:

Definition 3.5 (Proof Obligation of NEXT COND) Given the following B operation:

yi ←− Opi(zi) =̂ PRE Pi THEN Bi END
/* { Opj1(vj1), . . . ,Opjn (vjn) }
{ Opp1(vp1), . . . ,Oppm

(vpm
) } NEXT COND */ ;

W. Ifill and S. Schneider / Refining and Translating B Control Annotations 405

the related proof obligations follow:

(I ∧ Pi ⇒ [Bi]((yi = TRUE ∧ vj1 ∈ Tj1)⇒ Pj1)) ∧

. . .

(I ∧ Pi ⇒ [Bi]((yi = TRUE ∧ vjn ∈ Tjn)⇒ Pjn)) ∧

(I ∧ Pi ⇒ [Bi]((yi = FALSE ∧ vp1 ∈ Tp1)⇒ Pp1)) ∧

. . .

(I ∧ P1i ⇒ [Bi]((yi = FALSE ∧ vpn ∈ Tpn)⇒ Ppn))

The lists of theNEXT COND annotation do not have to be the same size. The operation that
carries this annotation must have a single boolean output.

3.5. A Simple Controller Language

The next annotation represents a control fragment specification of the whole system. The
CSP controller represents a refined view of the annotated B system. The annotated B ma-
chine hasn’t the fidelity to clearly portray the necessary control detail that the CSP can: the
annotations are not clearly laid out as a set of recursive definitions. On translation both the B
and the CSP are used to build the implementation, hence the need to develop a controller.

A distinction is drawn between operations that respond to external commands and those
that are driven internally. A development will begin with a description of a number of opera-
tions: things that the system must do when commanded. During the development refinements
will introduce internal operations. We distinguish between external and internal operations
by marking the external operations with/ ∗ ext ∗ / annotations, which are discussed in more
detail in the refinement and translation section 5.

Definition 3.6 details the CSP subset of control fragments used in this paper: event prefix,
choice, interleaving, if-then-else, and recursion control.

Definition 3.6 (Controller Syntax with I/O)

R ::= 2
y

a!y?z → R |

R1 2 R2 |

(2
y1

a1!y1?z1 → skip ||| . . . ||| 2
yn

an !yn?zn → skip; R) |

2
y

e!y → if y then R1 else R2 |

S (p)

The CSP controller is a different view of the annotated B specification. A more complex
arrangement arises if the CSP controller is permitted to carry around local state. The simpli-
fied view is represented in figure 2. An annotated B machine output is the same as a CSP
controller output. In definition 3.6 the channela, in the controller fragment2y a!y?z → R,
is an operation name with a choice over all possible outputsy : from the controller’s view, if
a is called then any outputy should be allowed. The outputs are fresh and modelled as a dis-
tributed external choice ranging over the type given in the B (the type is not always given in
the controller definition). The channel has an input vectorz . To accommodate analysis, finite
types are used in the CSP. The same restriction does not exist in the B. Hence the CSP rep-
resentation of the B operation may not be a true representation in terms of input and output,
which may be a subset of the B types.S (p) is a parameterised process variable. The external
choice operator chooses between two processR1 2 R2 and relates to the /*OPJ NEXT*/

406 W. Ifill and S. Schneider / Refining and Translating B Control Annotations

annotation that has one set. The interleave operator executes the two or more processes con-
currently which will not synchronise on any events. Theif − then − else operator makes the
decision ony ; an output of thee operation. Recursive definitions are given asS =̂ R. In a
controller definition, all process variables used are bound by some recursive definition.

CSP view of system

Environment

6

?

CSP event
op!y?z

B view of system

Environment

6

?

B Operation
y←− op(z)

Figure 2. Different views of the same action.

A major constraint is enforced on the way controllers can be written. It facilitates trans-
lations, but turns out not to be so troublesome as it first appears. Controllers must start with an
initialisation (R1), then enter a main loop (S =̂ R2). This is summarised in definition 3.7. A
controllerCTRL has a definition,R1, given in definition 3.6, in which all the parameterised
process variables are the same,S . The definition ofS is R2 and is also given in definition 3.6.
The only recursive calls allowed are toS .

Definition 3.7 (Controller Syntax with I/O)

CTRL =̂ R1

S =̂ R2

where R1 and R2 are terms from definition 3.6 and

S is the only recursive variable allowed and

R2 is guarded as defined in definition 3.9

The results presented in this paper require that all recursive definitions areguarded,
which means that at least one event must occur before a recursive call. The meaning of
consistency between the controller and the annotations is given in terms of theinit functions.
Theinit function returns a set of operations available next and is developed in definition 3.8.

Definition 3.8 (init on CSP controller process with I/O extensions)

init(2
y

a!y?z → R1) = {a}

init(R1 2 R2) = init(R1) ∪ init(R2)

init(2
y1

a1!y1?z1 → skip ||| . . . ||| 2
yn

an !yn?zn → skip); R = {a1, a2, ..., an}

init(if y then R1 else R2) = init(R1) ∪ init(R2)

init(S (p)) = init(R(p))

W. Ifill and S. Schneider / Refining and Translating B Control Annotations 407

An action prefix must appear with output on the left. In the first case of theinit definition the
head of the control fragment is extracted. The outputs and inputs of the action are the same as
the outputs and inputs of the B operation. Theinit of a prefixed action is the action (event).
The init of a choice between two processes is the union of theinit of the individual pro-
cesses. Theinit of the interleaving is the set of first actions of each interleaving. Annotations
clearly show an ordering of operations: an initial operation and a set of next operations. Every
operation has a prefix, and is thereforeguarded . Every control fragment must have a prefix
and hence be guarded. Theguard function is defined in definition 3.9. Prefixed operations are
guarded . A fragment with an external choice separating the two processes is prefixed if the
individual processes areguarded . Similarly with the if-then-else. The parameterised process
variable is notguarded , whereas the recursive definition is guarded if the body isguarded .

Definition 3.9 (guarded on CSP controller process with I/O)

guarded(2
y

a!y?z → R1) = true

guarded(R1 2 R2) = guarded(R1) ∧ guarded(R2)

guarded((2
y1

a1!y1?z1 → skip |||

. . . |||

2
yn

an !yn?zn → skip); R) = true

guarded(if TRUE then R1 else R2) = guarded(R1) ∧ guarded(R2)

guarded(if FALSE then R1 else R2) = guarded(R1) ∧ guarded(R2)

guarded(S (p)) = false

4. I/O NEXT Consistency

Consistency between aguarded controller and the annotated B machine is broken down into
initial (definition 4.1) and step-consistency (definition 4.2).

Definition 4.1 (Initial-Consistency of M with respect to M CTRL) The initial-consistency
of the controller fragmentR is defined as follows:

1. 2y a!y?z → R
is initially-consistent withM if a ∈ next(INITIALISATION) and
R is step-consistent withM

2. R1 2 R2
is initially-consistent withM if R1 andR2 are initially-consistent withM .

3. S (p)
is initially-consistent withM
A family of recursive definitionsS =̂ R is initially-consistent withM ’s annotations
if eachR is initially-consistent withM ’s annotations.

[We definenext(a) as the set of operations in the annotation of a.]

A controller that starts with an interleaving or a conditional control fragment is not
initially-consistent and should be avoided. An initialisation can not have an output which
rules out the use of anif − then − else annotation on the initialisation. Ruling out the
interleaving annotation simplifies initial-consistency checking.

408 W. Ifill and S. Schneider / Refining and Translating B Control Annotations

Definition 4.2 (Step-Consistency of M with respect to MCTRL) The step-consistency of
the controller fragmentR is defined as follows:

1. 2y a!y?z → R
is step-consistent withM if ∀ b • b ∈ init(R) ⇒ b ∈ next(a), and R is step-
consistent with M.

2. R1 2 R2
is step-consistent withM if R1 andR2 are step-consistent withM .

3. (2y a!ya?za → skip ||| 2y b!yb?zb → skip);R
is step-consistent withM if ∀ e • e ∈ init(R)⇒ e ∈ next(a) ande ∈ next(b), and
R is step-consistent withM , andupdate(a!ya?za) ∩ update(b!yb?zb) = {}.

4. 2y e → if y then R1 else R2
is step-consistent withM if y ∈ BOOL andR1 andR2 are step-consistent withM
and
∀ b ∈ init (R1) ⇒ b ∈ condition true(e) and
∀ c ∈ init (R2) ⇒ c ∈ condition false(e)
where conditiontrue(e) returns the actions that are enabled when y=true and con-
dition false(e) returns the actions that are enabled when y=false.

5. S (p)
is step-consistent withM
A family of recursive definitionsS =̂ R is step-consistent withM ’s annotations if
eachR is step-consistent withM ’s annotations.

The interleaving operator can only be shown to be consistent in a very limited sense. Two
actions are allowed to occur in parallel provided they do not attempt to change the variables
used by the other action.

Definition 4.3 (Consistency)A controller R is consistentwith the annotations of machine
M if it is step-consistent withM ’s annotations and initially-consistent withM ’s annotations.

The main result of this section is that ifR is consistent with the annotations of a machine
M , and the annotations ofM are consistent with machineM , then operations ofM called
in accordance with the control flow ofR will never be called outside their preconditions. We
have [6] proven a theorem that shows that this holds for the basicNEXT, and theNEXT COND

annotations. The annotations are lose enough to permit a large set of possible consistent
controllers. As such the controller is viewed as a a trace refinement of the annotations. The
controllers do not refine the annotations in a failures divergence sense. We believe, but have
not yet proven, that theNEXT PAR andNEXT SEQcan be rewritten in the basicNEXT form.

The key feature of the proof of this main result is an argument that no trace ofR leads
to an operation ofM called outside its precondition or guard. This is established by build-
ing up the traces ofR and showing that at each step an operation called outside its precon-
dition cannot be introduced, by appealing to the relevant annotation and applying its proof
obligation.

The benefit of this main result is that the details of the operations ofM are required only
for checking the consistency of the annotations, and are not considered directly in conjunc-
tion with the controller. The annotations are then checked against the controller using the def-
inition of consistency above. This enables a separation of concerns, treating the annotations
as an abstraction of the B machine.

W. Ifill and S. Schneider / Refining and Translating B Control Annotations 409

5. Refinement and Translation to Handel-C

Refining should be considered where an otherwise cumbersome translation would result.
Narrowing down the choice of the next operation reduces the size of the implementation,
and avoids the translation process making an arbitrary choice to resolve the choice in the
annotations. The first set of refinements, given in table 11 replace annotated sets with their
subsets: non-determinism is reduced. The operation references, likeOPJ , quoted in the tables
are all sets.

NEXT external choice refinement reduces non-determinism in the choices offered in
the next step. TheNEXT interleave refinement reduces the non-determinism in one or more
branches of the interleave execution. TheNEXT sequential refinement reduces the non-
determinism in one or more sections of the sequence. TheNEXT conditional refinement re-
duces choice in a similar way.

Table 2 outlines some structural refinements. In case 1 a new set of operations are intro-
ducedOPJ . New operations can be introduced into Event-B in subsequent refinements. In
classical Bnew operations must be introduced beforehand as operators that implement skip.
Case 1 refines a simpleNEXT operation into a sequence of detailed operations. The refine-
ment sequence must end in the original next operation, which signifies the end of the refine-
ment chain. In case 2 a next sequenceNEXT SEQ to next interleave refinementNEXT PAR

is depicted. It is possible if the operations that would make up the sequence are independent:
they neither read nor write to similar variables.

A translation guide for annotations is given in table 3 and table 4. This is a guide be-
cause without the knowledge of the control structure, in particular the points of recursion, a
translation can not be automated. However, the annotations do differentiate between internal
and external B operations, which has an impact on the final structure of the code. The CSP
controller is required to get a full picture for translation and table 6, and to some extent ta-
ble 5, illustrates how translation of the control can proceed. As mentioned, the translation of a
particular annotated operator is dependent on whether the operation is an internal or external
operation. Internal operations can execute immediately after invocation. The execution of an
external operation must wait for external stimulus: a change in the command input bus. A
wait loop is introduced to poll the appropriate input bus until an external operation invoca-
tion is detected:wait on Some annotated operators have restrictions on their I/O mode.
External operators are marked with/ ∗ ext ∗ /. TheNEXT PAR can only be associated with
internal operations next. TheNEXT SEQ must have an external operator at the head of the
sequence and internal operations following. This restriction relates to the way this annotation
is used in refinement. The CSP controller does not differentiate between internal and external
operations. Hence the tables 3, 4, 7, 6, and 5 are all required to obtain a translation.

In tables 3 and 4 aNEXT annotation with one next operation translates to a sequence of
two operations. If the second operation is an internal operation then it is case 1: all its inputs
are not ported. If the second operation is an external operation (all inputs are ported) then
case 2 is the translation template. The controller will wait until a new command arrives then
execute the external operation if it was requested. Case 3, sequential arrangement of external
operations, is restricted to external operations only. A translation of a sequence that starts
with one operation then has a choice of several external operations will test each input set
and execute the first operation for which the input has change since its last execution. (The
new input values must be latched in.) Interleave action is only permitted between internal
operations (case 4): those that take their input from internal variables. The Handel-Cpar
statement ensures that all the branches when complete wait until the longest (in terms of clock
cycles) has completed. The conditional operator can be used for internal or external action.

1All tables for this section are given in the Appendix.

410 W. Ifill and S. Schneider / Refining and Translating B Control Annotations

In table 4 case 5 is the translation of theNEXT SEQ. In the previous section theNEXT SEQ

was introduced to support refinement: a basicNEXT is refined into a sequence of operations
NEXT SEQ. The refine an operation that both inputs and outputs to a sequence of operations
must input at the beginning of the sequence and output at the end of the sequence. Case
5 reflects this requirement: the first operation in the sequence is an external operation that
inputs and the final operation is an internal operation that outputs.

The translations of Stepney [19], and Phillips and Stilles [18] are given in table 5. Only
the translation of parametrisable integer declaration, functions, and recursion are used. This
is because our source is not CSP (it is annotated B and CSP) and as such channels are not
being used to synchronise events. In the table the CSP language construct and translation
are mapped. A tick is inserted if they are supported by Stepney (SS) or Phillips and Stilles
(PS). When an operation is invoked it takes its input from a port in the environment. Internal
synchronisation of operations within machines is not dealt with in this paper. To guide the B
translation, table 7 has been developed. A discussion of the example is given in section 6.

6. Example: Safe Control System

We use the example of a safe locking system to illustrate the ideas introduced in the previous
sections. The abstract specification outlines the operations of the environment. The operations
that are invoked by the environment are indicated with/ ∗ ext ∗ / annotations. Both the
operation output and the operation can be marked with/ ∗ ext ∗ / annotations. All/ ∗ ext ∗ /
annotation outputs are ported and become part of the Handel-C interface output. All/∗ext ∗/
operations are associated with a bus port that has a state of the same name as the operation.
Variables intended as input are marked with/ ∗ IN ∗ /. It is possible to mark the variables as
/∗IN ∗/ or/∗OUT ∗/. Along with the mode the width of the type is given in bits. Operations
are invoked in two ways. The first way has already been introduced; an/ ∗ ext ∗ / operation
will have a input bus associated with it, which when set to the operator name will invoke the
operation when it is enabled by the control flow. Operations not labelled with/ ∗ ext ∗ / are
internal and are invoked immediately when enabled by the control flow.

6.1. The Example’s State and Control Flow

In figure 3 the B Abstract Machine for the safe is given. There are three command states
Locked , Unlocked , andBrokenOpen which are represented in two bits. The variableDoor is
drawn from theCOMMAND type and initialised toUnlocked . TheLock operation is enabled
after initialisation. It is an external operation with externally ported output. After setting the
Door state variable toLocked , Unlocked andBreakOpen are enabled. For completeness we
introduce two operations that will be used later to develop the detailed functionality of the
machine during refinement. These operations areUnlockR1 andUnlockR2. Their bodies are
not expanded. TheUnlock is an external operation and has externally ported output. It non-
deterministically decides to set theDoor variable toUnlocked or Locked . The next operator
to be enabled depends on the outcome of theUnlock operation. IfUnlocked was chosen
then the next enabled operation isLock , otherwiseUnlocked or BreakOpen will be offered.
The BreakOpen operation sets theDoor state toBrokenOpen and offers itself as the next
operation available.

The controllerCTRL, given in figure 4, first performs aInitialisation then aLock and
then jumps to theS process where it can perform either anUnlock or BreakOpen. The
Unlock event has a single output that is used as the conditional test in the if-then-else follow-
ing theUnlock event. If the output of theUnlock operation is true then the flow of control is
repeated starting again atCTRL, if it is false then control is repeated atS .

W. Ifill and S. Schneider / Refining and Translating B Control Annotations 411

MACHINE Safe

SETS COMMAND= { Locked, Unlocked, BrokenOpen}/*2*/
VARIABLES Door
INVARIANT Door ∈ COMMAND /*OUT2*/
INITIALISATION Door := Unlocked /*{ Lock } NEXT */

OPERATIONS

/*ext*/ Status←− /*ext*/ Lock =̂
PRE Door = UnlockedTHEN Door := Locked‖ Status:= LockedEND

/* { Unlock, BreakOpen} NEXT */ ;

UnlockR1 (Comb1a,Comb1b) =̂
PRE Comb1a∈ NAT ∧ Comb1b∈ NAT ∧ Door = LockedTHEN skipEND ;

UnlockR2(Comb2a,Comb2b) =̂
PRE Comb2a∈ NAT ∧ Comb2b∈ NAT ∧ Door = LockedTHEN skipEND ;

/*ext*/ Status←− /*ext*/ Unlock =̂
PRE Door = Locked
THEN

ANY dd WHERE dd : COMMAND - { BrokenOpen}
THEN

IF (Unlocked = dd) THEN Status:= 1 ELSE Status:= 0 END ‖
Door := dd

END
END /* { Lock } { UnLock,BreakOpen} NEXT COND */ ;

/*ext*/ Alarm ←− /*ext*/ BreakOpen =̂
PRE Door ∈ COMMANDTHEN Door := BrokenOpen‖ Alarm := 1 END
/* { BreakOpen} NEXT */ ;

END

Figure 3. Safe Machine

CTRL = Initialisation → 2
y

Lock !y → S

S = (2
y

Unlock !y → (if y then 2
y

Lock !y → CTRL else S))2

(2
y

BreakOpen!y → B CTRL)

B CTRL = 2
y

BreakOpen!y → B CTRL

Figure 4. Safe Machine Controller.

6.2. A Refined Example

A refinement of theSafe machine, called SafeR, is given in figure 5 and figure 6 . It is a
classical B refinement that mimicking a refinement in Event-B. The operationUnlockR1
and UnlockR1 are introduced to refineUnlock . The laws of refinement of Event-B are
not fully justified. TheSafe REFINEMENT, SafeR, breaks down the Unlocking process
into two stages. Firstly, a two new operation are slotted into the control in parallel:
UnlockR1(Comb1a,Comb1b) and UnlockR2(Comb2a,Comb2b). Both have a combina-

412 W. Ifill and S. Schneider / Refining and Translating B Control Annotations

REFINEMENT SafeR

REFINES Safe

VARIABLES Door, Cx1a, Cx2a, Cx1b, Cx2b,

Master1, Checked1 Master2, Checked2

INVARIANT
Cx1a∈ NAT/*IN16*/ ∧ Cx2a∈ NAT/*IN16*/ ∧
Cx1b∈ NAT/*IN16*/ ∧ Cx2b∈ NAT/*IN16*/ ∧
Master1∈ NAT/*16*/ ∧ Checked1∈ NAT/*1*/ ∧
Master2∈ NAT/*16*/ ∧ Checked2∈ NAT/*1*/

INITIALISATION
Door:=unlocked‖ Cx1a:=0 ‖ Cx2a:=0 ‖ Cx1b:=0 ‖ Cx2b:=0 ‖
Master1:=67‖ Checked1:=0 ‖ Master2:=76‖ Checked2:=0 /* { Lock } NEXT */

OPERATIONS

/*ext2*/ Status←− /*ext1*/ Lock =̂
PRE

Door = Unlocked

THEN
Door := Locked‖ Status:= Locked‖ Checked1:= 0 ‖ Checked2:= 0

END
/* { UnlockR1(Cx1a,Cx1b), UnlockR2(Cx2a,Cx2b)} { Unlock} NEXT SEQ */

/* { UnlockR1(Cx1a,Cx1b)} { UnlockR2(Cx2a,Cx2b)} NEXT PAR */ ;

/*ext1*/UnlockR1(/*16*/Comb1a,/*16*/Comb1b) =̂
PRE

Comb1a∈ NAT ∧ Comb1b∈ NAT ∧ Door = Locked
THEN

IF
(Comb1a = Master1)

THEN
Checked1:= 1 ‖ Master1:= Comb1b

ELSE
Checked1:= 0

END
END /* { Unlock} NEXT */ ;

Figure 5. Safe Refinement Part 1.

tion parameter which is compared against a stored master code and a secondly parameter
that is used to create a new master key. TheUnlockR commands update the master com-
bination if a successful comparison occurs. New input variables are added:Cx1a, Cx2a,
Cx1b, andCx2b. These are used to input the combination values and are not used by the
B Operations.Checked1, Checked2, Master1 andMaster2 are new variables used by the
operations. The annotations of theLock operation are refined. Two operation are added be-
fore theUnlock . The extra proof obligations can be discharged. The bodies of theUnlockR
andRekey(Comb2) are completed at this level. The body of theUnlock operation is re-
fined. The annotations of theUnlock are refined: theBreakOpen operation is removed as
an option. What was one unlock operation has been expanded into three (two in parallel).

W. Ifill and S. Schneider / Refining and Translating B Control Annotations 413

/*ext1*/UnlockR2(/*16*/Comb2a,/*16*/Comb2b) =̂
PRE

Comb2a∈ NAT ∧ Comb2b∈ NAT ∧ Door = Locked

THEN
IF

(Comb2a = Master2)

THEN
Checked2:= 1 ‖ Master2:= Comb2b

ELSE
Checked2:= 0

END
END /* { Unlock} NEXT */ ;

/*ext2*/Status←− Unlock =̂
PRE

Door = Locked

THEN
IF (Checked1 = 1) ∧ (Checked2 = 1)

THEN
Door := Unlocked‖ Status:= 1

ELSE
Door := Locked‖ Status:= 0

END
END

END /* { Lock } { UnlockR} COND NEXT */ ;

/*ext*/ Alarm ←− /*ext*/ BreakOpen =̂

PRE Door ∈ COMMAND THEN Door := BrokenOpen‖ Alarm := 1 END
/* { BreakOpen} NEXT */

END

Figure 6. Safe Refinement Part 2

CTRL = Initialisation → 2
y

Lock !y → S

S = (UnlockR1?Cx1a?Cx1b → skip ||| UnlockR2?Cx2a?Cx2b → skip)→

2
y

Unlock !y → (if y then 2
y

Lock !y → S else S)

Figure 7. Refined Safe Controller.

Before refinement theUnlock operation has both input and output. The refined version has
the input occurring on the first operations in the refined sequence of operations (UnlockR1
andUnlockR2), and the output occurring on the final operation of the sequence (the original
Unlock operation).

The controller given in figure 7 starts off like the abstract process with anInitialisation
and aLock then a jump toS . There is in this refined process no choice tobreakOpen, only
UnlockR1andUnlockR2 are offered withCx1a andCx1b andCx2a andCx2b are offered
as an input, respectively. TheUnlockR process is the first in a sequence of processes that

414 W. Ifill and S. Schneider / Refining and Translating B Control Annotations

refines the originalUnLock process. The refined sequence starts with a parallel combination
of theUnlockR1 and theUnlockR2 events then the originalUnlock event, at which point the
output is given. Both legs of the interleaving must terminate before control is passed to the
Unlock . As before the outcome ofUnlock determines what happens next. If theUnlock was
successful the process will be restarted from the beginning. If the current attempt at locking
failed then another go atUnlock will occur. It is noted that theLock → S could have been
replaced byCTRL. However, the former is easier to translate.

6.3. A Hand Translation into Handel-C

The refined B specification provides the details of the types, variables, and functions. The
CSP controller provides the executions details that are use later to construct the Handel-C
main section. Summaries of hand translations of the refined B specification and the CSP
controller are given in Figures 8, 9, and 10 (in Appendix B).

First we review the B translation. TheSETS clause is translated into an enumerated
type. TheINVARIANT section is used to create the declarations. Variables annotated with
a mode will be created as buses of the appropriate I/O type and size. Other variables will be
created. Variables which will be bound to ports are created. Each operation which is external
is associated with a command input bus of the same name as the machine. The mechanism
for requesting an external operation to execute is to change the data on the command input
bus to the same name as the operation required. The last requested operation is latched into
variable of the same name as the refined machine with a. var post fix. Variables are de-
clared for operation outputs. The names of the output bus variables are a concatenation of the
operation output name and the operation name. This avoids clashes with similar operation
output names. Buses are defined for each/ ∗ IN ∗ / and/ ∗ OUT ∗ / annotation, external
operation, and operation output. Each operation is translated into a function. If an operation
has an output the function will return a value. Functions with outputs will have an assign-
ment in them that assigns to the bus output function variable. The function will also return
that output in the final statement of the function. Assigning to the function output variable
and writing it to a output port as well allows it to be put out on the output bus, and used
internally in the Handel-C program. The bodies are translated in a straightforward manner.
Assignments in the operations are put together in apar Handel-C statement. Assignment and
the if − then − else B constructs have straightforward translations. The refined B example
is limited to assignment andif − then − else. TheINITIALISATION is translated into a
function calledInitialisation fnc.

The CSP controller is used to construct the main Handel-C body. A summary of the hand
translations made on the CSP controller are given in table 6. The controller design was struc-
turally limited to facilitate translation: initialisation and setting up operations are performed
before a main loop is entered. The first process definitionCTRL fnc is not recursive; it is an
open process. It translates to a function callCTRL fnc, which invokes theInitalisation fnc
and lock fnc functions. On returning to the main program the next function called is the
S fnc, which implements the main loop.S fnc is tail recursive and is implemented with a
continuously looping while loop; it is a closed process. The first event in the main loop is the
UnlockR commands. In the translation theUnlock fnc is preceded bywait Unlock fnc as it
is an external operation. TheUnlockR fnc functions inputs from theCx1a, Cx1b, Cx2,and
Cx2 input buses. TheUnlock fnc call follows.Unlock fnc returns a value that is assigned
to a variable that is output ported. The value is also used to decide the course of the follow-
ing if-then-else. Either aLock fnc or anUnlockR fnc is performed after a wait. Then the
process recurses.

W. Ifill and S. Schneider / Refining and Translating B Control Annotations 415

7. Discussion

This paper has introduced a way of refining annotations that support Event-B style refine-
ment, and set out a guide for translation to an HDL, within the B annotation framework. We
have demonstrated how the framework previously presented can be extended for both classi-
cal B and Event-B. Our approach sits naturally with refinement. Refinement and translation
are still being considered for CSP‖B. In fact the B annotation approach offerers several ap-
proaches to refinement: refinement of control flow only, state only, or control flow and state.
The extensions to the annotations are fairly rich and now include annotations to support: next
selection, sequencing, conditional, parallel execution, and I/O. The inability to define points
of recursion has led to a reliance on a CSP controller. We restricted this paper to the con-
sideration of fixed variables as operation inputs, and permitted no scope for controller state.
Work on CSP state and defining recursive points in the annotations is currently ongoing.
More work is required to automate the translation and develop the proof of the theorem to
cover interleaving.

Acknowledgements

The extensions to the refinement have benefited from conversations with Stefan Hallestede
and Helen Treharne. Thank you for the positive comments from the referees and detailed lists
of error eta, improvements and additions.

References

[1] J-R. Abrial. The B-Book: Assigning Programs to Meaning. Cambridge University Press, 1996.
[2] S. Schneider.The B-Method: An introduction. Palgrave, 2002.
[3] C. A. Hoare. Communicating Sequential Processes. Prentice-Hall International, Englewood Cliffs, New

Jersey, 1985.
[4] A. W. Roscoe.The Theory and Practice of Concurrency. Prentice-Hall, 1998.
[5] S. Schneider.Concurrent and Real-time Systems: The CSP Approach. John Wiley and Sons, 1999.
[6] W. Ifill, S. Schneider, and H. Treharne. Augmenting B with control annotations. In J. Julliand and

O. Kouchnarenko, editors,B2007:Formal Specification and Development in B, volume 4355 ofLNCS.
Springer, January 2007.

[7] W. Ifill, I. Sorensen, and S. Schneider.High Integrity Software, chapter The Use of B to Specify, Design
and Verify Hardware. Kluwer Academic Publishers, 2001.

[8] P. T. Ashenden.The Designer’s Guide to VHDL. Morgan Kaufmann, 1996.
[9] W. Ifill. Formal development of an example processor (AEP) in AMN, C and VHDL. Computer science,

University of London, Computer Science Department, Royal Holloway, University of London, Egham,
Surrey TW20 OEX, Sept 1999.

[10] A. Aljer, J. L. Boulanger, P. Devienne, S. Tison, and G. Mariano. BHDL: Circuit design in B. InAp-
plications of Concurrency to System Design, pages 241–242. IEEE Computer Society, Elsevier, unknown
2003.

[11] A. Aljer and P. Devienne. Co-design and refinement for safety critical systems. In19th IEEE International
Symposium on Defect and Fault Tolerance in VSLI Systems (DFT’04), pages 78–86, 2004.

[12] J-R. Abrial and L. Mussat.Event B Reference Manual. ClearSy, 1999.
[13] J-R. Abrial. Event driven circuit construction version 5. MATISSE project, August 2001.
[14] H. Treharne and S. Schneider. Communication B machines. InZB2002, 2002.
[15] H. Treharne.Combining Control Executives and Software Specifications. PhD thesis, Royal Holloway,

University of London, 2000.
[16] Alexandre Mota and Augusto Sampaio. Model-checking CSP-Z: Strategy, tool support and industrial

application.Science of Computer Programming, 40(1):59–96, May 2001.
[17] C. Fischer. CSP-OZ: A combination of Object-Z and CSP.
[18] J. D. Phillips and G. S. Stilles. An automatic translation of CSP to Handel-C. In I. East, J. Martin, P. Welch,

D. Duce, and M. Green, editors,Communicating Process Architecures 2004. IOS Press, 2004, 2004.
[19] S. Stepney. CSP/FDR2 to Handel-C translation. Technical report, University of York, June 2003.

416 W. Ifill and S. Schneider / Refining and Translating B Control Annotations

A. Refinement and Translation Tables

Table 1. NEXT Refinements - Reduction of Non-determinism.

Annotation Refinement type

1 OPi =̂ ...OPJ NEXT OPi =̂ ...OP ′
J NEXT next

external

choice

refinement

2 OPi =̂ ...OPJ OPK NEXT PAR OPi =̂ ...OP ′
J OP ′

K NEXT PAR next

interleave

refinement

OPj 1 =̂ ...OPX NEXT OPj 1 =̂ ...OPX NEXT
· · · · · ·
OPj n =̂ ...OPX NEXT OPj n =̂ ...OPX NEXT

OPk 1 =̂ ...OPX NEXT OPk 1 =̂ ...OPX NEXT
· · · · · ·
OPkn =̂ ...OPX NEXT OPkn =̂ ...OPX NEXT

3 OPi =̂ ...OPJOPP NEXT SEQ OPi =̂ ...OP ′
JOP ′

PNEXT SEQ next

sequential

refinement

OPj 1 =̂ ...OPP NEXT OPj 1 =̂ ...OPP NEXT
· · · · · ·
OPj n =̂ ...OPP NEXT OPj n =̂ ...OPP NEXT

4 OPi =̂ ...OPJOPP NEXT COND OPi =̂ ...OP ′
JOP ′

PNEX COND next

condition

refinement

OPj 1 =̂ ...OPP NEXT OPj 1 =̂ ...OPP NEXT
· · · · · ·
OPj n =̂ ...OPP NEXT OPj n =̂ ...OPP NEXT

where OP ′
J ⊆ OPJ and

OP ′
K ⊆ OPK

W. Ifill and S. Schneider / Refining and Translating B Control Annotations 417

Table 2. NEXT Refinements - Structural Refinements.

Annotation Refinement type

1 OPi =̂ ...OPX NEXT OPi =̂ ...OPJ OPX NEXT SEQ introduction

of

OPj 1 =̂ ...OPX NEXT new

operation

OPj n =̂ ...OPX NEXT

2 OPi =̂ ...OPJ OPP NEXT SEQ OPi =̂ ...OPJOPPNEXT PAR next

sequence

OPj 1 =̂ ...OPP NEXT OPj 1 =̂ ...OPP NEXT to

interleave

· · · · · · refinement

OPj n =̂ ...OPP NEXT OPj n =̂ ...OPP NEXT

variable used({OPj , . . . ,OPk})
∩
variable used({Opp , . . . ,OPq})
= {}

418 W. Ifill and S. Schneider / Refining and Translating B Control Annotations

Table 3. NEXT Annotation Translation Guide Part 1.

Annotation Handel-C Translation Fragment Comment

1 OPi =̂ ...{OPj 1}NEXT yi = OPi(vi) ; yj 1 = OPj 1(vj 1) internal

single next

opi !yi?zi → (opj 1!yj 1?zj 1 → . . . translation

2 OPi =̂ ...{OPj 1}NEXT yi = OPi(vi) ; external

/ ∗ ext ∗ /OPj 1 =̂ ... wait on OPj 1 ; single next

opi !yi?zi → (opj 1!yj 1?zj 1 → . . . if in = OPj 1 translation

then yj 1 = OPj 1(vj 1)}
else delay ;

3 / ∗ ext ∗ /OPi =̂ . . . yi = OPi(zi) ; external

{OPj 1, . . . ,OPj n}NEXT wait on OPj 1 . . . OPj n ; multiple

if in = OPj 1 next

then yj 1 = OPj 1(vj 1) choice

else . . . translation

. . .

opi !yi?zi → (opj 1!yj 1?zj 1 → . . .2 . . . if in = OPj n

2 then yj n = OPj n(vj n)
opj n !yj n?zj n → . . .) else skip

4 OPi =̂ ...OPj OPk NEXT PAR seq{yi = OPi(vi), internal

par{yj = OPj (vj), next

yk = OPk (vk) interleave

OPj =̂ ...OPX NEXT } translation

}
OPk =̂ ...OPX NEXT

opi !yi?zi → (opj !yj ?zj → . . .)‖
(opk !yk?zk → . . .)

W. Ifill and S. Schneider / Refining and Translating B Control Annotations 419

Table 4. NEXT Annotation Translation Guide Part 2.

Annotation Handel-C Translation Fragment Comment

5 OPi =̂ ...OPJ OPK NEXT SEQ yi = OPi(vi); wait on OPJ next

sequential

if in = OPj 1 translation

/ ∗ ext ∗ /OPj 1 =̂ ...OPK NEXT then yj 1 = OPj 1(vj 1)
· · · else . . .

/ ∗ ext ∗ /OPj n =̂ ...OPK NEXT . . .

if in = OPj n

OPk 1 =̂ ... then yj n = OPj n(vj n)
else skip

OPkn =̂ ... ;
yk 1 = OPk 1(vk 1)

opi !yi?zi → (opj 1!yj 1?zj 1 → . . .2

. . .2

opj n !yj n?zj n → . . .);
(opk 1!yk 1?zk 1 → . . .2

. . .2

opkn !ykn?zkn → . . .)

6 / ∗ ext ∗ /OPi =̂ . . . y = OPi(vi); external

OPJ OPK NEXT COND if y next

{wait on OPJ ; condition

if in = OPj 1 translation

then yj 1 = OPj 1(vj 1)
else . . .

OPj 1 =̂ ...OPK NEXT . . .

· · · if in = OPj n

then yj n = OPj n(vj n)
else skip

OPj n =̂ ...OPK NEXT }
else

OPk 1 =̂ ...OPK NEXT {wait,

· · · if in = OPk 1

then yk 1 = OPk 1(vk 1)
else . . .

OPkn =̂ ...OPK NEXT . . .

if in = OPkn

then ykn = OPkn(vkn)
else skip

opi !yi?zi → (opj 1!yj 1?zj 1 → . . .2 }
. . .2

opj n !yj n?zj n → . . .);
(opk 1!yk 1?zk 1 → . . .2

. . .2

opkn !ykn?zkn → . . .)

420 W. Ifill and S. Schneider / Refining and Translating B Control Annotations

Table 5. Existing CSP to Handel-C Translation Guide.

Feature CSPM Handel-C PS SS

Channel Declarations channel chan, chanin, chanout X

(from use)

Channel Declarations channel c chan SYNC c; X

Typed Structured channel d : T.T chan struct dDATA d X

Channel Declarations

Input Channel Operations in?x in?x; X X

Output Channel Operations out!x out!x; X X

Integer Declarations int 8 x; X X

Parametrisable functions p(n) = ... void(n)... X X

External Choice [] prialt ... X X

Synchronous Parallel [| { | ... | } |] par ... X X

Replicated Sharing Parallel [| Event |] n: { i..j }•P(n) par (n=i; n¡=j; ++n)P(n); X

Recursion P = ...→ P while(1) ... X X

Conditional Choice if b then P else Q if (B) then P(); else Q(); X

Macros {- ... -} ... X

Table 6. CSP to Handel-C Translation Guide.

Feature CSP Handel-C

initialisation P̂= . . . R P fnc();Q fnc();

processes void Pfnc(void){. . .;}
main loop R̂= . . . R R fnc();

processes void Rfnc(void){while(1){. . .;}}
prefix (internal) < e→ P> e fnc ; <P>

prefix (external) < e→ P> wait on e; e fnc ; <P>

choice (external) < P12 P2> <P1>

interleaved < e1→ skip PAR{< e1 → skip >;
||| . . . ||| . . . ; < en → skip >}; < P >

en → skip; P >

if-then-else <if y then P else Q> if y {<P>} else{<Q>}
where< P >

is the translation of P

W. Ifill and S. Schneider / Refining and Translating B Control Annotations 421

Table 7. B to Handel-C Translation Guide.

Feature B Handel-C

set SETS SS= typedef enum{ AA =

AA,...,XX/*n*/ (unsigned n) 0, ..., XX} SS;

declaration

B variable INVARIANT unsigned n Vv;

declaration Vv∈ TT /*OUTn*/ interface busout()

Vv1 (unsigned 2 OutPort=Vv);

INVARIANT unsigned n Vv;

Vv ∈ TT /*INn*/ interface bus in(unsigned n inp) Vv();

INVARIANT unsigned n Vv;

Vv ∈ TT /*n*/

Function /*extN*/Oo unsigned 1 Ccvar;

Declaration ←− /*ext*/ Cc(/* M */Zz) interface bus out ()

Oo Cc1 (unsigned N OoCc);

interface busin(unsigned 1 inp) Cc ();

void wait on Cc fnc()

{ while (Cc.inp == Cc var){ delay;}
Cc var = Cc.inp;

}
unsigned N Ccfnc(unsigned M Zz){

par{. . .;};return exp;

}
Function PREP THEN B END par{<< B >>}
Body

IF b THEN c ELSEd END if << b >> { << c >> }
else{ << d >> } ;

b :=c << b >> = << c >> ;

initialisation INITIALISATION . . . void Initialisation(void){ . . .; }
main OPERATION void main(void){ Initialisation;. . . }

422 W. Ifill and S. Schneider / Refining and Translating B Control Annotations

B. Hand Translations

// set clock = external "Clock";
#define PAL_TARGET_CLOCK_RATE 25175000
#include "pal_master.hch"
// BreakOPen removed in translation as
// not used and no command default added
typedef enum {Not_Commanded =

(unsigned 2) 0, Locked, Unlocked} COMMAND;
typedef enum {No_Command =

(unsigned 2) 0, Lock, UnlockR1, UnlockR2} SafeR;
unsigned 2 Door; // B variables
unsigned 1 Checked1;
unsigned 16 Master1;
unsigned 1 Checked2;
unsigned 16 Master2;
SafeR SafeR_Bus_var; // latch input bus values to

// request operation execution
unsigned 1 Status_Unlock; // operation output values
unsigned 2 Status_Lock;
interface bus_in(unsigned 16 inp) Cx1a(); // IN annotations
interface bus_in(unsigned 16 inp) Cx2a();
interface bus_in(unsigned 16 inp) Cx1b();
interface bus_in(unsigned 16 inp) Cx2b();
interface bus_in(SafeR inp) SafeR_Bus(); // ext operations
interface bus_out() Door1 (unsigned 2 OutPort=Door); // OUT annotations
interface bus_out() Status_Unlock1 (unsigned 1 OutPort=Status_Unlock);

Figure 8. SafeR Translation Part 1a.

W. Ifill and S. Schneider / Refining and Translating B Control Annotations 423

void wait_on_Lock_fnc (){
while (SafeR_Bus.inp != Lock){delay;}
SafeR_Bus_var = Lock;

}
unsigned 2 Lock_fnc(void){

par{
Door = Locked;
Status_Lock = Locked;
Checked1 := 0;
Checked2 := 0;
}

return Status_Lock;
}
void wait_on_UnlockR1_fnc(void){

while (SafeR_Bus.inp != UnlockR1){delay;}
SafeR_Bus_var = UnlockR1;

}
void UnlockR1_fnc(unsigned 16 Comb1a, unsigned 16 Comb1b){

if (Comb1a == Master1) {
par{Checked1 = 1; Master1 = Comb1b;}

}
else

{Checked1 = 0;}
}
void wait_on_UnlockR2_fnc(void){

while (SafeR_Bus.inp != UnlockR2){delay;}
SafeR_Bus_var = UnlockR2;

}
void UnlockR2_fnc(unsigned 16 Comb2a, unsigned 16 Comb2b){

if (Comb2a == Master2) {
par{Checked2 = 1; Master2 = Comb2b;}

}
else

{Checked2 = 0;}
}

Figure 9. SafeR Translation Part 1b.

424 W. Ifill and S. Schneider / Refining and Translating B Control Annotations

unsigned 1 Unlock_fnc(void){
par{

if ((Checked1 = 1) & (Checked2 = 1)){
par{Door=Unlocked; Status_Unlock=1;}

}
else {par{Door=Locked; Status_Unlock=0;}}

}
return Status_Unlock;

}
void Initialisation_fnc(void){

Checked1 = 0;Master1 = 67;
Checked2 = 0;Master2 = 76;Door = Unlocked; // INITIALISATION
Status_Lock = 0;Status_Unlock = 0; // SET OUTPUT DEFAULT

}
void CTRL_fnc(void){

Initialisation_fnc(); wait_on_Lock_fnc();
if (SafeR_Bus_var == Lock){Lock_fnc();}else{delay;}

}
void S_fnc(void){

while(1){par{
seq{wait_on_UnlockR1_fnc();

if (SafeR_Bus_var==UnlockR1){
UnlockR1_fnc(Cx1a.inp,Cx1b.inp);}

else
{delay;}

} // seq
seq{wait_on_UnlockR2_fnc();

if (SafeR_Bus_var==UnlockR2){
UnlockR_2fnc(Cx2a.inp,Cx2b.inp);}

else
{delay;}

} // seq
} // par
Status_Unlock = Unlock_fnc();
if (Status_Unlock){

wait_on_Lock_fnc();
if (SafeR_Bus_var==Lock){

Lock_fnc();
}
else {delay;}

}
else {delay;}

} //while
} // S_fnc

void main(void){CTRL_fnc();S_fnc();}

Figure 10. SafeR Translation Part 2.

