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Abstract. Circus is a combination of Z and CSP; its chief distinguishing feature is the
inclusion of the ideas of the refinement calculus. Our main objective is the definition
of refinement methods for concurrent programs. The original semantic model for
Circus is Hoare and He’s unifying theories of programming. In this paper, we present
an equivalent semantics based on predicate transformers. With this new model, we
provide a more adequate basis for the formalisation of refinement and verification-
condition generation rules. Furthermore, this new framework makes it possible to
include logical variables and angelic nondeterminism inCircus. The consistency of
the relational and predicate transformer models gives us confidence in their accuracy.

1 Introduction

Modern computing systems typically run on distributed, heterogeneous networks, and are
subject to complex constraints on functionality, performance, fault tolerance, security, and
timing. If we want such systems to be dependable, then we must address all these issues.
There has been much progress in providing sound mathematical foundations for these differ-
ent aspects of complex systems, but it is usually done in relative isolation. This is because
researchers apply the principle of separation of concerns, allowing them to find a thorough
solution to a particular problem without being distracted by others. Subsequent researchers
can then build on this fundamental research by composing its theories.

Two examples of this separation of concerns lie in the theory of program specification
and development. First, research on state-based, model-oriented specification languages
originally focused on the specification and refinement of sequential software, avoiding the
complications of concurrency and distribution. Second, when research on process algebras
started in the 1970s, the major schools focused on studying the semantics and theory of con-
currency and communication, abstracting from the details of data types and their operations.
In both cases, researchers knew that they would have to address the wider concerns in order
for the techniques to scale up to describing industrial-sized systems.

Recently, there has been considerable interest in bringing these two strands of research
together, and in particular combining Z [1, 2] and CSP [3, 4] in various ways; Fischer has sur-
veyed some of this work [5]. It is clear, however, that little has been accomplished in under-
standing the formal development of programs starting from specifications in these combined
formalisms.

Circus [6, 7, 8] is a language for writing specifications, designs, and programs for con-
current, communicating systems. It combines the languages of Z, CSP, the refinement cal-
culus [9], and guarded commands [10]. As such, it is very convenient for capturing and
reasoning about static, dynamic, and reactive aspects of concurrent and distributed systems,
such as may be written inoccam and Java.

The complete integration of the four languages involved inCircus has been achieved by
giving a single denotational semantics that describes all their constructs, in the manner of
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Hoare and He’s unifying theories of programming [11]. In Hoare and He’s work, a num-
ber of different paradigms for programming are studied as a series of linked theories, each
formalised in an alphabetised variant of Tarski’s relational calculus.

A long-standing trend in the formal development and verification of programs is the use of
predicate transformers, either directly or as a foundation [10, 12, 13, 14]. In the unifying the-
ory, the relational model for sequential programs is linked to a weakest-precondition model.
Later, the relational model is augmented to cope with concurrency and communication, and
the link to the weakest-precondition setting turns out not to be valid for the augmented model.

We present a new predicate transformer: theweakest reactive precondition. It charac-
terises the weakest precondition that guarantees that a given condition holds in all observable
states of a reactive program. We define the weakest reactive precondition of a unifying theory
relation that defines a reactive system. From this, we calculate a weakest reactive precondi-
tion semantics forCircus.

This new semantic model is a convenient step towards the complete justification of our
extension to an existing refinement calculus for Z [15] that includes allCircus constructs [16,
17]. Moreover, the weakest precondition semantics is a natural starting point for the proposal
of rules for verification-condition generation forCircus. Finally, as an added benefit to the ef-
fort of calculating a new semantics forCircus, we now have the possibility of modelling log-
ical constants and angelic nondeterminism, which are important for refinement techniques.
The two models also provide confirmation for the precision of each other.

In [18], laws are presented that completely characteriseoccam’s semantics, and which
are cast in terms of the denotational semantics of [19], although no proof of equivalence was
carried out. The laws presented in that work, however, are equalities; they aim at character-
ising the semantics of the language, instead of supporting the development of programs.

In the next section, we give an overview ofCircus. Section 3 presents the basic con-
cepts of the unifying theory. The weakest precondition semantics ofCircus is the subject of
Section 4. Finally, in Section 5 we present our conclusions.

2 Circus

A Circus program is a sequence of paragraphs; each of these may either be a Z paragraph,
a channel definition, a channel set definition, or a process definition. In the BNF description
of the syntax ofCircus in Figure 1, we omit part of the syntax of processes (Proc) and the
syntax of communications (Comm), which we exemplify later on in this section.

CircusPar∗ denotes a possibly empty list of elements from the categoryCircusPar; sim-
ilarly for PPar∗. N+ denotes a comma-separated list of valid Z identifiers (elements ofN),
and similarly forExp+. The syntactic categoriesPar, Schema-Exp, Exp, Pred, andDecl
include the Z paragraphs, schema expressions, expressions, predicates, and declarations; their
definitions can be found in [1]. Finally, the syntactic categoryCSExp of channel set expres-
sions contains the empty set of channels{| |}, channel enumerations enclosed in{| and|}, and
set expressions formed by the usual set operators.

A process encapsulates state and behaviour. The basic form of process definition de-
scribes the state and operations, mainly as in a standard Z specification. In the context of
Circus, the operations are called actions and can be specified using schemas, CSP operators,
and guarded commands. The predicate transformer semantics calculated here characterises
the behaviour of actions.

By way of illustration, we consider a little example due to Hoare [3]. The processWSum
below inputs natural numbers from a channelin, and outputs through a channelout the
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Program ::= CircusPar∗

CircusPar ::= Par | ChanDef | ChanSetDef | ProcDef

ChanDef ::= channelCDecl

CDecl ::= SimpleCDecl | SimpleCDecl; CDecl
SimpleCDecl ::= N+ | N+ : Exp | Schema-Exp

ChanSetDef ::= chansetN == CSExp

ProcDef ::= processN =̂ Proc

Proc ::= beginPPar∗ • Action end | Proc 2 Proc
| . . .

PPar ::= Par | N =̂ Action

Action ::= Schema-Exp | CSPActionExp | Command

CSPActionExp ::= Skip| Stop| Chaos
| Comm → Action | Pred & Action | Action; Action
| Action 2 Action | Action |[ CSExp ]| Action | µ N • Action
| Decl • Action | Action(Exp+)

Command ::= N+ : [ Pred, Pred ] | N+ := Exp+

| if GuardedActions fi | var Decl • Action

GuardedActions ::= Pred → Action | Pred → Action 2 GuardedActions

Figure 1:Circus syntax

weighted sum of its current and previous input.
channel in, out : N;

The weights are defined as constants, using the Z notation.
| a, b : N

The stateSrecords its previous inputlast and the value to be outputval.
processWSum=̂ begin

S =̂ [ last, val : N ]

We present the actionCompute, which takes an inputx? and updates the state accordingly.

Compute=̂ [ ∆S; x? : N | val′ = a ∗ last+ b ∗ x? ∧ last′ = x? ]

There is a nameless action at the end of a process description, which defines its behaviour;
we refer to this action as the main action of the process. In our example, it is as follows.

• ( µ X • in?x→ Compute; out!val→ X )
end

We use the prefixing, sequence, and recursion constructs of CSP. First the input is taken
through the channelin and into the input variablex. Afterwards, the schema action previously
defined is used to update the state. In sequence, theval component of the state is output
throughout and the process recurses. We explain the other action operators below through a
more substantial example, and in Section 4, as we present their semantics.

The CSP operators can also be used to combine processes: their states are conjoined and
their main actions are combined using the CSP operator applied. The weakest precondition
of a process is that of its main action. The following example, inspired by the Sieve of
Eratosthenes presented in [20], illustrates the use of processes.
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Example: The objective of the Sieve of Eratosthenes is to produce the list of prime numbers.
In our example, the list is output through the channelout.

channelout : N

We use the setprimesthat contains all the prime numbers. Its Z specification is as follows.

primes== { n : N | (∀m : N • m divides n⇒ m = 1 ∨ m = n)}
In this definition, we use the functiondivides , with the obvious meaning:m divides nif
and only ifn is a multiple ofm. The definition of this function in Z is simple and omitted.
So, a number is prime if its only divisors are1 and itself.

The specification is a parametrised process,Primes. Its parameterl limits the size of the
list of prime numbers: we are interested only in those primes less than or equal tol.

processPrimes=̂ l : N • begin

PrimesStatê= [ s : FN ]

PrimesInit=̂ [ PrimesState′ | s′ = (2 . . l) ∩ primes]

Output=̂ [ ∆PrimesState; m! : N | s 6= ∅ ∧ m! = min s∧ s′ = s\ {m! } ]

• PrimesInit;
µ X • if s = ∅ → Skip

[] s 6= ∅ → var m : N • Output; out!m→ X
fi

end

The process’s only state component, specified inPrimesState, is a finite setsof natural num-
bers. The main action describes the behaviour of the process: first it initialises the state with
PrimesInit; then it recursively executes a conditional action. The notation that we use is that
of Dijkstra’s guarded commands [10].

The initialisation setss to the set of numbers that are both between2 andl and also prime.
The recursive action then outputs these numbers in ascending order. Ifs is empty, then the
task is finished, and the recursion terminates. Otherwise, a local variablem is declared to
hold the next output, which is selected by the operationOutput. The schemaOutputrequires
thats must not be empty, and the after-value ofm—here denoted bym! to emphasise that it
is a result of the operation—is set to the minimum value ins; m! is then removed froms to
form the after-value of the state,s′.

Primesis refined to the processEratosthenes, defined below, which specifies a concurrent
implementation of the Sieve of Eratosthenes algorithm. It is defined as the parallel composi-
tion of other processes, in the manner of a systolic array.

The first process, which we callStart, outputs 2, which is the first prime, throughout.
Afterwards, it outputs the list of odd numbers, or rather, the numbers that are not multiples
of 2, through a channelsievein.

channelsievein: N
processStart =̂ begin

StartState=̂ [ n : N ]

• out!2 → n := 3; (µ X • sievein!n→ n := n + 2; X)

end
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The second process is aFilter. It takes a primep through the channelsievein, outputs it,
and then outputs the list of numbers that are not multiples ofp, through a channelsieveout.

channelsieveout: N
processFilter =̂ begin •

sievein?p→ out!p→
µ X • sievein?m→ if p divides m→ X

[] ¬ (p divides m) → sieveout!m→ X
fi

end

The idea is thatStart sends throughsieveinthe number3, which is the next prime after2,
and all the odd numbers.Filter outputs3 and filters out fromsieveinthe multiples of3. The
multiples of2 have already been removed byStart, so we are left only with numbers that are
neither a multiple of2 nor3. The list of such numbers are output throughsieveout.

We use a piping operator to take the list output throughsieveoutas input toFilter again.
This operator takes the form[c1 ↔ c2] n • P, and we define it as follows, forn > 0, and for
a channelm not used inP.

[c1 ↔ c2] n • P =̂
var v : N • v := n;

µ X • if v = 1 → P
[] v > 1 → v := v− 1; ( P[m/c1] |[ {| m |} ]| X[m/c2] ) \ {| m |}
fi

The operator formsn copies ofP, and links them together by connecting thec1 channel of
the i-th process to thec2 channel of the(i + 1)-th process. The definition achieves this by
recursion, limited by the local variablev. On every recursive step, except the last, a copy ofP
is connected to its right neighbour. The copy has itsc1 channel renamed tom; the neighbour
(the recursive call ofX) has itsc2 channel also renamed tom. They are then composed in
parallel, communicating only throughm, which is hidden to prevent interference. The result
is a process with a singlec2 channel on the left and a singlec1 channel on the right. Its internal
structure is a linear sequence of processes communicating pairwise on private channels. Of
course,P may have other channels, and they are not linked in any way by this operator.

For example,COPY(taken from [3]) is a one-place buffer that repeatedly copies its inputs
from theleft channel and outputs them on theright channel:

channel left, right : N
processCOPY=̂ begin • ( µ X • left?x→ right!x→ X ) end

We construct a three-place buffer as[right ↔ left] 3 • COPY. Once the recursion has been
completely unfolded,v is irrelevant, so the process is equivalent to the expression:

( COPY[m/right]
|[{| m |}]|
( ( COPY[m/right] |[ {| m |} ]| COPY[m/left] ) \ {| m |} )[m/left]
) \ {| m |}

This three-place buffer has two external channels,left andright, and two internal ones. Data
arrives on theleft channel, makes its way via the two internal channels, and finally appears
on theright channel. The result is a pipeline of replicated components, like a systolic array.
In a similar way, we construct our sieve as a pipeline from a series ofl filters.

processSieve=̂ l : N • ( [sieveout↔ sievein] l • Filter )



152 A. Cavalcanti and J. Woodcock / A Predicate Transformer Semantics forCircus

At the far end of the pipeline we have the processFinish, which simply takes a value
throughsieveoutand outputs it.

processFinish =̂ begin • sieveout?n→ out!n→ Skipend

Now we can connect together our components to form the implementation.

processEratostheneŝ= l : N •
( Start|[ {|sievein|} ]| Sieve(l) |[ {|sieveout|} ]| Finish) \ {|sievein, sieveout|}

The out channel is not in the synchronisation set of the parallel composition, and so com-
munications from the pipeline’s components through this channel occur independently: the
results are interleaved. In fact, in spite of this interleaving, the ascending order required by
Primesis preserved. Each filter stage of the pipeline outputs onout only after it has received
its first communication from its predecessor, but before its first communication to its succes-
sor. Together with the initial and final behaviours ofStart andFinish, this forces the strict
sequencing of the output. Interference on state components is not a problem in the above
parallel compositions, since the state of a process is encapsulated.

Proving thatPrimes is refined byEratosthenesis not within the scope of this paper.
Nonetheless, the technique put forward in [16, 17] can be used to calculateEratosthenes’
behaviour fromPrimes in the refinement calculus style. The semantics presented in this
paper is a foundation for that technique.

3 Unifying Theories of Programming

The semantics ofCircus [8, 21] is based on the unifying theory, but with the Z notation
used as the concrete syntax for the relational calculus; thus, aCircus program denotes a
Z specification. The use of Z is not essential to our approach, but it is convenient as Z is
well-suited to the definition of relations, has a precise semantics, and has supporting tools.

In the unifying theory, Tarski’s relational calculus is used to give a denotational seman-
tics to constructs taken from different programming paradigms. This common framework
allows connections to be established between different paradigms and between a theory and
its implementable subtheories. Specifications, designs, and programs are all interpreted as re-
lations between an initial and a subsequent observation of a computing device. Distinguished
variables are used to describe relevant observations. The relations are defined as predicates
over observational variables and their dashed counterparts; they represent the corresponding
values before and after the observation.

In accordance with the philosophy of the unifying theory,Circus brings together Z, CSP,
and the refinement calculus in a language with a single, coherent semantics. The obser-
vational variables describe stability from divergence (okay), termination (wait), a history of
interaction with the environment (tr), and a set of refused events (ref). Together with program
variables, these observational variables and their associated healthiness conditions define the
subtheory of imperative, communicating, sequential processes and designs. The result is a
state-based expression of the failures-divergences model with embedded imperative features.

Because their semantics are so close,Circus can be used as a development method for
occam programs. Hoare and Roscoe use a style similar to the unifying theory in their se-
mantics foroccam [22]: the meaning of a program is given as a predicate over the values of
computations, traces, refusals, and a state variable that records termination and divergence in
a similar way to ourokayandwait variables.

The unifying theory includes a relational definition of the weakest precondition of a se-
quential mechanism; that definition, however, is not valid for reactive systems. This is ac-
tually not surprising, since in the context of sequential programs, weakest preconditions are
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concerned with final and initial states only, but in a reactive system, intermediate states are
also relevant. It is in these intermediate states that a reactive process is waiting for interac-
tion with its environment. This motivates our generalisation; the same sort of issue is also
discussed by Lamport [23].

In the next section, we propose theweakest reactive preconditionof a relation in the
subtheory used to modelCircus. This characterises the weakest precondition that guarantees
that a given condition holds in every observable state: either final or not. Refinement in terms
of weakest reactive preconditions is as usual for predicate transformers, and is equivalent to
that in the unifying theory.

4 Weakest Reactive Precondition Semantics

The set of channels in scope is relevant to the semantics of the actions. We record them in a
channel environment defined as follows.

ChanEnv== ChanName7 7→ Expression

As already mentioned, as a meta-language, we use Z with a few extensions that we explain
as they arise. A channel environment associates a channel name, an element of the given set
ChanName, to a Z expression that gives its type.

The relational semantics of actions is given by the function[[ ]]A.

[[ ]]A : Action 7→ ChanEnv 7→ N 7→ Schema-Exp

It takes as extra parameters a channel environment and the name of the schema that defines
the user state. It gives as result a schema over the observational variables: the components of
the process and the user states.

The process state is defined as follows.

ProcessStatê= [ tr : seqEvent; ref : PEvent; okay, wait : Bool]

Eventis a free type determined by the channels in scope: for each such channelc, we have a
constructorc that takes a value of the type ofc to anEvent. We also use a free typeBool to
modeltrueandfalse; boolean variables as used as predicates, for simplicity.

Changes over the process state can only increase the trace of events.

ProcStateObŝ= [ ∆ProcessState| tr prefix tr ′ ]

Other restrictions over the state are more conveniently enforced by the semantic definitions
and are discussed later in this section.

The semantics of actions are operations over a state that also includes the components of
the user state in the process description.

State=̂ UserState∧ ProcessState

Here, we assume that the user state isUserState. A change inStateis a process observation.

ProcObs=̂ ∆UserState∧ ProcStateObs

Both the restriction above on changes to the process state and any existing restrictions on
changes to the user state are enforced.

Actually, we consider families of schemasProcObs(USt) andState(USt): one for each
user stateUSt. We need this generalisation because the user state can be extended by input
and local variables, and by parameter declarations.
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The definition of[[ ]]Ais as follows.

Definition 1

[[A]]Aγ USt = [[A]]AN γ USt∨ Diverge(USt) ∨ Wait(USt)

The behaviour ofA in the situation where the previous operation has not diverged and has not
terminated, or rather, in a state whereokayand¬ wait hold, is characterised by[[ ]]AN . This
function takes the same arguments as[[ ]]A, and also gives a schema as result. It is further
discussed later in this section.

The family of schemasDiverge(USt) gives the semantics whenokayis false.

Diverge(USt) =̂ [ ProcObs(USt) | ¬ okay]

In this case, there are no guarantees as the previous operation diverged.
Finally, if the previous operation has not finished,A behaves as follows.

Wait(USt) =̂ [ ΞState(USt) | okay∧ wait ]

The state is not changed byA, because its execution has not started yet.
In this work, we present a new semantic function[[ ]]WP for actions.

Definition 2

[[ ]]WP : Action 7→ ChanEnv 7→ N 7→ Schema-Exp → Schema-Exp

[[A]]WP γ UStϕ =̂ [ State(USt); Inp | wrpUSt.[[A]]A.ϕ ]

where

wrpUSt.p.ψ =̂ ∀State(USt)′ • p⇒ ψ

and Inp is the declaration of any input variables in scope for A.

This function gives the weakest reactive precondition ofA, with conditions expressed using
schemas. It takes a channel environmentγ and a user state nameUSt as arguments. It also
takes a schemaϕ to yield another schema expressing the situations in whichϕ holds in all
subsequent states ofA: both intermediate and final. The first schema is a relation onProcObs,
and the second defines a restriction onState(USt) and any input variablesInp in scope.

The predicate in the schema[[A]]WP γ USt ψ is an application of the functionwrpUSt

to the relational model[[A]]A of A andφ. For historical reasons, we use the dot notation
for application of thewrp function, rather than the relational notation used in the unifying
theories work or the Z notation. In the sequel, for brevity, we omit the parameterUStwhen
it is clear from the context.

The functionwrp takes two predicates as arguments; in Definition 2, we are using the
schemas[[A]]A andϕ as predicates, a usual practice in Z. For predicatesp andψ, the weakest
reactive precondition forp to establishψ, or ratherwrp.p.ψ, is that, in all subsequent states,
which are characterised by the dashed state components, ifp holds, so doesψ.

We can deduce the following from Definitions 2 and 1.

Theorem 1

wrp.[[A]]Aγ USt.ψ = wrp.[[A]]AN γ USt.ψ ∧ wrp.Diverge.ψ ∧ wrp.Wait.ψ

This means that we provide a weakest reactive precondition model for an actionA by con-
sidering the weakest reactive precondition ofDiverge, of Wait, and of the relational model
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[[A]]AN of A separately. ForDiverge, we have the following.

Theorem 2

wrp.Diverge.ψ = (¬ okay⇒ ∀State′ • tr prefix tr ′ ⇒ ψ )

This means that, in the presence of divergence,¬ okay, whatever propertyψ we want to
ensure has to be valid under only the assumption that the trace is extended:tr prefix tr ′.

For Wait, the result is as follows. The functionα gives the set of components of a given
schema. Below, we make use of a slight abuse of notation and writeψ[αState/αState′] to
mean substitution inψ of every state component for the corresponding dashed one.

Theorem 3

wrp.Wait.ψ = ( okay∧ wait⇒ ψ[αState/αState′] )

If the previous operation has not finished,okay∧ wait, A cannot establish any property that
does not already hold, as it cannot start.

The theorem below provides a way of calculatingwrp.p.ψ, for an arbitraryψ, in such a
way thatwrp.p is actually applied to a predicate that does not involve undashed variables.

Theorem 4 For a list cl of fresh constants,

wrp.p.ψ = (wrp.p.ψ[cl/αState])[αState/cl]

First, the undashed variables ofψ are replaced with fresh constantscl; nextwrp.p is calcu-
lated for this new predicateψ[cl/αState]; and afterwards, the undashed variables are restored.
Based on this theorem, we calculatewrp.[[A]]AN γ USt.ψ only for predicatesψ that do not in-
volve undashed variables; we call these predicates conditions. The proof of this theorem is a
simple application of predicate calculus and substitution properties.

In the definition of[[A]]AN γ USt, we use the family of schemas below, which characterises
the situation in which the previous action has not diverged and has finished,okay∧ ¬ wait,
and soA can proceed.

Normal(USt) =̂ [ ProcObs(USt) | okay∧ ¬ wait ]

For the calculation ofwrp.[[A]]AN γ USt.ψ, it is useful to definewrpn, the weakest reactive
precondition that guarantees thatp establishes a condition when it is actually activated.

Definition 3

wrpnUSt.p.ψ =̂ wrpUSt.Normal(USt) ∧ p.ψ

We are usingNormal(USt) above as a predicate.
A simple calculation lets us obtain the following result.

Theorem 5

wrpn.p.ψ = okay∧ ¬ wait⇒ wrp.tr prefix tr ′ ∧ p.ψ

In words, if p can proceed, thenψ has to hold whenever the trace is extended in the way
prescribed byp.
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4.1 Schema Expressions

The relational semantics of a schema expression is defined as follows.

Definition 4

[[SExp]]AN γ USt= SExp∧ OpNormal∨ OpDiverge

OpNormal=̂ [ Normal(USt) | tr ′ = tr ∧ okay′ ∧ ¬ wait′ ]

OpDiverge=̂ [ Normal(USt); SExp∨ ¬ SExp| ¬ preSExp]

When a schema actionSExpis activated, if its precondition does not hold, then it diverges: no
conditions are guaranteed; this is characterised byOpDivergeabove. In that schema, the in-
clusion ofSExp∨ ¬ SExphas the sole purpose of bringing any input variables into scope.
If, on the other hand, the precondition holds, then the action changes the user state as pre-
scribed inSExpand terminates successfully without changing the trace. This is captured by
the schemaOpNormal.

The theorem below gives the weakest reactive precondition ofSExp. If the precondition
does not hold,SExpdiverges and the required conditionψ has to hold with the only assump-
tion that the trace is increased. If the precondition ofSExpholds, thenψ has to hold when
the trace is not changed,okay′ is true andwait′ is false, asSExpdoes not communicate any
values and terminates. The quantification overref ′ means that no restrictions on refusals are
guaranteed:SExprefuses all communications.

Theorem 6

wrp.[[SExp]]AN γ USt.ψ =
okay∧ ¬ wait⇒

(¬ preSExp⇒ (∀State′ • tr prefix tr ′ ⇒ ψ) ) ∧
(∀ ref ′ : PEvent; USt′ • SExp⇒ ψ[tr, true, false/tr ′, okay′, wait′] )

Proof

wrp.[[SExp]]AN γ USt.ψ

= wrp.(SExp∧ OpNormal∨ OpDiverge).ψ [Definition 4]

= wrp.SExp∧ OpNormal.ψ ∧ wrp.OpDiverge.ψ [property ofwrp]

= wrpn.SExp∧ tr ′ = tr ∧ okay′ ∧ ¬ wait′.ψ ∧ wrpn.¬ preSExp.ψ

[definitions ofwrpn, OpNormal, andOpDiverge]

= (okay∧ ¬ wait⇒
∀ ref ′ : PEvent; USt′ • SExp⇒ ψ[tr, true, false/tr ′, okay′, wait′]) ∧

(okay∧ ¬ wait⇒ ¬ preSExp⇒ ∀State′ • tr prefix tr ′ ⇒ ψ)

[definitions ofwrpnandwrp, and predicate calculus]

= okay∧ ¬ wait⇒
(¬ preSExp⇒ (∀State′ • tr prefix tr ′ ⇒ ψ) ) ∧
( ∀ ref ′ : PEvent; USt′ • SExp⇒ ψ[tr, true, false/tr ′, okay′, wait′] )

[predicate calculus]

2

In the sequel, we omit simple proofs for the sake of conciseness.
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Example: We consider again the processWSumpresented in Section 2. It includes the
schema actionComputereproduced below.

Compute=̂ [ ∆S; x? : N | val′ = a ∗ last+ b ∗ x? ∧ last′ = x? ]

This action updatesval, so that it records the weighted sum of the inputx? and last with
weightsa andb, and updateslast to record the value of the input.

We calculate the weakest reactive precondition forComputeto finish and record as output
the value2.

ψ =̂ [ ∆S | okay′ ∧ ¬ wait′ ∧ val′ = 2 ]

By definition of[[ ]]WP , we have the following.

[[Compute]]WPγ S.ψ = [ S; x? : N | wrp.[[Compute]]A.ψ ]

According to Theorem 1, we can calculatewrp.[[Compute]]A.ψ in terms of the weakest reac-
tive precondition for[[Compute]]AN , for Diverge, and forWait. We start withDiverge.

wrp.Diverge.ψ

= ¬ okay⇒ ∀State′ • tr prefix tr ′ ⇒ okay′ ∧ ¬ wait′ ∧ val′ = 2 [Theorem 2]

= ¬ okay⇒ false [predicate calculus]

= okay [predicate calculus]

This means thatDiverge, which is characterised by¬ okay, can only establishψ if okay;
therefore,Divergecannot establish the condition itself. Divergence has to be avoided ifψ.

ForWait, we proceed as follows.

wrp.Wait.ψ

= okay∧ wait⇒ okay∧ ¬ wait ∧ val = 2 [Theorem 3]

= ¬ okay∨ ¬ wait ∨ (okay∧ ¬ wait ∧ val = 2) [predicate calculus]

= ¬ (okay∧ wait) [predicate calculus]

Even though it is possible forWait to establishval′ = 2, if val is already2, Wait cannot
terminate, andψ requires that it does; so, we also have to avoidokay∧ wait to obtainψ.

Finally, we consider[[Compute]]AN . We observe that preCompute= true.

wrp.[[Compute]]AN .ψ

= okay∧ ¬ wait⇒ [Theorem 6]

(¬ true⇒ ∀State′ • tr prefix tr ′ ⇒ ψ ) ∧
( ∀ ref ′ : PEvent; S′ • val′ = a ∗ last+ b ∗ x? ∧ last′ = x? ⇒ val′ = 2 )

= okay∧ ¬ wait⇒ a ∗ last+ b ∗ x? = 2 [predicate calculus]

In summary, based on Theorem 1, we can conclude the following.

wrp.[[Compute]]A.ψ

= okay∧ ¬ (okay∧ wait) ∧ (okay∧ ¬ wait⇒ a ∗ last+ b ∗ x? = 2) [from above]

= okay∧ ¬ wait ∧ (okay∧ ¬ wait⇒ a ∗ last+ b ∗ x? = 2) [predicate calculus]

= okay∧ ¬ wait ∧ a ∗ last+ b ∗ x? = 2 [predicate calculus]

To establishψ, Computemust be able to start (okayand¬ wait), andlast andx? have to be
adequate (a ∗ last+ b ∗ x? = 2).
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4.2 CSP Expressions

The weakest reactive precondition of theCSPprocessesSkip, Stop, andChaosare as follows.

Theorem 7 For a conditionψ,

wrp.[[Skip]]AN γ USt.ψ =
okay∧ ¬ wait⇒ ∀ ref ′ : PEvent• ψ[tr, true, false, USt/tr ′, okay′, wait′, USt′]

wrp.[[Stop]]AN γ USt.ψ =
okay∧ ¬ wait⇒ ∀ ref ′ : PEvent• ψ[tr, true, true, USt/tr ′, okay′, wait′, USt′]

wrp.[[Chaos]]AN γ USt.ψ = ( okay∧ ¬ wait⇒ ∀State′ • tr prefix tr ′ ⇒ ψ )

Skip is the process that terminates successfully, immediately. The required conditionψ has
to hold when the trace and the user state are not changed, andokay′ is trueandwait′ is false.
All communications are refused, and soref ′ is universally quantified.

For example, for any evente, the weakest reactive precondition ofSkipwith respect to
tr ′ = tr a 〈e〉 is false. We also obtain preconditionfalsefor the conditions¬ okay′ andwait′,
becauseSkipcannot change the trace, diverge, or deadlock. On the other hand, the weakest
reactive precondition with respect toval′ = 2 is okay∧ ¬ wait ⇒ val = 2, sinceSkipdoes
not change the state.

For Stop, which deadlocks immediately, the difference is that the condition has to hold
whenwait′ is true. Finally, the definition forChaos, which diverges immediately, is similar
to that for the case when the precondition of a schema expression action does not hold.

For sequences, we have the following result.

Theorem 8 For a conditionψ,

wrp.[[A; B]]AN γ USt.ψ =

wrp.[[A]]AN γ USt.(ψ ∧ (okay′ ∧ ¬ wait′ ⇒ (wrp.[[B]]Aγ USt.ψ)′))

Usually, in weakest precondition semantics, the semantics of sequence is functional com-
position, so that the weakest precondition for a sequence to establish a postcondition is the
weakest precondition for the first component to establish the weakest precondition for the
second component to establish the postcondition.

For weakest reactive preconditions, however, not only the final state is relevant: all inter-
mediate states, including those ofA, are relevant. Theorem 8 requires thatψ holds during
the execution ofA. Moreover, ifA finishes (okay′ ∧ ¬ wait′), then the weakest reactive
precondition ofB with respect toψ also has to hold. Since conditions are given in terms
of dashed variables and preconditions in terms of undashed variables, the free variables of
wrp.[[B]]AN γ USt.ψ need to be dashed. For a predicatep, we definep′ to be the predicate
obtained by dashing the free occurrences of undashed observational variables inp.

A relational definition for the prefixing operator is presented below: sequential compo-
sition of a communication with the prefixed action. The communication can be observed
before it actually takes place, and afterwards. These observations are described in the sequel
by CWaiting(USt) andCDone(USt). The communication itself,Comm(USt), is described by
the disjunction of these schemas.

A communication takes as input the setaccE? of acceptable events. Before the commu-
nication takes place, the state and the trace do not change, the acceptable events cannot be
refused, and the action does not diverge or terminate. After the communication, the trace is
augmented by one of the acceptable events and the action terminates successfully. The state
is still not changed.
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In the definition of the semantics of prefixing, we use a substitution notation for schemas
not directly available in Standard Z, although it is in Z/Eves [24]. For a schemaS, with a
componentv of type T, and an expressione of the same type, we denote byS[v := e] the
schema∃ v : T • [ v = e] ∧ S.

For an output prefixing, the set of acceptable events of the communication contains only
the event obtained by applying the channel, which is an event constructor, to the output value.
For an input prefixing, this is the set of events resulting from applying the channel to all the
values of its type, obtained from the channel environmentγ.

A communication also outputs the valuee! communicated. For an output prefixing, this
information is ignored by hiding. For an input prefixing, this information is used to initialise
the input variable. Input variables are modelled as extensions to the state; they are local to
the prefixing, and so they and their dashed counterparts are quantified.

Definition 5

CWaiting(USt)
Normal(USt)
accE? : PEvent
ΞUSt

tr ′ = tr ∧ accE? ∩ ref ′ = ∅
okay′ ∧ wait′

CDone(USt)
Normal(USt)
accE? : PEvent
e! : Event
ΞUSt

e! ∈ accE?
tr ′ = tr a 〈e!〉
okay′ ∧ ¬ wait′

Comm(USt) =̂ CWaiting(USt) ∨ CDone(USt)

[[c!e→ A]]AN γ USt =̂ (Comm(USt)[accE? := {c(e)}] \ e!) o
9 [[A]]Aγ USt

[[c?x→ A]]AN γ USt =̂ ∃ x, x′ : γ c •
Comm(USt)[accE?, e! := {y : γ c • c(y)}, c(x′)] o

9 [[A]]Aγ USt

The weakest reactive precondition of the output prefixing operator is given below.

Theorem 9 For a conditionψ,

wrp.[[c!e→ A]]AN γ USt.ψ =
wrp.CWaiting[accE? := {c(e)}].ψ ∧
wrp.CDone[accE? := {c(e)}] \ e!.(ψ ∧ (wrp.[[A]]Aγ USt.ψ)′)

The condition has to hold before the communication takes place, after it takes place, and
duringA, as well. For input prefixing, we have a similar result, but since the input is a local
variable, it is universally quantified as usual in weakest precondition semantics.
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Example: We consider the actionout!val→ Skip, in the context of the processWSum, and
calculate its weakest reactive precondition with respect totr ′ = tr.

wrp.[[out!val→ Skip]]AN γ USt.tr ′ = tr

= (wrp.CWaiting[accE? := {out(val)}].tr ′ = tr0 ∧
wrp.CDone[accE? := {out(val)}] \ e!.(tr ′ = tr0 ∧ (wrp.[[Skip]]Aγ USt.tr ′ = tr0)

′)
)[tr/tr0]

[Theorems 4 and 9]

We use a fresh constanttr0 to replace the occurrences oftr in ψ. We calculate the weakest
reactive precondition ofSkipwith respect totr ′ = tr0 separately.

wrp.[[Skip]]Aγ USt.tr ′ = tr0

= wrp.[[Skip]]AN γ USt.tr ′ = tr0 ∧ wrp.Diverge.tr ′ = tr0 ∧ wrp.Wait.tr ′ = tr0

[Theorem 1]

= (okay∧ ¬ wait⇒ tr = tr0) ∧ okay∧ (okay∧ wait⇒ tr = tr0)

[Theorems 7,2, and 3]

= okay∧ tr = tr0 [predicate calculus]

This means that the previous operation must not diverge and the trace has to be alreadytr0

for Skipto guaranteetr ′ = tr0.
For the weakest reactive precondition ofCWaiting, we have the following result.

wrp.CWaiting[accE? := {out(val)}].tr ′ = tr0

= ∀State′ • [definitions ofwrp andCWaiting]

Normal∧ USt′ = USt∧ tr ′ = tr ∧ {out(val)} ∩ ref ′ = ∅ ∧ okay′ ∧ wait′ ⇒
tr ′ = tr0

= okay∧ ¬ wait⇒ ∀ ref ′ : PEvent• {out(val)} ∩ ref ′ = ∅ ⇒ tr = tr0

[predicate calculus]

= okay∧ ¬ wait⇒ ((∃ ref ′ : PEvent• {out(val)} ∩ ref ′ = ∅) ⇒ tr = tr0)

[predicate calculus]

= okay∧ ¬ wait⇒ tr = tr0 [predicate calculus]

This means that the trace has to be alreadytr0 for CWaiting to establish the condition;
CWaitingcannot change the trace.

Finally, the weakest reactive precondition ofCDonecan be calculated as follows.

wrp.CDone[accE? := {out(val)}] \ e!.(tr ′ = tr0 ∧ okay′)

= ∀State′ •
Normal∧ USt′ = USt∧ tr ′ = tr a 〈out(val)〉 ∧ okay′ ∧ ¬ wait′ ⇒

tr ′ = tr0 ∧ okay′

[definitions ofwrp andCDone]

= okay∧ ¬ wait⇒ tr a 〈out(val)〉 = tr0 [predicate calculus]

In words, forCDoneto guaranteetr ′ = tr0, we need thattr0 differs from tr just in that it has
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an extra element: the output.
The calculation of the weakest reactive precondition ofout!val → Skipcan proceed as

shown below.

wrp.[[out!val→ Skip]]AN γ USt.tr ′ = tr

= ((okay∧ ¬ wait⇒ tr = tr0) ∧ [by the calculations above]

(okay∧ ¬ wait′ ⇒ tr a 〈out(val)〉 = tr0))[tr/tr0]

= ¬ (okay∧ ¬ wait) [predicate calculus]

In summary, if the output prefixing starts, we cannot guarantee that the trace is not changed,
as should be expected.

The weakest reactive precondition semantics of a guarded action is rather intuitive.

Theorem 10

wrp.[[p & A]]AN γ USt.ψ =

( p⇒ wrpn.[[A]]AN γ USt.ψ ) ∧ (¬ p⇒ wrp.[[Stop]]AN γ USt.ψ )

If the guardp holds, thenp & A behaves asA. Otherwise, it behaves likeStop.
The behaviour of a parametrised actionD • A is that ofA taken in an extended stateDUSt

that includes the components declared inD. Instantiation fixes the value of these components.

Theorem 11

wrpUSt.[[D • A]]AN γ USt.ψ = wrpDUSt.[[A]]AN γ USt.ψ
wrpUSt.[[A(e)]]AN γ USt.ψ = (wrpUSt.[[A]]AN γ USt.ψ)[e/αD]

The functionα extracts from a declaration the set of variables it introduces. InA(e), we
assume that the parameters ofA are given byD. The correspondence between the parameters
and the argumentse is positional: in the substitution we use the setαD as the list of the
parameters in the order they are declared.

4.3 Commands

The weakest reactive precondition of a specification statementx : [ pre, post] does not insist
on termination. The listαUSt\x includes the variables of the user state other thanx. Similarly,
αUSt′ \ x′ lists their dashed counterparts.

Theorem 12

wrp.[[x : [pre, post]]]AN γ USt.ψ =
okay∧ ¬ wait⇒

(pre∧ (∀ ref ′ : PEvent; x′ : X • post⇒
ψ[tr, true, false, (USt\ x)/tr ′, okay′, wait′, (USt′ \ x′)])) ∨

(¬ pre∧ ∀State′ • tr prefix tr ′ ⇒ ψ)

where X is the type of x.

Roughly, if the precondition holds, then for all final values ofx that satisfy the postcondition,
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ψ is required to hold. This is the usual weakest precondition semantics of specification state-
ments. There are, however, a few extra issues. First, no restriction on refusals are guaranteed,
since the specification statement terminates. Second,ψ cannot require changes to the trace
or to state components other thanx; nor can it require divergence or nontermination. Finally,
if the precondition does not hold,ψ has to hold under only the assumption thattr prefix tr ′.

The weakest reactive precondition for the miraculousx : [true, false] to establish any
conditionψ is true, as expected. For abort,x : [false, true], we have

okay∧ ¬ wait⇒ ( ∀State′ • tr prefix tr ′ ⇒ ψ )

This is the same we obtained forChaos. In other words, the semantics ofChaosand abort is
the same, as should be expected.

The semantics of an assignmentx := e is given by substitution as usual.

Theorem 13

wrp.[[x := e]]AN γ USt.ψ =
okay∧ ¬ wait⇒
∀ ref ′ : PEvent•

ψ[tr, true, false, e′, (αUSt\ x)/tr ′, okay′, wait′, x′, (αUSt′ \ x′)]

As with specification statements, an assignment refuses all communications, does not change
the trace, terminates immediately, and changes no variables other thanx.

The semantics of conditionals is as follows.

Theorem 14

wrp.[[if 2 i • gi → Ai fi]]Aγ USt =

(¬ (∨ i • gi) ⇒ wrp.[[Chaos]]AN γ USt.ψ) ∧ (∧ i • gi ⇒ wrpn.[[Ai]]
Aγ USt.ψ)

If none of the guards is valid, then the conditional aborts: it behaves likeChaos. Otherwise,
any of the valid guards can be chosen, and so the condition has to be guaranteed for each of
the associated actions.

For blocks, we have a standard definition.

Theorem 15

wrpUSt.[[var x : T • A]]AN γ USt= ∀ x : T • wrpnxUST.[[A]]AN γ USt.ψ

The weakest reactive precondition of the body of the block is taken in an extended statexUSt
that includes the declared variable.

5 Conclusions

The refinement calculus [9, 15] has been influential in understanding the development of se-
quential programs from their formal specifications. One of the aims of theCircus project [6,
7, 8] is to extend this calculational approach to reactive programs.

Since the sequential refinement calculus is based on weakest precondition semantics, in
this paper, we have presented a new notion of weakest reactive precondition,wrp, to reason
about concurrent programs in a similar manner. Based on this new notion and on a relational
semantics forCircus, we have calculated a weakest reactive precondition semantics for a
subset of this language. The notion of refinement in the predicate transformer model is
equivalent to that in the unifying theory: the basis of our relational model.
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A weakest precondition is an extreme solution to a Hoare triple with one unknown: the
precondition. The idea of extending Hoare logic, weakest precondition semantics, and even
the refinement calculus to the development of parallel programs has a long pedigree.

The work of Owicki and Gries [25, 26, 27, 28, 29] marks the first significant attempt
to extend Hoare logic. Their theory extends Hoare’s deductive system for proving the par-
tial correctness of sequential programs [30] by adding parallelism in the form of co-blocks,
synchronisation, mutual exclusion, and wait statements.

In their method, parallel processes are considered in isolation and a proof of sequential
correctness is obtained. These proofs must then be shown to be free from interference: no
wait statement or assignment outside a wait statement in one process interferes with the
proof of any other. The specification of the parallel program is then the conjunction of the
preconditions and the postconditions of the individual components. An important point is
that this method is not compositional, since the verification of each processP requires an
interference-freedom proof involving information not inP’s specification.

Lamport also generalised Hoare logic for concurrent programs [31]. The Hoare triple
P{S}Q means that ifP is true before the execution ofS, andS terminates, thenQ holds.
Lamport changed this meaning in the presence of concurrency: if execution is begun any-
where withinSwith P true, thenP remains true untilS terminates, whereuponQ is true. In
this way, Lamport suggests that a program is better thought of as an invariance maintainer,
rather than as a predicate transformer. Although this technique is compositional, it requires
a global invariant, and parallel processes must each have this as their specification. Some
independence is gained from structuring this invariant with auxiliary control-flow predicates,
but the logic is awkward to use as a method of specifying module interfaces.

In [23], Lamport generalises the weakest liberal precondition and the strongest postcon-
dition to the weakest and the strongest invariant. The method allows the verification of a
concurrent program to proceed without knowing the granularity of atomicity of operations,
and behavioural arguments to be replaced by assertional reasoning. The difference between
those predicate transformers andwrp lies in the set of observable states. In our semantics,
we consider the relationship between the initial state of a process and any subsequent state,
whereas Lamport considers the relationship between any state in which execution is resumed
and the subsequent state in which it is suspended.

Back [32] applies the refinement calculus to the stepwise refinement of parallel and re-
active programs. Action systems are used as the basic program model: they are sequential
programs that can be implemented in a parallel fashion. Reactive programs are data refined
using techniques originally developed for the sequential refinement calculus. The main dif-
ference between our approach and Back’s arises from the fact thatCircus is based partly on a
process algebra, not on an action system. In an action system, control flow is encoded in state
information, with variables playing the rôle of program counters; in a process algebra, con-
trol flow is described using the process combinators of the algebra. Therefore, our predicate
transformers and refinement calculus deals with these combinators.

In our work, we have derived our weakest precondition semantics from an existing re-
lational semantics. As a result, our weakest reactive precondition calculator is very close
in spirit to predicate transformers for sequential programs. Moreover, since our model in-
cludes refusal sets (theref observational variable), we can reason about liveness as well as
safety properties. We are currently seeking to extend our calculations to obtain compositional
definitions for some of the operators.

We plan to use this semantic model to justify fully the refinement calculus presented
in [16, 17]. We are also starting an effort to propose rules for verification-condition generation
based on this work. We plan to develop a series of examples and case studies in the use of
wrp. Our confidence in the semantics ofCircus has been greatly increased through this work.
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In the unifying theory, the model of reactive programs is further constrained by a number
of healthiness conditions to obtain theories for particular mechanisms of synchronisation and
communication. We expect that thewrp models corresponding to these restricted theories
also satisfy a number of healthiness conditions of their own. It is also our intent to further
explore these relationships.
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