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Abstract. Circus is a combination of Z and CSP; its chief distinguishing feature is the
inclusion of the ideas of the refinement calculus. Our main objective is the definition
of refinement methods for concurrent programs. The original semantic model for
Circus is Hoare and He’s unifying theories of programming. In this paper, we present
an equivalent semantics based on predicate transformers. With this new model, we
provide a more adequate basis for the formalisation of refinement and verification-
condition generation rules. Furthermore, this new framework makes it possible to
include logical variables and angelic nondeterminisnCircus. The consistency of

the relational and predicate transformer models gives us confidence in their accuracy.

1 Introduction

Modern computing systems typically run on distributed, heterogeneous networks, and are
subject to complex constraints on functionality, performance, fault tolerance, security, and
timing. If we want such systems to be dependable, then we must address all these issues.
There has been much progress in providing sound mathematical foundations for these differ-
ent aspects of complex systems, but it is usually done in relative isolation. This is because
researchers apply the principle of separation of concerns, allowing them to find a thorough
solution to a particular problem without being distracted by others. Subsequent researchers
can then build on this fundamental research by composing its theories.

Two examples of this separation of concerns lie in the theory of program specification
and development. First, research on state-based, model-oriented specification languages
originally focused on the specification and refinement of sequential software, avoiding the
complications of concurrency and distribution. Second, when research on process algebras
started in the 1970s, the major schools focused on studying the semantics and theory of con-
currency and communication, abstracting from the details of data types and their operations.
In both cases, researchers knew that they would have to address the wider concerns in order
for the techniques to scale up to describing industrial-sized systems.

Recently, there has been considerable interest in bringing these two strands of research
together, and in particular combining Z [1, 2] and CSP [3, 4] in various ways; Fischer has sur-
veyed some of this work [5]. It is clear, however, that little has been accomplished in under-
standing the formal development of programs starting from specifications in these combined
formalisms.

Circus [6, 7, 8] is a language for writing specifications, designs, and programs for con-
current, communicating systems. It combines the languages of Z, CSP, the refinement cal-
culus [9], and guarded commands [10]. As such, it is very convenient for capturing and
reasoning about static, dynamic, and reactive aspects of concurrent and distributed systems,
such as may be written imccam and Java.

The complete integration of the four languages involve@irtus has been achieved by
giving a single denotational semantics that describes all their constructs, in the manner of
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Hoare and He’s unifying theories of programming [11]. In Hoare and He’s work, a num-
ber of different paradigms for programming are studied as a series of linked theories, each
formalised in an alphabetised variant of Tarski’s relational calculus.

A long-standing trend in the formal development and verification of programs is the use of
predicate transformers, either directly or as a foundation [10, 12, 13, 14]. In the unifying the-
ory, the relational model for sequential programs is linked to a weakest-precondition model.
Later, the relational model is augmented to cope with concurrency and communication, and
the link to the weakest-precondition setting turns out not to be valid for the augmented model.

We present a new predicate transformer: Wesakest reactive preconditiorit charac-
terises the weakest precondition that guarantees that a given condition holds in all observable
states of a reactive program. We define the weakest reactive precondition of a unifying theory
relation that defines a reactive system. From this, we calculate a weakest reactive precondi-
tion semantics fo€ircus.

This new semantic model is a convenient step towards the complete justification of our
extension to an existing refinement calculus for Z [15] that includeSiedlis constructs [16,
17]. Moreover, the weakest precondition semantics is a natural starting point for the proposal
of rules for verification-condition generation fGircus. Finally, as an added benefit to the ef-
fort of calculating a new semantics f@ircus, we now have the possibility of modelling log-
ical constants and angelic nondeterminism, which are important for refinement techniques.
The two models also provide confirmation for the precision of each other.

In [18], laws are presented that completely character@m@m’s semantics, and which
are cast in terms of the denotational semantics of [19], although no proof of equivalence was
carried out. The laws presented in that work, however, are equalities; they aim at character-
ising the semantics of the language, instead of supporting the development of programs.

In the next section, we give an overview Gfrcus. Section 3 presents the basic con-
cepts of the unifying theory. The weakest precondition semanti€srofis is the subject of
Section 4. Finally, in Section 5 we present our conclusions.

2 Circus

A Circus program is a sequence of paragraphs; each of these may either be a Z paragraph,
a channel definition, a channel set definition, or a process definition. In the BNF description
of the syntax ofCircus in Figure 1, we omit part of the syntax of processeso€) and the

syntax of communicationsomm), which we exemplify later on in this section.

CircusPar* denotes a possibly empty list of elements from the cateGagusPar; sim-
ilarly for PPar*. N* denotes a comma-separated list of valid Z identifiers (elemerit§,of
and similarly forExp™. The syntactic categorid¢?ar, Schema-Exp, Exp, Pred, andDecl
include the Z paragraphs, schema expressions, expressions, predicates, and declarations; their
definitions can be found in [1]. Finally, the syntactic categ0BEXxp of channel set expres-
sions contains the empty set of channe[s channel enumerations enclosed|iand|}, and
set expressions formed by the usual set operators.

A process encapsulates state and behaviour. The basic form of process definition de-
scribes the state and operations, mainly as in a standard Z specification. In the context of
Circus, the operations are called actions and can be specified using schemas, CSP operators,
and guarded commands. The predicate transformer semantics calculated here characterises
the behaviour of actions.

By way of illustration, we consider a little example due to Hoare [3]. The prod&ssm
below inputs natural numbers from a chanirel and outputs through a channalit the
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Program == CircusPar*
CircusPar == Par | ChanDef | ChanSetDef | ProcDef
ChanDef == channelCDecl
CDecl = SimpleCDecl | SimpleCDecl; CDecl
SimpleCDecl 2= N |NT:Exp | Schema-Exp
ChanSetDef == chansetN == CSExp
ProcDef = processN = Proc
Proc = beginPPar* e Action end | Proc O Proc
|
PPar == Par|N = Action
Action = Schema-Exp | CSPActionExp | Command
CSPActionExp  ::= Skip| Stop| Chaos
| Comm — Action | Pred & Action | Action; Action
|  Action O Action | Action || CSExp ]| Action | ¢ N e Action
|  Decl e Action | Action(Exp™)
Command z= N%:[Pred,Pred] | NT := Exp™
| if GuardedActions fi | var Decl e Action
GuardedActions ::= Pred — Action | Pred — Action O GuardedActions

Figure 1:Circus syntax

weighted sum of its current and previous input.

channelin, out: N;
The weights are defined as constants, using the Z notation.

la,b: N
The stateéSrecords its previous inpuast and the value to be outpual.

processWSume begin

S=[last val: N]

We present the actio@omputewhich takes an input” and updates the state accordingly.

Compute= [AS; x? : N |val' = axlast+ b= x? A last = x7 |

There is a nameless action at the end of a process description, which defines its behaviour;
we refer to this action as the main action of the process. In our example, it is as follows.

e (11X o in?X — Compute outlval — X)
end

We use the prefixing, sequence, and recursion constructs of CSP. First the input is taken
through the channéh and into the input variabbe Afterwards, the schema action previously
defined is used to update the state. In sequenceyaheomponent of the state is output
throughout and the process recurses. We explain the other action operators below through a
more substantial example, and in Section 4, as we present their semantics.

The CSP operators can also be used to combine processes: their states are conjoined and
their main actions are combined using the CSP operator applied. The weakest precondition
of a process is that of its main action. The following example, inspired by the Sieve of
Eratosthenes presented in [20], illustrates the use of processes.
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Example: The objective of the Sieve of Eratosthenes is to produce the list of prime numbers.
In our example, the list is output through the charmel

channelout: N
We use the sgirimesthat contains all the prime numbers. Its Z specification is as follows.
primes== {n:N| (Ym: Nemdividesnr==m=1Vv m=n)}

In this definition, we use the functiordivides , with the obvious meaningn divides nif
and only ifn is a multiple ofm. The definition of this function in Z is simple and omitted.
So, a number is prime if its only divisors areand itself.

The specification is a parametrised proc&ssnes Its parametel limits the size of the
list of prime numbers: we are interested only in those primes less than or edual to

processPrimes= | : N e begin
PrimesState= [s: FN]
PrimeslInit= [PrimesState| s = (2..1) N primes|
Output= [ APrimesStatem! : N |s# ) Am =minsA S =s\ {m}]

e Primesinit
uXe if s=( — Skip
| s# 0 — var m: N e Output outm — X
fi

end

The process’s only state component, specifiddrimesStatgis a finite ses of natural num-
bers. The main action describes the behaviour of the process: first it initialises the state with
PrimesiInit then it recursively executes a conditional action. The notation that we use is that
of Dijkstra’s guarded commands [10].
The initialisation setsto the set of numbers that are both betw2amd| and also prime.
The recursive action then outputs these numbers in ascending ordes. dinpty, then the
task is finished, and the recursion terminates. Otherwise, a local vamaisleleclared to
hold the next output, which is selected by the opera@oput The schem®utputrequires
thats must not be empty, and the after-valuenef-here denoted byn! to emphasise that it
is a result of the operation—is set to the minimum valus;im! is then removed frons to
form the after-value of the stats,

Primesis refined to the procegratosthenesdefined below, which specifies a concurrent
implementation of the Sieve of Eratosthenes algorithm. It is defined as the parallel composi-
tion of other processes, in the manner of a systolic array.

The first process, which we cdlitart, outputs 2, which is the first prime, throughit
Afterwards, it outputs the list of odd numbers, or rather, the numbers that are not multiples
of 2, through a channaievein

channelsievein: N
processStart= begin

StartState= [n: N|

e outl2 — n:=3; (uX e sieveiln — n:=n+ 2; X)
end
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The second process iddter. It takes a primg through the channelievein outputs it,
and then outputs the list of numbers that are not multiplgs tifrough a channedieveout

channelsieveout N

processFilter = begin e
sieveir’p — outlp —
1 X e sieveirfm — if p divides m— X
| = (p divides m — sieveouim — X
fi
end

The idea is thaBtart sends througisieveinthe numbei3, which is the next prime aftez,
and all the odd numbersilter outputs3 and filters out fronsieveinthe multiples of3. The
multiples of2 have already been removed 8tart so we are left only with numbers that are
neither a multiple oR nor 3. The list of such numbers are output throwgiéveout

We use a piping operator to take the list output throsigiveouias input toFilter again.
This operator takes the forfo; < c;] n e P, and we define it as follows, for > 0, and for
a channem not used irP.

[c1<—>cz]noP£
varv: Nev:=n;
uXe ifv=1—-P
fﬂ_V>1—>V¢=V—1; (PImy/ed [{f m ] XIm/co] ) \ { m}
|

The operator forms copies ofP, and links them together by connecting thechannel of
thei-th process to the, channel of thei + 1)-th process. The definition achieves this by
recursion, limited by the local variable On every recursive step, except the last, a cogy of
is connected to its right neighbour. The copy hagitshannel renamed tm; the neighbour
(the recursive call oK) has itsc, channel also renamed to. They are then composed in
parallel, communicating only through, which is hidden to prevent interference. The result
is a process with a singt® channel on the left and a singtechannel on the right. Its internal
structure is a linear sequence of processes communicating pairwise on private channels. Of
course P may have other channels, and they are not linked in any way by this operator.
For exampleCOPY (taken from [3]) is a one-place buffer that repeatedly copies its inputs
from theleft channel and outputs them on thght channel:

channelleft, right : N
processCOPY = begine ( 1 X e left’x — right!x — X)) end
We construct a three-place buffer [sight < left] 3 ¢ COPY. Once the recursion has been
completely unfoldedy is irrelevant, so the process is equivalent to the expression:
(COPYm/right]
I{ m [l

((COPY[m/right] [[{] m{} ]| COPY[m/left] ) \ {| m [} )[m/lef{
)N m}

This three-place buffer has two external chanrefs andright, and two internal ones. Data
arrives on thdeft channel, makes its way via the two internal channels, and finally appears
on theright channel. The result is a pipeline of replicated components, like a systolic array.
In a similar way, we construct our sieve as a pipeline from a serie8ltdrs.

processSieve= | : N o ( [sieveout— sievein| e Filter )
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At the far end of the pipeline we have the proc&gsish, which simply takes a value
throughsieveoutand outputs it.

processFinish = begin e sieveoutn — outin — Skipend
Now we can connect together our components to form the implementation.

processEratosthenes= | : N o
( Start|[ {sieveir} || Sievél) | {sieveou} | Finish) \ {sieveinsieveou}

The out channel is not in the synchronisation set of the parallel composition, and so com-
munications from the pipeline’s components through this channel occur independently: the
results are interleaved. In fact, in spite of this interleaving, the ascending order required by
Primesis preserved. Each filter stage of the pipeline outputsutronly after it has received

its first communication from its predecessor, but before its first communication to its succes-
sor. Together with the initial and final behavioursSthrt andFinish, this forces the strict
sequencing of the output. Interference on state components is not a problem in the above
parallel compositions, since the state of a process is encapsulated.

Proving thatPrimesis refined byEratostheness not within the scope of this paper.
Nonetheless, the technique put forward in [16, 17] can be used to caléirgtesthenes
behaviour fromPrimesin the refinement calculus style. The semantics presented in this
paper is a foundation for that technique.

3 Unifying Theories of Programming

The semantics o€ircus [8, 21] is based on the unifying theory, but with the Z notation
used as the concrete syntax for the relational calculus; th@tcas program denotes a

Z specification. The use of Z is not essential to our approach, but it is convenient as Z is
well-suited to the definition of relations, has a precise semantics, and has supporting tools.

In the unifying theory, Tarski’s relational calculus is used to give a denotational seman-
tics to constructs taken from different programming paradigms. This common framework
allows connections to be established between different paradigms and between a theory and
its implementable subtheories. Specifications, designs, and programs are all interpreted as re-
lations between an initial and a subsequent observation of a computing device. Distinguished
variables are used to describe relevant observations. The relations are defined as predicates
over observational variables and their dashed counterparts; they represent the corresponding
values before and after the observation.

In accordance with the philosophy of the unifying the®@ycus brings together Z, CSP,
and the refinement calculus in a language with a single, coherent semantics. The obser-
vational variables describe stability from divergenckay), termination fvait), a history of
interaction with the environmentr(, and a set of refused eventsf(). Together with program
variables, these observational variables and their associated healthiness conditions define the
subtheory of imperative, communicating, sequential processes and designs. The result is a
state-based expression of the failures-divergences model with embedded imperative features.

Because their semantics are so cldSicus can be used as a development method for
occam programs. Hoare and Roscoe use a style similar to the unifying theory in their se-
mantics foroccam [22]: the meaning of a program is given as a predicate over the values of
computations, traces, refusals, and a state variable that records termination and divergence in
a similar way to ouokayandwait variables.

The unifying theory includes a relational definition of the weakest precondition of a se-
guential mechanism; that definition, however, is not valid for reactive systems. This is ac-
tually not surprising, since in the context of sequential programs, weakest preconditions are
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concerned with final and initial states only, but in a reactive system, intermediate states are
also relevant. It is in these intermediate states that a reactive process is waiting for interac-
tion with its environment. This motivates our generalisation; the same sort of issue is also
discussed by Lamport [23].

In the next section, we propose theakest reactive preconditiaof a relation in the
subtheory used to mod€ircus. This characterises the weakest precondition that guarantees
that a given condition holds in every observable state: either final or not. Refinement in terms
of weakest reactive preconditions is as usual for predicate transformers, and is equivalent to
that in the unifying theory.

4 \Weakest Reactive Precondition Semantics

The set of channels in scope is relevant to the semantics of the actions. We record them in a
channel environment defined as follows.

ChanEnv== ChanName Expression

As already mentioned, as a meta-language, we use Z with a few extensions that we explain
as they arise. A channel environment associates a channel name, an element of the given set
ChanNameto a Z expression that gives its type.

The relational semantics of actions is given by the funcfidJt'.

[_]** : Action -~ ChanEnv+ N - Schema-Exp

It takes as extra parameters a channel environment and the name of the schema that defines
the user state. It gives as result a schema over the observational variables: the components of
the process and the user states.

The process state is defined as follows.

ProcessState: [tr : seqEvent ref : P Event okay, wait : Bool]

Eventis a free type determined by the channels in scope: for each such clcanmethave a
constructorc that takes a value of the type oto anEvent We also use a free tyg&ool to
modeltrue andfalse boolean variables as used as predicates, for simplicity.

Changes over the process state can only increase the trace of events.

ProcStateObs= [ AProcessStatétr prefix tr’|

Other restrictions over the state are more conveniently enforced by the semantic definitions
and are discussed later in this section.

The semantics of actions are operations over a state that also includes the components of
the user state in the process description.

State= UserStaten ProcessState
Here, we assume that the user statdserState A change inStateis a process observation.
ProcObs= AUserStaten ProcStateObs

Both the restriction above on changes to the process state and any existing restrictions on
changes to the user state are enforced.

Actually, we consider families of schemB&socObgUSt) and StatéUSt): one for each
user statd&JSt We need this generalisation because the user state can be extended by input
and local variables, and by parameter declarations.
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The definition of|_]"'is as follows.

Definition 1
[A]"y USt = [A]*V~ UStV DiverggUSt) v Wait(USt)

The behaviour oA in the situation where the previous operation has not diverged and has not
terminated, or rather, in a state whelkeyand— wait hold, is characterised by ]*V. This
function takes the same arguments[ak”, and also gives a schema as result. It is further
discussed later in this section.

The family of schemaBiverggUSt) gives the semantics wherkayis false.

DiverggUSt) = [ ProcObgUSY) | — okay]

In this case, there are no guarantees as the previous operation diverged.
Finally, if the previous operation has not finishédyehaves as follows.

Wait(USt) = [ =Stat€USt) | okay A wait |

The state is not changed By because its execution has not started yet.
In this work, we present a new semantic functjo””” for actions.

Definition 2

[L]"7” : Action - ChanEnv-~ N - Schema-Exp — Schema-Exp
[A]"” 7 UStp = [ StatgUSY: Inp | wrpus: [A]".¢ ]

where
Wrpystp.¢» = V StatéUSt)’ e p = 9

and Inp is the declaration of any input variables in scope for A.

This function gives the weakest reactive preconditiodolvith conditions expressed using
schemas. It takes a channel environmeiaind a user state nanuStas arguments. It also
takes a schema to yield another schema expressing the situations in whitlolds in all
subsequent states Af both intermediate and final. The first schema is a relatioRrorObs
and the second defines a restrictionSiaté USt) and any input variablel&p in scope.

The predicate in the schenfa]”"” » USt is an application of the functiomrpys;
to the relational modeJA]* of A and ¢. For historical reasons, we use the dot notation
for application of thewrp function, rather than the relational notation used in the unifying
theories work or the Z notation. In the sequel, for brevity, we omit the parard&exhen
it is clear from the context.

The functionwrp takes two predicates as arguments; in Definition 2, we are using the
schemas{;[A]]A andyp as predicates, a usual practice in Z. For predicatesdy, the weakest
reactive precondition fop to establishp, or ratherwrp.p.v, is that, in all subsequent states,
which are characterised by the dashed state componeptsoléls, so does.

We can deduce the following from Definitions 2 and 1.

Theorem 1
wrp.[A]"y USty = wrp.[A]*Y v USte A wrp.Diverger A wrp.Wait 1)

This means that we provide a weakest reactive precondition model for an Adiprton-
sidering the weakest reactive preconditionDoverge of Wait, and of the relational model



A. Cavalcanti and J. Woodcock / A Predicate Transformer Semanti€srfous 155

[A]*Y of A separately. Fobiverge we have the following.

Theorem 2

wrp.Divergey) = (— okay=- V Staté e tr prefix tr' = ¢)

This means that, in the presence of divergenecegkay, whatever property) we want to
ensure has to be valid under only the assumption that the trace is exténplefix tr’.

For Wait, the result is as follows. The functiangives the set of components of a given
schema. Below, we make use of a slight abuse of notation and wjritState’ aStaté] to
mean substitution i of every state component for the corresponding dashed one.

Theorem 3

wrp.Wait) = (okay A wait = i[aState/ aStaté] )

If the previous operation has not finishedkay A wait, A cannot establish any property that
does not already hold, as it cannot start.

The theorem below provides a way of calculatimgp.p.v, for an arbitraryy, in such a
way thatwrp.p is actually applied to a predicate that does not involve undashed variables.

Theorem 4 For a list cl of fresh constants,

wrp.p.y) = (wrp.p.¢[cl/aState) [aStatg/cl]

First, the undashed variables ©ofare replaced with fresh constaris nextwrp.p is calcu-
lated for this new predicate(cl /aStaté; and afterwards, the undashed variables are restored.
Based on this theorem, we calculatgp. [A]*~~ USt1 only for predicates) that do not in-
volve undashed variables; we call these predicates conditions. The proof of this theorem is a
simple application of predicate calculus and substitution properties.

In the definition of[A]'Y v USt, we use the family of schemas below, which characterises
the situation in which the previous action has not diverged and has finiskag/\ — wait,
and soA can proceed.

NormalUSt) = [ ProcObgUSY) | okay A — wait]

For the calculation ofvrp.[A]*~~ USt, it is useful to definevrpn, the weakest reactive
precondition that guarantees tlpegstablishes a condition when it is actually activated.

Definition 3
Wrpnyst.p.v = wrpysi. NormalUSt) A p.y

We are usindNormalUSt) above as a predicate.
A simple calculation lets us obtain the following result.

Theorem 5
wrpn.p.iy = okay A — wait = wrp.tr prefix tr’ A p.y

In words, if p can proceed, thepr has to hold whenever the trace is extended in the way
prescribed byp.
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4.1 Schema Expressions

The relational semantics of a schema expression is defined as follows.
Definition 4

[SExg™¥~ USt= SExpA OpNormalVv OpDiverge
OpNormal= [NormalUSY) | tr’ = tr A okay A — wait' |
OpDiverge= [NormalUSt); SExpv — SExp| — pre SExp

When a schema actidExpis activated, if its precondition does not hold, then it diverges: no
conditions are guaranteed; this is characterise@pRivergeabove. In that schema, the in-
clusion of SExpVv — SExphas the sole purpose of bringing any input variables into scope.
If, on the other hand, the precondition holds, then the action changes the user state as pre-
scribed inSExpand terminates successfully without changing the trace. This is captured by
the schem®pNormal

The theorem below gives the weakest reactive preconditi@Eadp If the precondition
does not holdSExpdiverges and the required conditigrhas to hold with the only assump-
tion that the trace is increased. If the preconditiors&xpholds, theny) has to hold when
the trace is not changedkay is true andwait’ is false, asSExpdoes not communicate any
values and terminates. The quantification aeét means that no restrictions on refusals are
guaranteedSExprefuses all communications.

Theorem 6

wrp.[SExg™*V~y USty =
okay A — wait =
(— pre SExp= (V Staté e tr prefix tr' = 1)) ) A
(Vref’ : PEvent USt e SExp=- v [tr, true, false/tr’, okay, wait] )

Proof
wrp.[SExd™Y v USty
= wrp.(SExpA OpNormalv OpDivergg.y [Definition 4]
= wrp.SExpA OpNormaly) A wrp.OpDivergey [property ofwrp]
= WIpn.SEXpA tr’ = tr A okay A — wait'.2) A wrpn.— pre SExpy
[definitions ofwrpn, OpNorma) andOpDivergéd
= (okay A — wait =
Vref’ : PEvent USt ¢ SExp=- ¢[tr, true, false/tr’, okay, wait']) A
(okay A — wait = — pre SExp=- V Staté e tr prefix tr' = 1)
[definitions ofwrpnandwrp, and predicate calculus]
= okay A — wait =
(— pre SExp= (V Staté e tr prefix tr' = 1)) ) A
(Vref’ : PEvent USt e SExp=- v [tr, true, false/tr’, okay, wait'] )
[predicate calculus]
0

In the sequel, we omit simple proofs for the sake of conciseness.
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Example: We consider again the procegéSumpresented in Section 2. It includes the
schema actio@omputereproduced below.

Compute= [AS, x7: N |val = axlast+ bx*x? A last = x7]

This action updatesal, so that it records the weighted sum of the ingtitand last with
weightsa andb, and updatekstto record the value of the input.

We calculate the weakest reactive preconditior@omputdo finish and record as output
the value2.

1 = [AS]| okay A — wait’ A val = 2]
By definition of [_]"*”, we have the following.
[Computd”™”~ Sy =[S X7 : N | wrp.[Comput@™ 1]

According to Theorem 1, we can calculatep.[Computé™ .« in terms of the weakest reac-
tive precondition foﬂ[Comput@AN , for Diverge and forWait. We start withDiverge

wrp.Diverge

= — okay=- V Staté e tr prefix tr’ = okay A - wait’ A val' = 2 [Theorem 2]
= — okay= false [predicate calculus]
= okay [predicate calculus]

This means thabDiverge which is characterised by okay, can only establish if okay
therefore Divergecannot establish the condition itself. Divergence has to be avoided if
ForWait, we proceed as follows.

wrp.Wait.)

= okay A wait = okay A — wait A val = 2 [Theorem 3]
= — okayV — wait V (okayA — wait A val = 2) [predicate calculus]
= — (okayA wait) [predicate calculus]

Even though it is possible foVait to establishval = 2, if val is already2, Wait cannot
terminate, and requires that it does; so, we also have to awakdy A wait to obtain.
Finally, we consideﬂComput@“‘W. We observe that pr€ompute= true.

wrp.[Computd*¥ .+
= okayA — wait = [Theorem 6]

(- true =V Staté e tr prefix tr' = ¢ ) A
(Vref’ : PEvent S eval = axlast+bxx? Alast = x? = val =2)

= okay A\ — wait = axlast+ b x? =2 [predicate calculus]
In summary, based on Theorem 1, we can conclude the following.

wrp.[Computd™.¢»

= okay A — (okayA wait) A (okayA — wait = axlast+ b x? =2) [from above]

= okay A — wait A (okayA — wait = ax last+ b+ x? = 2) [predicate calculus]

= okayA —wait A axlast+ b x? = 2 [predicate calculus]

To establish), Computemust be able to starbkayand— wait), andlastandx? have to be
adequated  last+ b x x? = 2).
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4.2 CSP Expressions

The weakest reactive precondition of ti8PprocesseSkig Stop andChaosare as follows.

Theorem 7 For a conditiony,

wrp.[Skig vy USty =
okay A — wait = Vref’ : P Evente ¢ [tr, true, false USt/tr’, okay, wait’, USt|

wrp.[Stog“¥y USty =
okay A — wait = Vref’ : PEvente «[tr, true, true, USt/tr’, okay, wait’, USt]

wrp.[Chaod™V~y USty = (okayA — wait = V Staté e tr prefix tr’ = )

Skipis the process that terminates successfully, immediately. The required conditias
to hold when the trace and the user state are not changedkasids true andwait’ is false
All communications are refused, andmed’ is universally quantified.
For example, for any ever the weakest reactive precondition $kipwith respect to
tr' =tr 7 (e) is false We also obtain preconditidialsefor the conditions- okay andwait/,
becausekipcannot change the trace, diverge, or deadlock. On the other hand, the weakest
reactive precondition with respectval = 2 is okay A — wait = val = 2, sinceSkipdoes
not change the state.
For Stop which deadlocks immediately, the difference is that the condition has to hold
whenwait' is true. Finally, the definition fo€Chaos which diverges immediately, is similar
to that for the case when the precondition of a schema expression action does not hold.
For sequences, we have the following result.

Theorem 8 For a condition,

wrp.[A; B[y USty =
wrp.[[A]"Yy USt (¢ A (okay A — wait’ = (wrp.[B]*y USty))))

Usually, in weakest precondition semantics, the semantics of sequence is functional com-
position, so that the weakest precondition for a sequence to establish a postcondition is the
weakest precondition for the first component to establish the weakest precondition for the
second component to establish the postcondition.

For weakest reactive preconditions, however, not only the final state is relevant: all inter-
mediate states, including those A&f are relevant. Theorem 8 requires thiaholds during
the execution ofA. Moreover, ifA finishes pkay A — wait), then the weakest reactive
precondition ofB with respect toy also has to hold. Since conditions are given in terms
of dashed variables and preconditions in terms of undashed variables, the free variables of
Wrp. [[BHANV USty need to be dashed. For a predicptave definep’ to be the predicate
obtained by dashing the free occurrences of undashed observational varigbles in

A relational definition for the prefixing operator is presented below: sequential compo-
sition of a communication with the prefixed action. The communication can be observed
before it actually takes place, and afterwards. These observations are described in the sequel
by CWaiting USt) andCDondUSt). The communication itselomniUSt), is described by
the disjunction of these schemas.

A communication takes as input the secE’ of acceptable events. Before the commu-
nication takes place, the state and the trace do not change, the acceptable events cannot be
refused, and the action does not diverge or terminate. After the communication, the trace is
augmented by one of the acceptable events and the action terminates successfully. The state
is still not changed.
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In the definition of the semantics of prefixing, we use a substitution notation for schemas
not directly available in Standard Z, although it is in Z/Eves [24]. For a schgmath a
component of type T, and an expressioa of the same type, we denote Bjv := €] the
schemalv:Te|[v=¢e|AS

For an output prefixing, the set of acceptable events of the communication contains only
the event obtained by applying the channel, which is an event constructor, to the output value.
For an input prefixing, this is the set of events resulting from applying the channel to all the
values of its type, obtained from the channel environment

A communication also outputs the valgecommunicated. For an output prefixing, this
information is ignored by hiding. For an input prefixing, this information is used to initialise
the input variable. Input variables are modelled as extensions to the state; they are local to
the prefixing, and so they and their dashed counterparts are quantified.

Definition 5

— CWaiting USt)
NormalUSt)
acck’ : PEvent
=USt

tr' =tr A accE? Nref’ = ()
okay A wait’

__ CDongUSY)
NormalUSt)
accE’ : PEvent
el : Event
=USt

el € accE?
tr' =tr — (el)
okay A — wait’

ComnUSt) = CWaiting USt) v CDongUSY)
[cle — AV~ USt= (Comn{USt)[accE? := {c(e)}] \ e!) 5 [A]"y USt
[c?x — A]]AN’y USt=3x,X :vcCe

Comn{USt[accE?, el := {y: vy cec(y)},c(X)] ¢ [A]*~ USt

The weakest reactive precondition of the output prefixing operator is given below.

Theorem 9 For a condition,

wrp.[cle — A"V~ USty =
wrp.CWaitingaccE? := {c(e)}|.¢¥ A
wrp.CDondaccE? := {c(e)}] \ e.(¢ A (wrp.[A]y USty))

The condition has to hold before the communication takes place, after it takes place, and
duringA, as well. For input prefixing, we have a similar result, but since the input is a local
variable, it is universally quantified as usual in weakest precondition semantics.
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Example: We consider the actiooutlval — Skip in the context of the proce$§Sumand
calculate its weakest reactive precondition with respett te tr.

wrp. [outival — Skig]*¥y USttr’ = tr

= (wrp.CWaitingaccE’ := {out(val)}].tr" = try A [Theorems 4 and 9]
wrp.CDondaccE? := {out(val)}] \ el.(tr' = tro A (wrp.[Skig"'y USttr’ = try)’)
)[tr /tro]

We use a fresh constatmt, to replace the occurrencestofin 1. We calculate the weakest
reactive precondition dbkipwith respect tdr’ = tr, separately.

wrp.[Skid"'y USttr’ = tr,

= wrp.[Skig|*" y USttr’ = tr, A wrp.Divergetr’ = tr, A wrp.Waittr’ = tr,
[Theorem 1]

= (okayA — wait = tr = try) A okayA (okayA wait = tr = trg)
[Theorems 7,2, and 3]

= okayA tr =trg [predicate calculus]

This means that the previous operation must not diverge and the trace has to be tajready
for Skipto guarantedr’ = tr.
For the weakest reactive precondition@aiting we have the following result.

wrp.CWaitingaccE? := {out(val) }].tr" = trg

=VStaté e [definitions ofwrp andCWaiting
Normal A USt = UStA tr’ = tr A {out(val)} Nnref’ = ) A okay A wait' =
tr/ — tro

= okay A\ — wait = Vref’ : PEvente {out(val)} Nref’ = () = tr =tr,
[predicate calculus]

= okayA — wait = ((Iref’ : PEvente {out(val)} Nref’ = ) = tr =tr,)
[predicate calculus]

= okay A — wait = tr = tr [predicate calculus]

This means that the trace has to be alreagyfor CWaiting to establish the condition;
CWaitingcannot change the trace.
Finally, the weakest reactive precondition@Donecan be calculated as follows.

wrp.CDondaccE’ := {out(val)}] \ el.(tr' = try A okay)

=VStaté e [definitions ofwrp andCDong
Normal A USt = UStA tr’ = tr  (out(val)) A okay A — walit' =
tr’ = tro A okay

= okayA — wait = tr ~ (out(val)) = try [predicate calculus]

In words, forCDoneto guarantedr’ = try, we need thatr, differs fromtr justin that it has
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an extra element: the output.
The calculation of the weakest reactive preconditiomatfval — Skipcan proceed as
shown below.

wrp.[Joutival — Skig™V~ USttr’ = tr

= ((okayA — wait = tr =try) A [by the calculations above]
(okayA — wait’ = tr 7 (out(val)) = try))[tr /tro]

= — (okay A — wait) [predicate calculus]

In summary, if the output prefixing starts, we cannot guarantee that the trace is not changed,
as should be expected.
The weakest reactive precondition semantics of a guarded action is rather intuitive.

Theorem 10

wrp.[[p & A]*V~ USty) =
(p = wrpn [A]*¥~ USty) ) A (= p = wrp.[Stof*¥'y USts) )

If the guardp holds, therp & A behaves aé. Otherwise, it behaves likétop
The behaviour of a parametrised actl@r Ais that ofA taken in an extended stabdJSt
that includes the components declareDirinstantiation fixes the value of these components.

Theorem 11

Wrpyst[D  A]™Y~ USty = wrppus: JA]* v USt)
wrpust [A)] v UStey = (wrpyse [A]*Y v USty)[e/aD]

The functiona extracts from a declaration the set of variables it introducesA(&), we
assume that the parametersfadre given byD. The correspondence between the parameters
and the arguments is positional: in the substitution we use the s as the list of the
parameters in the order they are declared.

4.3 Commands

The weakest reactive precondition of a specification statemefpre, post|] does not insist
on termination. The liskUSt\x includes the variables of the user state other th&&imilarly,
aUSt \ X lists their dashed counterparts.

Theorem 12

wrp.[[x : [pre, pos]“¥y USty =
okay A — wait =
(pre A (Vref’ : PEvent X : X e post=
Yltr, true, false (USt\ x)/tr’, okay, wait’, (USt \ X)])) V
(— pre A V Staté e tr prefix tr' = 1)

where X is the type of x.

Roughly, if the precondition holds, then for all final valuexdhat satisfy the postcondition,
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1 is required to hold. This is the usual weakest precondition semantics of specification state-
ments. There are, however, a few extra issues. First, no restriction on refusals are guaranteed,
since the specification statement terminates. Secprménnot require changes to the trace
or to state components other titlgmor can it require divergence or nontermination. Finally,
if the precondition does not hold, has to hold under only the assumption ttrgprefix tr’.

The weakest reactive precondition for the miraculaus [true, falsg to establish any
conditiony is true, as expected. For abor; [false true], we have

okay A\ — wait = (V Staté e tr prefix tr' = )

This is the same we obtained fGhaos In other words, the semantics Ghaosand abort is
the same, as should be expected.
The semantics of an assignment eis given by substitution as usual.

Theorem 13

wrp.[x := ]y USty =
okay A — wait =
Vref’ : PEvente
Y[tr, true, false €, (aUSt\ x)/tr’, okay, wait', X', (aUSt \ X')]

As with specification statements, an assignment refuses all communications, does not change
the trace, terminates immediately, and changes no variables othet. than
The semantics of conditionals is as follows.

Theorem 14

wrp.[if Oieg — A fi]*y USt =
(= (Vieg) = wrp.[Chaog™*V~ USti) A (A eg = wrpn[A]"y UStey)

If none of the guards is valid, then the conditional aborts: it behave<lieos Otherwise,
any of the valid guards can be chosen, and so the condition has to be guaranteed for each of
the associated actions.

For blocks, we have a standard definition.

Theorem 15
Wrpyst[var x: T e AHAN’Y USt=VX: T e wrpnysr. [[A]]AN’Y USty

The weakest reactive precondition of the body of the block is taken in an extendexl s&te
that includes the declared variable.

5 Conclusions

The refinement calculus [9, 15] has been influential in understanding the development of se-
qguential programs from their formal specifications. One of the aims dTileels project [6,
7, 8] is to extend this calculational approach to reactive programs.

Since the sequential refinement calculus is based on weakest precondition semantics, in
this paper, we have presented a new notion of weakest reactive precondifiptp reason
about concurrent programs in a similar manner. Based on this new notion and on a relational
semantics foiCircus, we have calculated a weakest reactive precondition semantics for a
subset of this language. The notion of refinement in the predicate transformer model is
equivalent to that in the unifying theory: the basis of our relational model.
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A weakest precondition is an extreme solution to a Hoare triple with one unknown: the
precondition. The idea of extending Hoare logic, weakest precondition semantics, and even
the refinement calculus to the development of parallel programs has a long pedigree.

The work of Owicki and Gries [25, 26, 27, 28, 29] marks the first significant attempt
to extend Hoare logic. Their theory extends Hoare’s deductive system for proving the par-
tial correctness of sequential programs [30] by adding parallelism in the form of co-blocks,
synchronisation, mutual exclusion, and wait statements.

In their method, parallel processes are considered in isolation and a proof of sequential
correctness is obtained. These proofs must then be shown to be free from interference: no
wait statement or assignment outside a wait statement in one process interferes with the
proof of any other. The specification of the parallel program is then the conjunction of the
preconditions and the postconditions of the individual components. An important point is
that this method is not compositional, since the verification of each prétesgquires an
interference-freedom proof involving information notRs specification.

Lamport also generalised Hoare logic for concurrent programs [31]. The Hoare triple
P{S} Q means that iPP is true before the execution & andS terminates, the® holds.
Lamport changed this meaning in the presence of concurrency: if execution is begun any-
where withinSwith P true, thenP remains true untiSterminates, whereupaQ is true. In
this way, Lamport suggests that a program is better thought of as an invariance maintainer,
rather than as a predicate transformer. Although this technique is compositional, it requires
a global invariant, and parallel processes must each have this as their specification. Some
independence is gained from structuring this invariant with auxiliary control-flow predicates,
but the logic is awkward to use as a method of specifying module interfaces.

In [23], Lamport generalises the weakest liberal precondition and the strongest postcon-
dition to the weakest and the strongest invariant. The method allows the verification of a
concurrent program to proceed without knowing the granularity of atomicity of operations,
and behavioural arguments to be replaced by assertional reasoning. The difference between
those predicate transformers and lies in the set of observable states. In our semantics,
we consider the relationship between the initial state of a process and any subsequent state,
whereas Lamport considers the relationship between any state in which execution is resumed
and the subsequent state in which it is suspended.

Back [32] applies the refinement calculus to the stepwise refinement of parallel and re-
active programs. Action systems are used as the basic program model: they are sequential
programs that can be implemented in a parallel fashion. Reactive programs are data refined
using techniques originally developed for the sequential refinement calculus. The main dif-
ference between our approach and Back’s arises from the fa@iticas is based partly on a
process algebra, not on an action system. In an action system, control flow is encoded in state
information, with variables playing théle of program counters; in a process algebra, con-
trol flow is described using the process combinators of the algebra. Therefore, our predicate
transformers and refinement calculus deals with these combinators.

In our work, we have derived our weakest precondition semantics from an existing re-
lational semantics. As a result, our weakest reactive precondition calculator is very close
in spirit to predicate transformers for sequential programs. Moreover, since our model in-
cludes refusal sets (thref observational variable), we can reason about liveness as well as
safety properties. We are currently seeking to extend our calculations to obtain compositional
definitions for some of the operators.

We plan to use this semantic model to justify fully the refinement calculus presented
in[16, 17]. We are also starting an effort to propose rules for verification-condition generation
based on this work. We plan to develop a series of examples and case studies in the use of
wrp. Our confidence in the semantics@ifcus has been greatly increased through this work.
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In the unifying theory, the model of reactive programs is further constrained by a number
of healthiness conditions to obtain theories for particular mechanisms of synchronisation and
communication. We expect that thep models corresponding to these restricted theories
also satisfy a number of healthiness conditions of their own. It is also our intent to further
explore these relationships.
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