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Abstract. A fine-grained massively-parallel process-oriented modelof platelets (po-
tentially artificial) within a blood vessel is presented. This is a CSP inspired design,
expressed and implemented using the occam-pi language. It is part of the TUNA pilot
study on nanite assemblers at the universities of York, Surrey and Kent. The aim for
this model is to engineer emergent behaviour from the platelets, such that they respond
to a wound in the blood vessel wall in a way similar to that found in the human body
– i.e. the formation of clots to stem blood flow from the wound and facilitate healing.
An architecture for a three dimensional model (relying strongly on the dynamic and
mobile capabilities of occam-pi) is given, along with mechanisms for visualisation and
interaction. The biological accuracy of the current model is very approximate. How-
ever, its process-oriented nature enables simple refinement (through the addition of
processes modelling different stimulants/inhibitors of the clotting reaction, different
platelet types and other participating organelles) to greater and greater realism. Even
with the current system, simple experiments are possible and have scientific interest
(e.g. the effect of platelet density on the success of the clotting mechanism in stem-
ming blood flow: too high or too low and the process fails). General principles for
the design of large and complex system models are drawn. The described case study
runs to millions of processes engaged in ever-changing communication topologies. It
is free from deadlock, livelock, race hazards and starvation by design, employing a
small set of synchronisation patterns for which we have proven safety theorems.
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Introduction

In this paper, a process-oriented architecture for simulating a complex environment and mo-
bile agents is described. The environment is modelled by a fixed topology of stateful pro-
cesses, one for each unit of space. State held includes the strength of specific environmen-
tal factors (e.g. chemicals), local forces and the presenceof agents. Agents are mobile pro-
cesses interacting directly with the space processes in their immediate neighbourhood and,
when they sense their presence, other agents. Mechanisms for dynamically structuring hierar-
chies among agents are also introduced, allowing them to display complex group behaviours.
The architecture combines deadlock free communications patterns with (phased barrier con-
trolled) shared state, maintaining freedom from race hazards and high efficiency. We have
usedoccam-π [1,2] as our implementation language.

This research is part of the TUNA project [3,4,5,6,7,8,9] atthe universities of York,
Surrey and Kent, which seeks to explore simple and formal models of emergent behaviour.
Medium term applications are for the safe construction of massive numbers of nano-
technology robots (nanites) and their employment in a range of fields such as the dispersion
of pollution and human medicine. With this goal in mind, thispaper introduces our generic
simulation architecture through specific details of how it has been used to simulate platelets
in the human blood stream and the clotting response to injury.
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1. Architecture

1.1. Dynamic Client-Servers

The simulation architecture is constructed in layers. At the bottom lie thesite processes,
representing distinct points (or regions) in the simulatedspace and managing information
associated with that locality. Each site is a pureserverprocess, handling requests on the
server-end of a channel bundle (unique for each site). It will have a dynamically changing
set ofclientprocesses (mobile agents), competing with each other to access the client-end of
its channel bundle. Each channel bundle contains two channels used in opposite directions:
one from a client to the server (request) and one from the server to a client (response). All
communication is initiated by one of the clients successfully laying claim to its end of the
channel bundle and making a request. Once accepted, the server and this client engage in a
bounded conversation over the channel bundle, honouring some pre-agreed protocol. So long
as no closed cycle of suchclient-serverrelationships exists across the whole process network,
such communication patterns have been proven to be deadlockfree [10,11].

1.2. Space Modelling

To modelconnectedspace, each site has reference to the client-ends of the channel bundles
serviced by its immediateneighbours. These references are only used for forwarding to vis-
iting clients – so that they can explore their neighbourhoodand, possibly, move. Sites must
never directly communicate with other sites, since that could introduce client-server cycles
and run the risk of deadlock. The inter-site references define the topologyof the simula-
tion world. For standard Euclidean space, these neighbourhood connections are fixed. For
example, each site in a 3Dcubicworld might have access to the sites that are immediately
above/below, left/right or in-front/behind it. In a more fully connected world, each site might
have access to all 26 neighbours in the 3x3x3 cube of which it forms the centre. Other inter-
esting worlds might allow dynamic topologies – for example,the creation ofworm-holes.

1.3. Mobile Channels and Processes

Figure 1. A simplified representation of sites and agents. Each site services an exclusive channel bundle for
communicating with visiting agents. Agents obtain connections to their next site from references held by their
current site.

The world layer (Figure 1) is homogeneous – only sites. The (first) agent layer is het-
rogeneous. There can be many kinds of agent process, visiting and engaging with sites as
they move around their world. Agent-site protocols fall into three categories: querying and
modifying the current site state, obtaining access to neighbouring sites, and moving between
sites. Agents move through the simulated world registeringand de-registering their presence
in sites (commonly by depositing free channel-ends throughwhich they may be contacted),
using environmental information (held in the sites) to makedecisions as they go and, possi-
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bly, modifying some environmental factors. An agent only needs to hold the channel-end of
its current site and, when relevant, the next site it wishes to enter. For all this the concept of
channel-end mobility [12], a feature ofoccam-π based on items from theπ-calculus [13], is
essential.

Figure 1 shows a one-dimensional world where each site has access only to the neighbour
immediately to its right. In this world, agents can only movein one direction. The arrows with
circles on their bases represent client-server relations (pointing to the server). The client-ends
of these connections aresharedbetween other sites and agents (shown by the arrows with
solid disc bases). Recall that these connections do providetwo-way communications.

1.4. Barriers and Phases

Agents usebarriers [14,15] to coordinate access to the sites into time-distinct phases. An
occam-π BARRIER is (almost) the same as a multiway synchronisation event in CSP:all en-
rolled processes must reach (synchronise upon) the barrierin order forall of them to pass.
The resulting phases ensure that they maintain a consistentview of their environment, and
keep to the same simulation step rate. To prevent agents viewing the world while it is in flux,
at least two phases are required:

discovery: where agents observe the world and make decisions;
modify: where agents change the world by implenting those decisions(e.g. by moving

and/or updating environmental parameters).

The basic agent logic is:

WHILE alive

SEQ

SYNC discovery

... observe my neighbourhood
SYNC modify

... change my neighbourhood

wherediscovery andmodify are the coordinating barriers.

1.5. Site Occupancy and Agent Movement

In a typical simulation, only one agent will be allowed to occupy a given site at any point
in time. Within our architecture, sites enforce this constraint. If two agents attempt to enter
a site in the same simulation cycle, the decision can be left to chance (and the first agent to
arrive enters), or made using an election algorithm (thebestcandidate is picked). In the case
of an election algorithm, the modify phase should be sub-divided:

first modify sub-phase:agents request to enter the site providing some sort of candidacy
information (e.g. mass, aggressiveness, or uniqueID). When the site receives a new
candidate, it compares it to the exiting one and overwrites that if the new candidate is
better.

second modify sub-phase:all agents query the site(s) they attempted to enter again, ask-
ing whowon? On receiving the first of these queries, the site installs its currentbest
candidate as the new occupier and passes those details back to the asker and to any
subsequent queries.

However, an optimisation can be made by including the firstmodifysub-phase in the
discoveryphase! Only offers to move are made – no world state change is detectable by the
agents in this phase. The secondmodifysub-phase simply goes into themodifyphase. This
optimisation saves a whole barrier synchronisation and we employ it (section 2.5).



252 C.G. Ritson and P.H. Welch / Process-Oriented Complex Systems Modelling

1.6. Agent-Agent Interaction

Some agents in the same locality may need to communicate witheach other. To enable this,
they deposit in their current site the client-end of a channel bundle that they will service.
This client-end will be visible to other agents (observing from a neighbouring site). However,
agents must take care how they communicate with each other inorder to avoid client-server
cycles and deadlock. A simple way to achieve this is to compose each agent from at least
two sub-processes: a server to deal with inter-agent transactions and a client to deal with site
processes and initiate inter-agent calls.

Figure 2. Agents are composed from client and server sub-processes toprevent client-server loops and maintain
deadlock freedom.

In Figure 2, the agentserverprocess manages agent state: its clients are theclient pro-
cesses of its own and other agents. The agentclient process drives all communication be-
tween the agent and the rest of its environment (the sites over which it roams, other agents in
the neighbourhood and higher level agents to which it reports – section 1.7). Technically, it
would be safe for the agentserveralso to communicate with the sites.

1.7. Layers of Agents

So far, agents have occupied a single site. Complex agents (e.g. a blood clot) may grow larger
than the region represented by a single site and would need tospan many, registering with
all it occupies. This may be done from a single agent process (as above) or by composing it
from many sub-processes (oneclient part per site). We view the latter approach as building
up asuper-agent(with more complex behaviour) from many lower level agents (with simpler
behaviour and responsibilities). It introduces a third layer of processes.

Figure 3. Super-agents as a layered composition of processes.
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In figure 3, clients 1 and 2 share a higher level server process, holding information from
both that enables them to act in a coordinated manner. Agentsoutside the super-agent just
see a single server off a single agent. Such sharing of higherlevel servers allows us to create
groups of arbitrarily large coordinated agents. The approach can be continued hierarchically
to create ever more complex groups, while keeping the complexity of each process manage-
able – see figure 4. Note that some processes are pure servers (the sites and mega-agents),
some are pure clients (the lowest level agents) and some are servers that sometimes act as
clients to fulfil their promised service (the super-agents). Note that there are no client-server
cycles and that the pure clients (the lowest level agents) are the initiators of all activity.

Figure 4. A hierarchy can be constructed among agents to give increasingly complex group behaviours.

2. Human Blood Clotting Simulation

We have introduced the principle components of the simulation architecture: a hierarchical
client-server network of sites, agents and super-agents. We now look at how this has been
applied to simulate the clotting of platelets in the human blood stream [8].

Haemostasis is the response to blood vessel damage, wherebyplatelets are stimulated
to becomestickyand aggregate to form blood clots that seal small wounds, stemming blood
loss and allowing healing. Platelets are non-living agentspresent in certain concentrations in
blood; they are continually formed in bone marrow and have a half-life of around 10 days.
Normally, they are inactive. They are triggered into becoming sticky by a complex range of
chemical stimuli, moderated by a similarly complex range ofinhibitors to prevent a lethal
chain reaction. When sticky, they combine with each other (and proteins like fibrin) to form
physically entangled clots. Summaries can be found in [16,17,18], with extensive details
in [19].

The work present in this paper employs a highly simplified model of haemostasis. We
model the smooth and sticky states of platelets, with transition triggered by encountering a
sufficient amount of a single chemicalfactor released by a simulated wound to the blood
vessel wall. We model no inhibition of clotting, instead focusing only on the initial reaction
to a wound, and relying on a sufficient rate of blood flow to prevent a chain reaction until it
is observed.

Clots form when sticky platelets bump together and, with some degree of probability,
become permanently entangled. The velocity of an individual clot decreases with respect to
the rate of blood flow as its size increases. We are not modelling other factors for the clotting
material (such as fibrin). Nevertheless, even with this verysimple model, we have reached the
stage where emergent behaviours (the formation of blood clots and the sealing of wounds)
are observed and simple experiments are possible that have scientific interest.
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2.1. Sites

Sites define the space of the simulated environment. Our sites are arranged into cubic three-
dimensional space (giving each site 26 neighbours). Sites are pure server processes, respond-
ing to agent (client) offers of, or requests for, information. They operate independently, en-
gaging in no barrier synchronisations.

Interacting with the sites, the lowest level agents are blood plateletsand chemicalfac-
tors (which, when accumulated in the sites above a certain threshold, can switch passing
platelets into theirsticky state). Blood clots are super-agents, composed of many stuck-
together platelets.

The sites allow one platelet to be resident at a time and storea uniqueID number, stick-
iness, size (of the blood clot, if any, of which it is a part) and transaction channel-end (for
later agent-agent communications). Sites use the (clot) size and uniqueID to pick the best
candidate during the entry elections described in section 1.5.

In addition to platelet/clot information, the sites also store a clotting chemical factor
level (obtained from passing factor processes), a unit vector (indicating the direction of blood
flow) and ablockingflag (indicating whether the site is part of the blood vessel wall – in
which case agents are denied entry).

Although using agents to simulate the wall would also be possible, we choose to imple-
ment it as a feature of space to save the memory overhead of having more agents (with very
trivial behaviour).

Finally, each site has access to avoxel (a byte from a shared 3D-array), which it is
responsible for maintaining. Whenever the site changes, itcomputes a transfer function over
its state to set this voxel. The voxel itself is used to visualise the simulation via volume
rendering techniques.

2.2. Platelets (Agents)

Our simulation agents model individual platelets in the blood. As in figures 3 and 4, platelets
are pure clients and do not communicate directly with each other. However, they are clients
to their clot super-agent and it is this that keeps them together. A platelet may be in one of
two states:

non-sticky: the platelet queries its local site and reports the blood-flow direction and
clotting factor level to its super-agent. It then initiatesany movement as instructed by
the super-agent. The clot’s size and uniqueID are used to register presence in the sites.

sticky: in addition to the above non-sticky behaviour, the plateletsearches neighbouring
sites for other sticky platelets, and passes their details to its super-agent.

Platelets, along with the chemical factor processes (section 2.3), move and update their
environment. Together with the processes generating them and the processes controlling vi-
sualisation, they are enrolled and synchronise on thediscoveryandmodifybarriers – dividing
the timeline into those respective phases (sections 1.4 and2.5.1).

Note: for programming simplicity,all platelets in our current model have a clot process
– even when they are not sticky or part of any clot. We may optimise those clot processes
away later, introducing them only when a platelet becomes sticky. Most platelets in most
simulations will not be sticky!

2.3. Clots (Super-agents)

Clots coordinate groups of platelets. They accumulate the blood-flow vectors from their
platelets’ sites and make a decision on the direction of movement. That decision also depends
on the size of clots, with larger clots moving more slowly. They also change platelets from
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non-sticky to sticky if sufficient levels of clotting factorare encountered (these accumulate
over many simulation steps).

When two or more clots encounter each other, if they contain sticky platelets theymay
become stuck together and merge. One of the clots takes over as super-agent for all sets of
platelets in the bump group – the other clots terminate.

In [15], a clotting model in a one-dimensional blood stream was presented (as an illustra-
tion of mobile channels and barriers). In that system, deciding which clot process takes over
is simple. Only two clots can ever be involved in a collision so, arbitrarilly, the one further
upstream wins.

Stepping this model up to two dimensions, multiway collisions are possible since clots
can be shaped with many leading edges in the direction of movement – for example, an “E”-
shaped clot moving rightwards. Furthermore, those multiple collisions may be with just a sin-
gle or many other clots. Fortunately, stepping this up to three dimensions does not introduce
any further difficulties.

To resolve the decision as to which clot survives the collision, anotherelectiontakes
place involving direct communication between the clot super-agents. This is outside the
client-server architecture shown in figure 3 (for whose reasoning this election is deemed to
be a bounded internal computation). The clot processes mustengage in nothing else during
this election and that must terminate without deadlock. Reasoning about this can then be
independent from reasoning about all other synchronisations in the system.

The trick is to order all the communications in a sequence that all parties know about in
advance. Each clot has anID number which is registered in all sites currently occupied by its
constituent platelets. Each clot has had reported back to it, by its platelets, the clotIDs of all
clots in the collision.

The platelets also place the client-end of a server channel to their clot in the site they are
occupying. They report to their clot the client-ends of the other clots in the collision. Thus,
each clot now has communication channels to all the other clots in its collision.

High number clots now initiate communication to low number clots. The lowest num-
bered clot is the winner and communicates back the election result, with communication now
from low number clots to high. The choice thatlow numbered clots should win was not ar-
bitrary. Clots are introduced into the world with increasing ID numbers, so having low num-
ber clots win means that low number clots will tend to amass platelets. In turn, this reduces
the number of times those platelets need to change super-agent after collision. Although our
algorithm for ordering communication (not fully outlined here) has yet to undergo formal
proof, it has so far in practice proven reliable.

Platelets communicate with their clot using the shared client-end of a server bundle.
By keeping track of the number of platelet processes it contains, a clot knows how many
communications to expect in each phase (and, so, does not have to be enrolled in the barriers
used by the platelets to define those phases). See section 2.5for more details of clot and
platelet communications.

2.4. Factors (Agents)

The second and final type of agent in our simulation is one thatmodels the chemical factors
released into the blood by a wounded (damaged) blood vessel.Since they move and modify
their environment (the sites), they must engage on the samediscoveryandmodifybarriers as
the platelets.

Factors are launched (forked) into the simulation with an initial vector pointing away
from the wound and into the blood vessel. Every simulation step, the factor integrates a
proportion of its current site’s blood flow vector with its own vector and uses the result to
determine its next move. The effect is cumulative so that eventually the factor is drawn along
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with the blood flow. At each site it enters, the factor increases the factor strength field, and
modifies the site’s blood flow vector to point back to the wound. The second of these two
actions simulates both the slight pressure drop from an openwound and other biological
mechanisms which draw platelets to open wounds.

Finally, it should be noted that factors are not considered to take up any space – being
tiny molecules as opposed to full cells. Hence, many are allowed to occupy individual sites.

2.5. Simulation Logic

To provide more detail, here is some pseudo-code (loosely based onoccam-π [1,2]) for the
platelet and clot processes.

2.5.1. Platelet Process

Initially, a platelet is attached to its launch site, is notsticky, has a clot process to which
only it belongs and has no knowledge of its neighbourhood (which it assumes is empty of
platelets/clots). Platelets decide whether they want to move in thediscoveryphase; however,
the movement is election based (section 1.5), and the resultof the election is not queried
until themodifyphase. This means that although movement offers are made in thediscovery
phase, actual movement does not happen until themodifyphase.

The “channels” site, new.site andclot/clot.b, used (illegally) in both directions be-
low, representSHARED client ends of channel bundles containing request and replychannels
(flowing in opposite directions and carrying rich protocols). For further simplicity, the neces-
saryCLAIM operations have also been omitted. They connect, respectively, to the current and
(possible) futuresite locations of the platelet and theclot process of which it forms a part.

SEQ

WHILE still in the modelled blood vessel
SEQ

SYNC discovery -- all platelets and factors wait here for each other

site ! ask for local chemical factor level and motion vector
site ? receive above information
clot ! factor.vector.data; forward above information

IF

sticky

SEQ

site ! get clot presence on neighbour sites (in directions that were previously empty)
site ? receive above information
clot ! forward information only on clots different to our own (i.e.on clot collisions)

TRUE

SKIP

-- clot decides either on transition to sticky state or merger of bumped clots

clot.b ? CASE

update; clot; clot.b -- our clot has bumped and merged with others
SKIP -- we may now belong to a different clot process

become.sticky

sticky := TRUE -- accumulated chemical factors over threshold
no.change

SKIP

-- clot decides which way, if any, to try and move
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clot ? CASE

no.move

SYNC modify -- empty phase for us, in this case

move; target

SEQ

site ! get.neighbour; target -- get the channel end of the new site
site ? new.site

new.site ! enter; clot -- offer to enter new site, giving our clot reference

SYNC modify -- wait for all other offers to be made

new.site ! did.we.enter; clot -- ask if we were successful
new.site ? CASE

yes

SEQ

clot ! ok -- report ability to move
clot.b ? CASE

ok -- all platelets in clot can move
SEQ

site ! leave -- leave present site
site := new.site -- commit to new site

fail

new.site ! leave -- give up attempted move
no

SEQ

clot ! fail -- report failure to move
clot.b ? CASE fail -- clot cannot move as this platelet failed

SEQ -- we have exited the modelled region of space
SYNC discovery -- must get into the right phase for last report
clot ! terminated

2.5.2. Clot Process

Initially, a clot is notsticky and starts with a platelet count (n.platelets) of 1. A clot runs
for as long as it has platelets. It does not need to engage in thediscoveryandmodifybarriers,
deducing those phases from the messages received from its component platelets. At the start
of each phase, a clot issticky if and only ifall its component platelets aresticky.

The “channels” platelets/platelets.b used (illegally) in both directions, represent the
server ends of two channel bundles containing request and reply channels (flowing in opposite
directions and protocol rich). They service communications from and to all its component
platelets (and are the opposite ends to theclot/clot.b channels shared by those platelets).

WHILE n.platelets > 0

SEQ

-- nothing will happen till the discovery phase starts
-- we just wait for the reports from our platelets to arrive

SEQ i = 0 FOR n.platelets

platelets ? CASE

factor.vector.data; local chemical factor level and motion vector
... accumulate chemical factor level and motion vector

terminated

n.platelets := n.platelets - 1



258 C.G. Ritson and P.H. Welch / Process-Oriented Complex Systems Modelling

IF

sticky

SEQ

SEQ i = 0 FOR n.platelets

platelets ? report on any bumped clots
IF

sufficiently hard collision anywhere
SEQ

... run clotting election to decide which clot takes over themerger
SEQ i = 0 FOR n.platelets

platelets.b ! update; winner; winner.b

IF

this.clot = winner

... update number of platelets to new size of clot
TRUE

n.platelets := 0 -- i.e. terminate
TRUE

SEQ i = 0 FOR n.platelets

platelets.b ! no.change

accumulated.chemical.factor > sticky.trigger.theshold

SEQ

sticky := TRUE

SEQ i = 0 FOR n.platelets

platelets.b ! become.sticky

TRUE

SEQ i = 0 FOR n.platelets

platelets.b ! no.change

target := pick.best.move.if.any (n.platelets, motion.vector)

IF

target = no.move

SEQ

SEQ i = 0 FOR n.platelets

platelets ! no.move

-- platelets synchronise on modify barrier

TRUE

SEQ

SEQ i = 0 FOR n.platelets

platelets ! move; target

-- platelets synchronise on modify barrier

all.confirm := TRUE

SEQ i = 0 FOR n.platelets

platelets ? CASE

ok

SKIP

fail

all.confirm := FALSE

IF

all.confirm

SEQ i = 0 FOR n.platelets

platelets.b ! ok

TRUE

SEQ i = 0 FOR n.platelets

platelets.b ! fail
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2.6. Spatial Initialisation

The simulated environment must be initialised before platelets are introduced. It needs to
contain some form of bounding structure to represent the walls of the blood vessel and the
vectors in the sites must direct platelets along the direction of blood flow.

Figure 5. Layout of the simulated space in relation to blood vessel.

The blood vessel wall is placed so that it runs parallel to an axis in simulated space –
the X-axis in our simulations (see figure 5). Our simulated blood vessel is simple: a cylinder
with wall thickness of approximately two sites. The wall is simulated by setting the sites to
which it belongs toblocking.

Force vectors inside the blood vessel are initialised so that there is a 55%1 chance of
moving forward along the blood vessel, an 6% chance of movingleft or right, and an 8%
chance of moving up or down. A given site vector can only pointin one direction per axis, so
the vectors point either left or right, and either up or down,e.g. left and down. The directions
are select randomly per site, with an even distribution between each. Changing the initialisa-
tion of these vectors can give subtle changes in simulation behaviour – something left largely
unexplored at this time.

The vectors outside the blood vessels are programmed to drawplatelets to the edges of
the simulated space and beyond. This enhances the blood losseffect when the vessel wall is
broken. If this were not done, platelets would continue along much the same path just outside
the blood vessel.

2.7. Optimisations

A few optimisations to our implementation were made to improve performance and memory
usage.

Instead of giving each site an array of client-ends to neighbours, a single global array
was used. This array is shared by all sites and significantly reduces memory requirement.
This is safe as this connectivity information is static – we are not dealing withworm-holes
and dynamic space topologies yet!occam-π does not yet have a language mechanism to
enforce this read-only behaviour (of the connectivity) at compile time; but manual checking
of our code is simple and deemed sufficient for our purposes here.

For performance enhancement, our implementation was designed so that platelets
(agents) need only query their current site to discover the state of their local neighbourhood.
This is accomplished in two stages. Firstly, site state datais placed into an array shared by all
sites. This allows sites to retrieve data from their neighbours on behalf of an agent just by ac-
cessing (shared) memory. This is safe in our simulation because agent query and modification

1These are experimental values (not reflecting any biology).
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are separated by barriers and individual updates to a site’sstate are serialised through that
site’s server interface. Secondly, agents now query their neighbourhood through their current
site, passing it amobilearray of unit vectors and amobilerecord. The site copies from the
shared site state array the data for the specified vectors into the mobile memory, which it then
returns along with its own state. Use of mobile data passed back and forth is very efficient
and removes the need for dynamic memory allocation during normal agent run-time.

Our final optimisations were to reduce the neighbourhood searched by the agents. The
previous optimisation reduced an individual search mainlyto memory copies. As a first step,
search is limited to (the obvious) six directions from the 26available – although movement is
permitted in any direction. When a platelet is part of a clot with other platelets, each platelet
remembers the relative position of other platelets discovered around it and does not search
those directions again. Futhermore, if a platelet becomes completely surrounded by platelets
of the same clot, it terminates. For our simulation purposes, only the outline of clots need be
maintained.

3. Support Processes

A small number of other processes complete the simulation and provide interaction and (3D)
visualisation.

3.1. Platelet Generator

The platelet generator is a process that injects platelets at the upstreamend of the blood
vessel. It is enrolled on thediscoveryand modify barriers and restricts the injection (i.e.
forking) of platelets to themodifyphase (so that each platelet starts correctly synchronised,
waiting for thediscoverybarrier). The platelet generator is programmed with a rate that can
be varied at runtime. This rate (together with the cross-sectional area of the blood vessel)
determines platelet density in the bloodstream. It sets a forward velocity (slightly randomised
around an average of a 55% probability of movement).

At each simulation step, the number of platelets to be introduced is added to a running
count; the truncated integer value of this count used to calculate the number of actual platelets
to be forked. For each new platelet, two random numbers are generated: a Y and Z offset
from the centre of the blood vessel. So long as these lie within the blood vessel, the platelet
is injected at that position.

3.2. Wound Process

The wound process allows a user to punch a hole in the blood vessel wall. Thewound tool
is rendered as a sphere in the user interface and the user attacks the blood vessel with it. It
creates a hole where there is an intersection between the sphere and the blood vessel walls.
To do this, it uses the position of the sphere and its radius. If a point lies within the sphere, the
corresponding site is tested to see if it isblocking(i.e. part of the blood vessel wall). If so, it
is set tounblockingand four chemical factor processes are forked at its location (as a reaction
to the damage). The initial movement vector of each factor process is initialised (with slight
randomised jitter) so that it travels into the blood vessel.

3.3. Drawing Process

The drawing process has the task of informing the user interface when it is safe to render
the voxel volume. It does this by signaling the user interface after thediscoverybarrier and
before themodifybarrier. When the user interface finishes rendering the volume, this process
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synchronises on themodifybarrier. Using this sequence, the voxels are only rendered during
the stablediscoveryphase, and the user interface stays in step synchronisationwith the sim-
ulation. Rendering of onlyone-in-nsimulation steps is implemented by a simple counter in
this process.

3.4. User Interface and Visualisation

Our simulation architecture is not tied to any specific form of visualisation or interface. We
have built simulations using 2D text and graphical interfaces; however, for our 3D blood
clotting simulations we choose to employ the open source Visualisation Toolkit (VTK) from
Kitware [20]. Binding foreign language routines intooccam-π is straightforward [21].

VTK is an open source library written in C++, with Python, Tcl/Tk and Java wrappers.
It has several hundred different classes and a selection of examples illustrating their use.
However, the focus of this toolkit is on loading static content from files, not the visualisation
of realtime simulations (known astracking).

For our visualisations, VTK is employed as avolume renderer. This means we can di-
rectly visualise what is in effect a 3D array of pixels. Internally, thevtkVolumeTextureMapper2D
class is used, which turns slices of the 3D volume into 2D textures that are rendered using
OpenGL. This approach is much faster than ray tracing. Two transfer functions map the byte
voxel data into colour and opacity before it is rendered. In theory, and there is evidence of its
use in the field, modern 3D hardware could be programmed to do this mapping in real time,
reducing CPU load and improving rendering times.

Also provided by VTK is a wealth of 3D interaction tools. In practice this means that
VTK handles mouse input to manipulate the camera, and the user-controllable sphere used to
project wounds onto the blood vessel. Input event handlers are registered so that interaction
events, including key strokes, are recorded in an overwriting ring buffer from which the
occam-π user interface process can access them.

4. Results and Further Work

4.1. Emergent Behaviour

Using the architecture and simple processes and behavioursdescribed, we have been able to
achieve results surprisingly similar to those in the human body. Given theright concentration
of platelets (figure 6), wounds to our simulated blood vessel(figures 7 and 8) triggers the
formation of clots (figure 9) that eventually form aplug covering the wound and preventing
further blood loss (figure 10). Too low a concentration and the clotting response is too weak
to let sufficiently large clots form. Too high a concentration and a clot forms too early, gets
stuck in the blood vesselbeforethe wound and fails to seal it. The clot also gets bigger and
bigger until it completely blocks all blood flow – which cannot be too the good!

The concentration boundaries within which successful sealing of a wound is observed
are artifacts of the current simulation model, i.e. they do not necessarily correspond with the
biology. However, the fact that this region exists for our models gives us encouragement that
they are beginning to reflect some reality.

In the human blood stream, clotting stimulation (and inhibition, which we have not yet
modelled but is certainly needed) involves many different chemical factors, cell types (there
are different types of platelet) and proteins (e.g. fibrinogen). It is encouraging that our mod-
elling techniques have achieved some realistic results from such a simple model.

The clotting response we observe from our model has been engineered, but not explicitly
programmed. The platelets are not programmed to spot woundsand act accordingly. They
are programmed only to move with the flow of blood, become sticky on encountering certain



262 C.G. Ritson and P.H. Welch / Process-Oriented Complex Systems Modelling

Figure 6. Simulated blood vessel represented by the cylinder, dots are platelets.

Figure 7. Simulation viewed from different angle, with wound placement tool on right.

levels of chemical and, then, clump together when they bump.Refining this so that greater
and greater levels of realism emerge should be possible through the addition of processes
modelling different stimulators and inhibitors of the clotting reaction, along with different
platelet types and other participating agents. Because of the compositional semantics of CSP
andoccam-π, such refinement will not intefere with existing behavioursin ways that surprise
– but should evolve to increase the stability, speed, accuracy and safety of the platelets’
response to injury.

4.2. Performance

Our process oriented model implemented inoccam-π has proved stable and scalable. Simu-
lations have been run with with more than 3,000,000 processes on commodity desktop hard-
ware (P4, 3.0Ghz, 1GB RAM). Memory places a limit on the size of our simulations. How-
ever, as our site processes only become scheduled when directly involved in the simulation,
the available processing power only limits the number of active agents. Bloodstream platelet
densities of up to 2% (an upper limit in healthy humans) implyup an average of around
60,000 agents – actual numbers will be changing all the time.Cycling each with an average
processing time of 2 microseconds (including barrier synchronisation, channel communica-
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Figure 8. Having placed a wound, platelets “fall” out of the blood vessel, and chemical factors can be visualised
by the darkened area.

Figure 9. Given time, chemical factors flow down the blood vessel and (small) clots can be seen forming as
dark blobs.

tion and cache miss overheads) still enables around 8 simuations steps per second, which is
very useable.

Figure 11 shows performance for simulations on a world of size 256x96x96 (2.3M+
sites). The different curves are for different levels of platelet concentration (0.5%, 1.0% and
2.0%). The x-axis shows simulation step numbers (generations), starting from an (unreal-
istic) bloodstream devoid of any platelets – but with them starting to arrive from upstream.
Performance does not stablise until the blood vessel is filled with platelets, which takes 500
generations. This is as expected, given a volume 256 sites inlength and with a roughly even
chance of any platelet moving forwards. At 0.5% platelet concentration (an average of ap-
proximately 5,000 agents), we are achieving around 13 simulation/steps a second. All these
results have visualisation disabled; in practice, most commodity graphics hardware has diffi-
cult rendering simulations this size at rates greater than 10 frames per second. As the number
of agents doubles to 1.0%, and then 2.0%, performance degrades linearly. Again, this is ex-
pected, given that the computation load has doubled and thatoccam-π process management
overheads are independent of the number of processes being managed.
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Figure 10. With sufficient time and a high enough platelet concentration a clot forms over the wound.

For the simulations whose results are shown in Figure 12, theplatelets and their associ-
ated clots are initialised sticky. This is the worst case (and unrealistic) scenario where clots
will form whenever two platelets collide. As expected, performance is lower than that in Fig-
ure 11, because the there are more agents. As clots form, theyslow down. This means that
platelets leave the simulation at a lower rate than they are entering and numbers rise. Even
then, performance rates stabilise given sufficient time andthe relationship between the levels
of platelets is consistent.
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Figure 11. 256x96x96 simulations with non-sticky platelets.
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Figure 12. 256x96x96 simulations with sticky platelets.

4.3. Future Work

The next steps in our research are to expand and refine our simulations. For the former, we
need to use either more powerful single machines or, more sensibly, clusters of machines. The
later will be possible using pony [22], an networking environment for theoccam-π runtime
system. We have begun tesing a cluster-based implementation of these simulation models and
initial results, not published here, are quite promising.

For refining the accuracy of the model, we would like to achieve the return of our simu-
lated blood vessel to anormalstate once blood loss through a wound has been stemmed. We
need to introduce factors that inhibit the production of further clots andbustexisting ones
(e.g. all those little ones that were washed away by the bloodstream before they could clump
to the wound). So long as the wound is open, chenical factors would continue to be released,
gradually lowering as the wound is closed. Inhibitor agentswould also reduce clotting factor
levels and correct blood flow vectors. The blood vessel wall also needs to be able to reform
under the protective clot. Eventually, with the wound healed, the clot would dissipate and the
factors that caused it would disappear.

Further refinement could be explored by integrating aspectsof other research, both phys-
ical and simulated, into the flow of platelets within the blood stream [23]. In order to model
these properties we will need to introduce aspects of fluid dynamics into our model, and al-
low our simulated clots to roll and sheer. By removing the rigid movement constraints on
platelets within a clot and giving them a degree of individual freedom, the introduction of
these new behaviours should be attainable. For example, by adding and appropriate vector
(changing with time) to each of the platelets within a clot, the clot as a whole could be made
to roll or tumble as it moves through the blood vessel.

Finally, we believe that the massively concurrent process-oriented architecture, outlined
in this paper for this simulation framework, can be applied generically to many (or most)
kinds of complex system modelling. We believe that the ideasand mechanisms are natural,
easy to apply and reason about, maintainable through refinement (where the cost of change
is proportional to the size of that change, not the size of thesystem being changed) and can
be targetted efficiently to modern hardware platforms. We invite others to try.
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