Communicating Process Architectures 2007 183
Alistair A. McEwan, Steve Schneider, Wilson Ifill, and P&tedch

I0S Press, 2007

(© 2007 The authors and 10S Press. All rights reserved.

C++CSP2: A Many-to-Many Threading
M odel for Multicore Architectures

Neil BROWN

Computing Laboratory, University of Kent, Canterbury, KebT2 7NF, UK.
neil@twistedsquare.com/nccb2@kent.ac.uk

Abstract. The advent of mass-market multicore processors providasregknew op-
portunities for parallelism on the desktop. The originaHC:EP — a library providing
concurrency in C++ — used only user-threads, which woulehevented it taking
advantage of this parallelism. This paper details the dg@reént of C++CSP2, which
has been built around a many-to-many threading model that¢sniser-threads and
kernel-threads, providing maximum flexibility in taking\ahtage of multicore and
multi-processor machines. New and existing algorithmslaseribed for dealing with
the run-queue and implementing channels, barriers andxesit@ he latter two are
benchmarked to motivate the choice of algorithm. Most o$éhalgorithms are based
on the use of atomic instructions, to gain maximal speed #ialemcy. Other issues
related to the new design and related to implementing coenay in a language like
C++ that has no direct support for it, are also described.heCSP2 library will be
publicly released under the LGPL before CPA 2007.

Keywords. C++CSP, C++, Threading, Atomic Instructions, Multicore

I ntroduction

The most significant recent trend in mass-market procesdes $ias been the growth of
multicore processors. Intel expected that the majorityrotessors they sell this year will
be multicore [1]. Concurrent programming solutions areunegl to take advantage of this
parallel processing capability. There exist various laygs that can easily express con-
currency (such as occam{2]), but the programming mainstream is slow to change lan-
guages; even more so to change between programming ‘parsiddi§equential, imperative,
procedural/object-oriented languages remain domingistfdr this reason that libraries such
as JCSP [3], C++CSP [4,5], CTC++ [6] and CSP for the .NET laiggs [7,8] have been
developed; to offer the ideas of occamand its ilk to programmers who choose (or are
constrained) to use C++, Java and the various .NET languages

C++CSP has previously been primarily based on user-thyeddsh simplify the algo-
rithms for the primitives (such as channels and barriersyelbsas being faster than kernel-
threads, but cannot take advantage of multicore proces&aeview of the latter problem
has given rise to the development of C++CSP2.

This report details the design decisions and implememaifacC++CSP2 [9]. Section
1 explains the new threading model that has been chosenos@dbriefly clarifies the ter-
minology used in the remainder of the paper. Section 3 pesvidore details on the imple-
mentation of the run-queue and timeout-queue. Section eribes how to run processes in
a variety of configurations in C++CSP2’s threading modetti®a 5 details a new barrier
algorithm specifically tailored for the chosen threadingdeloSection 6 then presents bench-
marks and discussion on various mutexes that could be ugbd aaderpinning for many of
C++CSP2’s algorithms. Section 7 contains details on theifledcchannel-ends and section

184 N. C. C. Brown / C++CSP2

8 discusses the channel algorithms. Section 9 highligm®sssues concerning the addition
of concurrency to C++. Finally, section 10 provides a bristdssion of networking support
in C++CSP2, and section 11 concludes the paper.

Notes

All the benchmarks in this report are run on the same machimé&tel Core 2 Duo 6300 (1.9
Ghz) processor with 2GB DDR2 RAM. The ‘Windows’ benchmarkswan under Windows
XP 64-bit edition, the ‘Linux’ benchmark was run under Uhw@NU/Linux 64-bit edition.

C++CSP2 is currently targeted at x86 and (x86-64) compapbbcessors on Windows
(2000 SP4 and newer) and Linux (referring to the Linux kemigh GNU's glibc).

Windows is a registered trademark of Microsoft Corporatidava is a trademark of
Sun Microsystems. Linux is a registered trademark of Linoivdlds. Intel Core 2 Duo is a
trademark of Intel Corporation. Ubuntu is a registerederadrk of Canonical Ltd. occam is
a trademark of STMicroelectronics.

1. Threading
1.1. Background

Process-oriented programming, based on CSP (Commurgcagquential Processes) [10]
principles, aims to make concurrency easy for developarsrder to provide this concur-
rency, developers of CSP implementations (such as JCSPQT1][12], KRoC [13]) must
use (or implement) a threading mechanism. When running prot@n Operating System
(0S), such threading mechanisms fall into three main caitegjaiser-threads, kernel-threads
and hybrid threading models.

User-threads (also known as user-space or user-levetifyreaM:1 threading) are im-
plemented in user-space and are invisible to the OS kerhely @re co-operatively sched-
uled and provide fast context switches. Intelligent scliadiwcan allow them to be more ef-
ficient than kernel-threads by reducing unnecessary costaiches and unnecessary spin-
ning. However, they do not usually support preemption, amelldocking call blocks all the
user-threads contained in a kernel-thread. Thereforéivigealls have to be avoided, or run
in a separate kernel-thread. Only one user-thread in a kdémread can be running at any
time, even on multi-processor/multicore systems. C++CEB and KRoC use user-threads.

Kernel-threads (also known as kernel-space or kerneldbkeads, or 1:1 threading) are
implemented in the OS kernel. They usually rely on preenmginoperform scheduling. Due
to the crossing of the user-space/kernel-space divide Hrat overheads, a kernel-thread
context switch is slower than a user-space context switcweder, blocking calls do not
cause any problems like they do with user-threads, andrdiftekernel-threads can run on
different processors simultaneously. JCSP (on Sun’s Jat@al/Machine on most Operating
Systems) uses kernel-threads.

Hybrid models (also known as many-to-many threading or Mif¢ading) mix kernel-
threads and user-threads. For example, SunOS containggoti@@gtheir terminology to that
used here) multiple kernel-threads, each possibly conimultiple user-threads, which
would dynamically choose a process to run from a pool, andhahprocess until it could
no longer be run. Much research on hybrid models has invdlvediser-thread and kernel-
thread schedulers sharing information [14,15].

In recent years hybrid models have faded from use and réseBne predominant ap-
proach became to increase the speed of kernel-threadergiyrremoving its primary draw-
back) rather than introduce complexity with hybrid modeid/ar ways to circumvent user-
threading’s limitations. This was most obvious in the depehent of the NGPT (Next Gen-

N. C. C. Brown / C++CSP2 185

eration POSIX Threads) library for Linux alongside the NP(Native POSIX Thread Li-
brary). NGPT was a complex hybrid threading library, wheml&TL was primarily centred
on a speed-up of kernel-threading. NPTL is now the defardtting library for Linux, while
development of NGPT has been quietly abandoned.

1.2. C++CSP2 Threading Options
This section explores the three different threading motiheiscould be used for C++CSP2.

1.2.1. User Threads

The previous version of C++CSP used only user-threads. iNghmass-market arrival of
multicore processors, the ability to only run on one progessmultaneously became an
obvious limitation that needed to be removed. Thereforaticaing to use only user-threads
IS not an option.

1.2.2. Kernel Threads

The most obvious move would have been to change to using enhekthreads. In future, it
is likely that the prevalence of multicore processors wothttnue to motivate OS developers
to improve the speed of kernel-threads, so C++CSP wouldgaifwithout the need for any
further development.

Channels and barriers between kernel-threads could bemgrited based on native OS
facilities, such as OS mutexes. The alternative would be¢catiomic instructions — but when
a process needed to wait, it would either have to spin (repsapoll — which is usually
very wasteful in a multi-threaded system) or block, whichulddnvolve using an OS facility

anyway.

1.2.3. Hybrid Model

The other option would be to combine kernel-threads andtiiseads. The proposed model
would be to have a C++CSP-kernel in each kernel-thread. Ghi<CSP-kernel would main-
tain the run queue and timeout queue (just as the C++CSPlkamays has). Each pro-
cess would use exactly one user-thread, and each usedthoedd always live in the same
kernel-thread.

It is possible on Windows (and should be on Linux, with somseasbly register hack-
ing) to allow user-threads to move between kernel-thraddaever, in C++ this could cause
confusion. Consider a process as follows:

void run()

{
//section A
out << data;
//section B
}

With moving user-threads, the code could be in a differer@at in section A to section
B, without the change being obvious. If this was a languagge dccams, where the code
in these sections would also be occancode, this may not matter. But C++CSP applica-
tions will almost certainly be interacting with other C+bdaries and functions that may not
handle concurrency as well as occamthese libraries may use thread-local storage or oth-
erwise depend on which thread they are used from. In thess dasecomes important to
the programmer to always use the library from the same thi®aa@llowing user-threads to
move would cause confusion, while not solving any particptablem.

186 N. C. C. Brown / C++CSP2

Moving user-threads would allow fewer kernel-threads tefgated (by having a small
pool of kernel-threads to run many user-threads) but theneagls of threading are primarily
based on the memory for stacks, so there would not be anygsawviarms of memory.

Another reason that hybrid models are considered infesidnat using priority can be
difficult. A high priority kernel-thread running a low-prity user-thread would run in pref-
erence to a low-priority kernel-thread running a high-ptjouser-thread. However, C++CSP
has never had priority so this is not yet a concern. | beliéna the benefits of a hybrid
threading model outweigh the drawback of making it diffi¢aladd priority to the library in
the future.

1.2.4. Benchmarks

Benchmarking threading models directly is difficult. Whdentext-switches between user-
threads can be measured explicitly, this is not so with Kethreads; we cannot assume that
our two switching threads are the only threads running insystem, so there may be any
number of other threads scheduled in and out between thente@ads we are testing. There-
fore the best test is to test a simple producer-consumergmogne writer communicating to
one reader), which involves context-switching, rathenttrging to test the context switches
explicitly.

Four benchmark tests were performed. One test used usadthon their own (without
any kernel-threads or mutexes) and another test testedlkbéneads on their own (without
any user-threads or C++CSP2 kernel-interactions). Theam' benchmarks reflect a choice
of a pure user-threads or pure kernel-threads model. Thényvdd benchmarks show the
result of using user-threads or kernel-threads in a hybasighéwork (that would allow the use
of either or both). See Table 1.

Table 1. Single communication times (including associated corgaitches) in microseconds.

Threading Windows Time Linux Time
Plain user-threads 0.19 0.19
Hybrid user-threads 0.27 0.28
Plain kernel-threads 2.7 2.4
Hybrid kernel-threads 3.1 2.8

1.2.5. Analysis

It is apparent that kernel-threads are at least ten timegeslthan user-threads. The nature
of the benchmark means that most of the time, only one kehme&ad will really be able to
run at once. However, these times are taken on a dual-cocegsor which means that there
may be times when less context-switching is needed becheaslreads can stay on different
processors. For comparison, the ratio between user-thegatikernel-threads on single core
Linux and Windows machines were both also almost exactlg@faf ten.

For simulation tasks and other high-performance uses ofGSP2, the speed-up (of
using user-threads rather than kernel-threads) would berawhile gain. However, running
all processes solely as user-threads on a multi-processeigystem would waste all but one
of the available CPUs.

A hybrid approach would allow fast user-threads to be usedidghtly-coupled pro-
cesses, with looser couplings across thread boundariésg dshybrid model with kernel-
threads would seem to be around 15% slower than ‘plain’ kehmeads. If only kernel-
threads were used by a user of the C++CSP2 library, the hytodel would be this much
slower than if C++CSP2 had been implemented using only kéhnneads. In fact, this deficit
is because no additional user-threads are used; much afthert the hybrid model bench-

N. C. C. Brown / C++CSP2 187

mark is spent blocking on an OS primitive, because the useatl run-queue is empty (as
explained in section 3.1). This cost would be reduced (cemally eliminated) if the kernel-
thread contained multiple user-threads, because theuanegwould be empty less often or
perhaps never.

A hybrid approach flexibly offers the benefits of user-theeadd of kernel-threads. It
can be used (albeit with slightly reduced speed) as a purelusad system (only using one
kernel-thread), or a pure kernel-thread system (where kewtel-thread contains a single
user-thread, again with slightly reduced speed), as wal @ambination of the two. There-
fore | believe that the hybrid-threading model is the besiahfor C++CSP2. The remainder
of this paper details the design and implementation of #&lgms for the hybrid-threading
model of C++CSP2.

2. Terminology

Hereafter, the unqualified term ‘thread’ should be taken éamkernel-thread. An unquali-
fied use of ‘kernel’ should be taken to mean a C++CSP2-kefmelinqualified ‘process’ is a
C++CSP process. A ‘reschedule’ is a (C++CSP2-)kernel batlmakes the kernel schedule
a new process, without adding the process to the end of thquene; i.e. it is a blocking
context-switch, rather than a yield (unless explicitlytath. An alting process refers to a pro-
cess that is currently choosing between many guards in amnative. The verb ‘alt’ is used
as a short-hand for making this choice; a process is said wval multiple guards when
using an Alternative.

3. Processand Kernel mplementation
3.1. Run Queues

Each thread in C++CSP2 has a kernel, and each kernel hasgmewe-of user-threads (each
process is represented by exactly one user-thread). Aegdhmay add to any thread-kernel’s
run-queue. The run-queue is built around a monitor conceatis and writes to the run-queue
are protected by the mutual exclusion of the monitor. Wheerraéd has no extra processes
to run, it waits on a condition variable associated with trenitor. Correspondingly, when a
thread adds to another kernel's empty run-queue (to free@eps that resides in a different
thread), it signals the condition variable.

In Brinch Hansen [16] and Hoare’s [17] original monitor cepts, signalling a condition
variable in a monitor effectively passed the ownership efrtiutex directly to the signalled
process. This had the advantage of preventing any thireepsoabtaining the monitor's mutex
in between. In the case of the run-queue, using this styleafitor would be a bad idea.
A kernel, X, adding to the run-queue of a kern&, would signal the condition variable
and then return, without releasing the mutex (which is éffety granted toK). Any other
threads that are scheduled afférbut before/X” would not be able to add t&’s run-queue
because the mutex would still be locked. These processedslWwaue to spin or yield, which
would be very inefficient and unnecessatry.

Instead, the monitor style used is that described by LampsdnRedell [18]. In their
system, the signalling kerneK{() does not grant the mutex directly to the signalled kernel
K. Instead, it merely releases the muték.will be scheduled to run at some future time,
at which point it will contend for the mutex as would any otlkernel. This allows other
kernels to add td<’s run-queue befor& has been scheduled — but onty(which changes
the run-queue from empty to non-empty) will signal the ctiodivariable.

188 N. C. C. Brown / C++CSP2

There is one further modification from Lampson and Redellsdel. They replace
Hoare’s “IF NOT (OK to proceed) THEN WAIT C” with “WHILE NOT (® to proceed) DO
WAIT C”; because the monitor can be obtained by another m®aoebetween the signaller
and the signallee, the other process could have changeamigéion (“OK to proceed”) to
false again. In the case of C++CSP2, kernels may only remmgepses from theownrun-
queue. Therefore the condition (the run-queue being ngoiy@roan never be invalidated by
another kernel (because they cannot remove processesifeoquéue).

Hoare has shown that monitors can be implemented using $ereg)[17] (in this case
only two would be needed — one to act as a mutex, one for thatcmmgariable). Therefore
one implementation option would be to use an OS semaphotexmith an OS semaphore.
In section 6 we will see that our own mutexes are considertdier than OS mutexes,
therefore a faster implementation is to use our own mutex antOS semaphore. This is how
it is implemented on Linux — on Windows, there are ‘eventstthre more naturally suited
to the purpose fulfilled by the semaphore on the Linux.

There were other implementation options that were dis@murithe semaphore could
have been implemented using atomic instructions in the saayemost of the mutexes in
section 6 are. This would inevitably have involved spinrang yielding. The process will be
blocked for an indefinite amount of time, which makes spigrand yielding inefficient. The
advantage of an OS semaphore/event is that it blocks rdtaeispinning, which will usually
be more efficient for our purposes. The other discarded ojithat the POSIX threads stan-
dard supports monitors directly (in the form of a combinaid a mutex and condition vari-
able). Benchmarks revealed this option to be at least twscgav as the mutex/semaphore
combination that C++CSP2 actually uses. The newly-retesdadows Vista also provides
such support for monitors, but | have not yet been able tolreack this.

3.2. Timeouts

Similar to previous versions of C++CSP, a timeout queue istamed by the kernel. It is
actually stored as two queues (in ascending order of timeqity) — one for non-alting pro-
cesses and one for alting processes. Before the kernetdriake the next process from the
run queue (which may involve waiting, as described in thgiptes section), it first checks the
timeouts to see if any have expired. If any non-alting tintednave expired, the processes are
unconditionally added back to the run queue. If any altingebuts have expired, an attempt
is made to add the processes back to the run-queue usirgedm@tingProcess algorithm
described in the next section.

The previous section described how a kernel with an emptygueue will wait on a
condition variable. If there any timeouts (alting or notirgg) that have not expired, the wait
is given a timeout equal to the earliest expiring timeoundftimeouts exist, the wait on the
condition variable is indefinite (i.e. no timeout value ipplied).

3.3. Alting

Processes that are alting pose a challenge. Alting is imgiésa in C++CSP2 in a similar
way to JCSP and KRoC. First, the guards are enabled in ordemarity (highest priority
first). Enabling can be seen as a ‘registration of inter@s#in event, such as indicating that
we may (conditionally) want to communicate on a particutzarmel. If no guards are ready
(none of the events are yet pending) then the process musunidiat least one event is
ready to take place. As soon as a ready guard is found, eitimgrgothe enable sequence or
after a wait, all guards that were enabled are disabled grsevorder. Disabling is simply the
reverse of enabling — revoking our interest in an event. Atethd of this process, the highest
priority ready guard is chosen as the result of the alt.

N. C. C. Brown / C++CSP2 189

Consider a process that alts over two channels and a timémay be that a process in
another thread writes to one of the channels at around the sara that the process’s kernel
finds that its timeout has expired. If the process is waitex@ctly oneof these two threads
should add the process back to the run queue. If the processl isnabling, the process
should not be added back to the run queue.

This problem has already been solved (and proven [19]) irPJ€& C++CSP2’s algo-
rithm is an adaptation of JCSP’s algorithm, that changesiweitor-protected state variable
into a variable operated on by atomic instructions. Theetkel of JCSP’s algorithm is as
follows:

class Alternative
{

private int state; //can be inactive, waiting, enabling, ready

public final int priSelect ()
{
state = enabling;
enableGuards ();
synchronized (altMonitor) {
if (state == enabling) {
state = waiting;
altMonitor.wait (delay);
state = ready;
}
}
disableGuards ();
state = inactive;
return selected;

}

//Any guard that becomes ready calls schedule:
void schedule () {
synchronized (altMonitor) {
switch (state) {
case enabling:
state = ready;
break;
case waiting:
state = ready;
altMonitor.notify Q) ;
break;
// case ready: case inactive:
// break
}
}
}
}

C++CSP2's algorithm is as follows. Note that unlike JCSHsitpossible that the
freeAltingProcess function might be called on a process that is not alting — behe case
for dealing withALTING_INACTIVE.

190

N. C. C. Brown / C++CSP2

unsigned int csp::Alternative::priSelect()

{

int selected, i;
AtomicPut (&(thisProcess->altingState) ,ALTING_ENABLE) ;

//Check all the guards to see if any are ready already:
for (i = 0;i < guards.size();i++)

{
if (guards[i]->enable(thisProcess))
goto FoundAReadyGuard;
}
i -= 1;

if (ALTING_ENABLE == AtomicCompareAndSwap(&(thisProcess->altingState),
/*compare:*/ ALTING_ENABLE, /*swap:*/ ALTING_WAITING))

{
reschedule(); //wait

}

FoundAReadyGuard: //A guard N (0 <= N <= i) is now ready:

}

for (;i >= 0;i--)
{
if (guards[i]->disable(thisProcess))
selected = i;

}

AtomicPut (&(thisProcess->altingState) ,ALTING_INACTIVE);
return selected;

void freeAltingProcess(Process* proc)

{

usign32 state = AtomicCompareAndSwap(&(proc->altingState),
/*compare:*/ ALTING_ENABLE, /*swap:*/ ALTING_READY);

//if (ALTING_ENABLE == state)
//They were enabling, we changed the state. No need to wake them.
//if (ALTING_READY == state)
//They have already been alerted that one or more guards are ready.
//No need to wake them.

if (ALTING_INACTIVE == state)

{
freeProcess(proc); //Not alting; free as normal
}
else if (ALTING_WAITING == state)
{
//They were waiting. Try to atomically cmp-swap the state to ready.
if (ALTING_WAITING == AtomicCompareAndSwap(&(proc->altingState),
/*compare:*/ ALTING_WAITING, /+*swap:*/ ALTING_READY))
{
freeProcess(proc); //We made the change, so we should wake them.
}
//0therwise, someone else must have changed the state from
//waiting to ready. Therefore we don’t need to wake them.
}

N. C. C. Brown / C++CSP2 191

Thus, the above algorithm does not involve claiming any nxegeexcept the mutexes
protecting the process’s run-queue — and this mutex is dalyned by a maximum of one
process during each alt. This makes the algorithm fasterasaids many of the problems
caused by an ‘unlucky’ preemption (the preemption of a tthiteat holds a lock, which will
cause other processes to spin while waiting for the lock).

JCSP’s algorithm has atate = ready” assignment after its wait, without a correspond-
ing line in C++CSP2. This is because the wait in JCSP may fibhestause the specified
timeout has expired — in which case the assignment would bdete In C++CSP2 time-
outs are handled differently (see section 3.2), so the psoisealways woken up by a call to
freeAltingProcess, and therefore the state will always have been changedétferesched-
ule function returns. With the addition of atomic variabieslava 1.5, it is possible that in
future ideas from this new algorithm could be used by JCS#H.its

4. Running Processes

The vast majority of processes are derived fromddmocess class. The choice of where to
run them (either in the current kernel-thread or in a newdketiread) is made when they are
run; the process itself does not need to take any accounisofltbice. The one exception to
this rule is described in section 4.1.

For example, the following code runs each process in a sepleeanel-threatd

Run(InParallel
(processA)
(processB)
(InSequence

(processC)
(processD)

)

To run processes C and D in the same kernel-thread, thénsaluenceOneThread would be
used in place ofnsequence in the previous code. To instead run processes A and B in one
kernel-thread, and C and D in another kernel-thread, the waalld look as follows:

Run(InParallel
(InParallelOneThread
(processA) (processB)
)
(InSequenceOneThread
(processC) (processD)
)
)3

To run them all in the current kernel-thread:

RunInThisThread(InParallelOneThread
(processA)
(processB)
(InSequenceOneThread
(processC)
(processD)

)

1The syntax, which may seem unusual for a C++ program, is iedddy techniques used in the Boost
‘Assignment’ library [20] and is valid C++ code

192 N. C. C. Brown / C++CSP2

In occams terminology, we effectively havear and seq calls (that run the pro-
cesses in new kernel-threads) as wellp&s. oNE. THREAD and SEQ.ONE. THREAD calls. Notice
that the shorter, more obvious methamprarallel and InSequence) uses kernel-threads.
Novice users of the library usually assume that, being a wwoent library, each process
is in its own kernel-thread. They make blocking calls to th® @ separate processes,
and do not understand why (in previous versions, that usgduser-threads) this blocked
the other processes/user-threads. Therefore it is wiseate rthe more obvious functions
start everything in a separate kernel-thread, unless tbhgrgmmer explicitly states not
to (usually for performance reasons, done by advanced wa$dre library) by using the
InParallelOneThread/InSequenceOneThread Calls.

The reader may notice that there is very little differen@afrthe user’s point of view
betweennSequence anNdInSequenceOneThread. The two are primarily included for complete-
ness; they are used much less than the corresponding pawllke because sequence is
already present in the C++ language. A call tan(InSequence(A) (B));” iS equivalent to
“Run(A) ;Run(B);".

4.1. Blocking Processes

As stated in the previous section, most processes can besramser-thread in the current
kernel-thread, or in a new kernel-thread — decided by thgraramer using the process, not
the programmer that wrote the process. Some processesaimpée a file-reading process,
will make many blocking calls to the OS. If they are placed ikeanel-thread with other
user-threads, this would block the other user-threadsatedly. Therefore the programmer
writing the file-reading process would want to make sure thatprocess being run will
always be started in a new kernel-thread. Only the sub-psaseof the file-reading process
can occupy the same kernel-thread, otherwise it will be thig process in the kernel-thread.

This is done in C++CSP2 by inheriting fromreadcsprocess instead ofcSProcess. The
type system ensures that the process can only be run in a meeldleread. This will not be
necessary for most processes, but will be applicable fadlpoocesses repeatedly interacting
with OS or similar libraries, especially if the call will & indefinitely (such as waiting for
a GUI event, or similar).

5. Barrier Algorithm

Like JCSP, C++CSP2 offers a barrier synchronisation pmitUnlike most implementa-
tions of barriers, dynamic enroliment and resignationlevetd. That is, the number of pro-
cesses enrolled on a barrier is not constant. The impleremtaf barriers in JCSP (from
which the original C++CSP barrier algorithm was taken) hasfTosync’ count (protected
by a mutex) that is decremented by each process that synsésoifhe process that decre-
ments the count to zero then signals all the other waitiregiths and sets theftTosync count
back up to the number of processes enrolled (ready for thiesyex). This section details a
new replacement barrier algorithm for use in C++CSP2.

The idea of using software-combining trees to implementradyeon a multi-processor
system is described by Mellor-Crummey and Scott in [21]. phecessors are divided into
hierarchical groups. Each processor-group synchronisés own shared counter, to reduce
hot-spot contention (due to shared-cache issues, redti@ngumber of processors spinning
on each shared ‘hot-spot’ is desirable). The last (‘winhipgocessor to synchronise in the
group goes forward into the higher-level group (which haaréhker shared counter) and so
on until the top group synchronises. At this point the metisogversed and the processors
go back down the tree, signalling all the shared countersetodll the blocked processes in
the lower groups that the processor had previously ‘won’.

N. C. C. Brown / C++CSP2 193

This idea can easily be transferred to multi-threaded syst&vith each thread blocking
rather than spinning. A spinning thread is usually wastefd system with few processors
but many threads. In order for it to finish spinning it willély need to be scheduled out, and
the other thread scheduled in to finish the synchronisafiberefore, yielding or blocking is
usually more efficient than spinning in this situation.

C++CSP2 uses a many-to-many threading approach. The seftwanbining tree ap-
proach can be adapted into this threading model by makintp@luser-threads in a given
kernel-thread into one group, and then having another énighr) group for all the kernel-
threads. This forms a two-tier tree. This tree allows foiroations to be made as follows.

Consider a group for all the user-threads in a kernel-threba€++CSP2 each user-
thread is bound to a specific kernel-thread for the life-tiofighe user-thread. The user-
threads of a particular kernel-thread can never be simetasiy executing. This means that
a group shared among user-threads does not need to be edotgcear mutex during the
initial stages of the synchronisation, nor do the operation it have to be atomic. This
allows speed-up over the traditional barrier implemeatativhere all the user-threads (in
every kernel-thread) would always need to claim the mutdividually.

The code for this optimised version would look roughly asdiek:

struct UserThreadGroup

{
int leftToSync;
int enrolled;
ProcessQueue queue;
};

//Returns true if it was the last process to sync
bool syncUserThreadGroup(UserThreadGroup* group)

{
addToQueue (group->queue, currentProcess) ;
return (--(group->leftToSync) == 0);
}
void sync(UserThreadGroup* group)
{
if (syncUserThreadGroup(group))
syncKernelThread() ;
else
reschedule();
}

The reschedule) method makes the C++CSP2-kernel pick the next user-threaad f
the run-queue and run it. It does not automatically add theenti user-thread back to the
run-queue — it effectively blocks the current process.

Only the higher-tier group (that is shared among kernedatis) needs to consider syn-
chronisation. This groupould be mutex-protected as follows:

int threadsLeftToSync;
map<KernelThreadld, UserThreadGroup > userThreadGroups;
Mutex mutex;

void syncKernelThread()

{
mutex.claim();
if (--(threadsLeftToSync) == 0)
{

int groupsLeft = userThreadGroups.size();

194 N. C. C. Brown / C++CSP2

for each group in userThreadGroups

{
group->leftToSync = group->enrolled;
if (group->enrolled == 0)
{
remove group from userThreadGroups;
groupsLeft -= 1;
}
freeAllProcesses (group->queue) ;
}

threadsLeftToSync = groupsLeft;
3

mutex.release();

The code only finishes the synchronisation if all the usezal groups have now syn-
chronised (that isyhreadsLeftToSync IS zero). The user-thread groups are iterated through.
Each one has itseftToSync count reset. If no processes in that group remain enrolked, t
group is removed. Finally, thenreadsLeftToSync count is reset to be the number of kernel-
threads (user-thread groups) that remain enrolled.

During this synchronisation, we modify theerTheadGroupS Of other kernel-threads,
even though they are not mutex-protected. This is poss#xaudse for us to be performing
this operation, all currently enrolled processes must laneady synchronised (and hence
blocked) on the barrier, so they cannot be running at the saneauntil after the freeAllPro-
cesses cal{which is why that call is made last in the for-loop). If a pess tries to enroll
on the barrier, it must claim the mutex first. Since we holdrtheex for the duration of the
function, this is not a potential race-hazard. The resigieagould look as follows:

void resign(UserThreadGroup* group)

{
group->enrolled -= 1;
if (--(group->leftToSync) == 0)
syncKernelThread() ;
}

The enrolled count is decremented, as is theToSync count. If this means that all
the user-threads in the group have now synchronised (ogmed), we must perform the
higher-tier synchronisation. The mutex does not need tol&iened unless as part of the
syncKernelThread () function. The enroll code is longer:

UserThreadGroup* enroll()
{
UserThreadGroup* group;
mutex.claim();
group = find(userThreadGroups,currentThreadId);
if (group == NULL)
{ //Group did not already exist, create it:
group = create(userThreadGroups,currentThreadId);
group->enrolled = group->leftToSync = 1;
threadsLeftToSync += 1; //Increment the count of threads left to sync
} else
{ //Group already existed:
group->enrolled += 1;
group->leftToSync += 1;
3

mutex.release(); return group;

N. C. C. Brown / C++CSP2 195

There is one further (major) optimisation of the algorithwsgible. All but the final
thread to callsynckernelThread() Will merely claim the mutex, decrement a counter and
release the mutex. This can be simplified into an atomic deeng¢, with an attempt only
being made to claim the mutex if the count is decrementedrim ze

int threadsLeftToSync;
map<KernelThreadId, UserThreadGroup > userThreadGroups;
Mutex mutex;

void syncKernelThread()

{
if (AtomicDecrement (&threadsLeftToSync) == 0)
{
mutex.claim();
// Must check again:
if (AtomicGet(&threadsLeftToSync) == 0)
{
int groupsLeft = 0;
for each group in userThreadGroups
{
if (group->enrolled != 0)
groupsLeft += 1;
}
AtomicPut (&threadsLeftToSync,groupsLeft);
for each group in userThreadGroups
{
group->leftToSync = group->enrolled;
if (group->enrolled == 0)
remove group from userThreadGroups;
freeAllProcesses(group->queue) ;
}
}
mutex.release();
}
}

There are some subtle but important features in the abowe ddbthreadsLeftToSync
count is first reset. This is important because as soon as racggses are released, they
may alter this count (from another kernel-thread) withaaitihg claimed the mutex. There-
fore the groups must be counted and #ieeadsLeftToSync Variable set before freeing
any processes. This could be rearranged to setiheédsLeftToSync count to the size
of the userThreadGroups map at the start, and performing an atomic decrement on the
threadsLeftToSync variable each time we find a new empty group. However, it issbn
ered that the above method, with a single atomic write anditevations through the map,
is preferable to repeated (potentially-contested) atameicrements and a single iteration
through the map.

The other feature is that th&readsLeftToSync count is checked before and after the
mutex claim. Even if our atomic decrement sets the variableeto, it is possible for an en-
rolling process to then claim the mutex and enroll before arecaim the mutex. Therefore,
once we have claimed the mutex, we must check again that the ozero. If it is not zero
(because another process has enrolled) we cannot finiskirthlerenisation.

196 N. C. C. Brown / C++CSP2
5.1. Benchmarks

The proposed new algorithm is more complicated than a ‘stahdbarrier algorithm. This
complexity impacts maintenance of the code and reducesdem i in its correctness; it has
not been formally verified. In order to determine if the negaaithm is worthwhile, its speed
must be examined. Barrier synchronisations were timedreakelts of which are given in
Table 2.

Table 2. The column headings af®lumber of kernel-threadsjNumber of processes each kernel-thread)
Each time is per single barrier-sync of all the processes{@noseconds).

(0K Barrier 1x100 1x1000 1x10000 2x1 2x5000 100x1 100x100

Windows New 20 370 7,500 3.5 5,900 170 6,400
Standard 24 490 8,600 3.4 7,700 300 9,500

Linux New 19 200 5,700 24 4,400 180 5,100

Standard 21 400 6,400 29 5,600 240 7,100

The new algorithm is at least as fast as the standard algoiithall cases bar one. As
would be expected, the performance difference is most@albie with many user-threads in
each of many kernel-threads. The new algorithm eliminasesaf the mutex among sibling
user-threads, where the standard algorithm must claim thiexxeach time — with competi-
tion for claiming from many other threads. The expectatsahat with more cores (and hence
more of these contesting threads running in parallel), #we algorithm would continue to
scale better than the standard algorithm.

6. Mutexes

Most C++CSP2 algorithms (such as channels and barrierghutexes. Therefore fast mu-
texes are important to a fast implementation. As well as regi@rovided by the operating
system (referred to here as OS mutexes) there are a numbertetes based on atomic in-
structions that could be used. This section describeswsrautex algorithms and goes on to
provide benchmarks and analysis of their performance.

6.1. Spin Mutex

The simplest mutex is the spin mutex. A designated locatioshiared memory holds the
value 0 when unclaimed, and 1 when claimed. An attempt amahg is made by doing
an atomic compare-and-swap on the value. If it was prewo@sit will be set to 1 (and
therefore the mutex was claimed successfully). If it is lthimg is changed — the process
must re-attempt the claim (known as spinning). Spinnindesslly on a system that has fewer
processors/cores than threads is often counter-pro@uttie current thread may need to be
scheduled out for the thread holding the mutex before a claiibe successful. Therefore
C++CSP2 spins an arbitrary number of times before eitheediding in another process
in the same thread or telling the OS to schedule anotherdhrealace of the spinning
thread (i.e. yielding its time-slice). For the purposeshid benchmark, the latter option was
implemented.

6.2. Spin Mutex Test-and-Test-and-Set (TTS)

The TTS mutex was developed for multi-processor machinesrevan attempted atomic
compare-and-swap would cause a global cache refresh g\udtitempted claims on a much-
contested location would cause what is known as the ‘thumgl&erd’ problem, where mul-

N. C. C. Brown / C++CSP2 197

tiple caches in the system have to be updated with each clnTTS mutex spins on a
read-only operation, only attempting a claim if the readaates it would succeed. Although
the thundering herd problem should not occur on the bendhsyatem, the TTS mutex is
included for completeness.

6.3. Queued Mutex

The Mellor-Crummey Scott (MCS) algorithm is an atomic-lmhseutex with strict FIFO
(first-in first-out) queueing. It is explained in greaterailein [21], but briefly: it maintains
a queue of processes, where the head is deemed to own the iMatexlaimers add them-
selves to the tail of the current list and spin (in the origM&S algorithm). When the mutex
is released, the next process in the queue notices, inplessing it the mutex.

The MCS algorithm has been adapted to C++CSP2 by removingpinh@ing. Instead
of spinning, the process immediately blocks after insgrtiself into the queue. Instead of a
process noticing the mutex is free by spinning, the relggsincess adds the next process in
the queue back to the appropriate run-queue. When it runs,aganplicitly knows that it
must have been granted the mutex.

This mutex has the benefit of being strictly-FIFO (and hewoéds starvation) as well as
having no spinning (except in a corner-case with unfortiating). The memory allocation
for the queue is done entirely on the stack, which will be keichan using the heap.

6.4. OS Mutex

Both Windows and Linux provide native OS mutexes. In factntdws provides two (a
‘mutex’ and a ‘critical section’). They can be used as blagkor non-blocking, as described
in the following sections.

6.4.1. Blocking Mutexes

Blocking mutexes cannot be used with C++CSP2. One useadhtannot blockvith the
OSon a mutex, because this would block the entire kernel-thriestead, processes (user-
threads) must block with the C++CSP2-kernel, or not blockla{spinning or yielding).
Therefore blocking OS mutexes are not a candidate for use@it-CSP2. The performance
figures are given only for comparison, had C++CSP2 beenkeehel-threaded — in which
case it could have used such mutexes.

6.4.2. Non-Blocking Mutexes

In contrast to the blocking mutexes, non-blocking OS mutexte real candidates for use in
C++CSP2.

6.5. Benchmarks

Benchmarks for each of the four mutexes are given Table 3ifivke case of Windows).
‘Uncontested’ means that the mutex is claimed repeatedbequence by a single process
— i.e. there is no parallel contention. ‘2x1’ is two concutr&ernel-threads (each with one
user-thread) repeatedly claiming the mutex in sequen€®@x1@ is ten concurrent kernel-
threads (each with ten concurrent user-threads) repgatkiining the mutex in sequence —
a total of one hundred concurrent claimers.

198 N. C. C. Brown / C++CSP2

Table 3. The column headings af®lumber of kernel-threads{Number of processes each kernel-thread)
B = Blocking, NB = Non-Blocking. All figures in nanoseconds @ significant places).

oS Mutex Uncontested 2x1 10x10

Windows Spin 30 86 6,100
Spin TTS 33 140 4,100
Queued 53 6,000 180,000
OS (Mutex), B 1,000 5,500 280,000
OS (Mutex), NB 1,100 2,800 230,000
OS (Crit), B 53 360 19,000
OS (Crit), NB 56 310 17,000

Linux Spin 35 85 6,700
Spin TTS 35 84 6,400
Queued 53 3,500 180,000
0Ss, B 62 150 13,000
OS, NB 58 120 7,200

6.6. Analysis

It is clear that the Windows ‘mutex’ is much slower than theeladatives, especially when
uncontested.

Performance of the queued mutex is of the same order of malgés the other mutexes
when uncontested, but scales badly. This is because of titenged interaction with the
C++CSP run-queues. Consider what will happen if a procegseesmpted while holding a
mutex in the 10x10 case. The next thread will be run, and e&teaen user-threads will
probably queue up on the mutex. Then each of the further thgéads will run, and each of
the ten user-threads in each will probably queue up on thexm8o 90 user-threads in total
may be scheduled. Compare this to the spin mutexes, wheyelOnliser-threads would be
scheduled (each performing a thread-yield).

The reason for the queued mutex’s appalling performandei@x1 case is not as imme-
diately clear. A clue can be found in the performance on aaingre system, which is only
a factor of two behind the fastest mutexes, rather than arffattover 40. Consider the two
threads running simultaneously (one on each core), regigatiaiming and releasing. Each
time a claim is attempted, it is reasonably likely that tHeeothread will hold the mutex. The
second process will queue up, and if the release does noehamen enough, the run-queue
mutex will be claimed, and the condition variable waited mpbhus, a wait on a condition
variable is reasonably likely to happen each and every clainTherefore the performance
is particularly bad for repeated claims and releases byegkéhmeads with no other processes
to run.

The Linux OS (now ‘futex’-based [22]) mutex and Windows ical section work in a
similar manner to each other. They first attempt to claim théemusing atomic instructions.
If that does not immediately succeed (potentially aftensig for a short time), a call is
made to the OS kernel that resolves the contention, blo¢ckmthread if necessary. Therefore
when there is no or little contention the performance is \@oge to the spin mutexes, and
only becomes slower when there is more competition and hece calls need to be made
to the OS kernel to resolve the contention.

The benchmarks were carried out with no action taking platéewthe mutex was held.
For the channel mutexes, this is fairly accurate. Only a apassignments are performed
while the mutex is held, and a maximum of two processes camrfpethe mutex. Therefore
the best mutex for channels is clearly the spin mutex, whashthe best performance with
little or no contention.

N. C. C. Brown / C++CSP2 199

The mutex for a barrier (under the new algorithm) is onlyrolad by an enrolling process
or by the last process to sync (that is, it is only claimed gmeebarrier-sync, barring any
enrollments). It is not contended if no processes are engollTherefore the spin mutex is
also the best choice for the barrier algorithm. The best xiatethe run-queues (explained
in section 3.1) is similarly the spin mutex.

The other major use of a mutex is for shared channel-endskéJall the other uses of a
mutex, in this case the mutex will be held indefinitely (utiié channel communication has
completed). Therefore spinning is not advisable. The quiematex is ideally suited for this
case. While it does not perform as well as the other mutexeguick claim-release cycles,
it offers no spinning and strict-FIFO ordering, which sisteared channel-ends (to prevent
starvation).

7. Channel Class Design

Like all the other CSP systems mentioned in this paper, CP+R&s the important concept
of channels. Channels are typed, unidirectional commtioicanechanisms that are fully
synchronised. In C++CSP, channels are templated objettarth used via their channel-ends
(a reading end and a writing end).

C++CSP vl had two channel-end typesanin and chanout [4]. The former supplied
methods for both alting and extended rendezvous, and thr@x@eption if an operation was
attempted on a channel that did not support it (for examgianoels with a shared reading-
end do not support alting). This was bad design, and has new ieetified. There are now
two channel reading endsnénout remains the only writing-end)Xjhanin and AltChanin.
The former does not provide methods to support alting, wasetiee latter does. In line with
the latest JCSP developments [23], they both support ezterehdezvous on all channels
(including buffered channels).

In JCSP tha1tingChannelInput channel-end is a sub-classaabnne1Input. However, in
C++CSP21tcChanin is not a sub-class a@hanin. This is because channel-ends in C++CSP2
are rarely held by pointer or reference, so sub-classingormeiof no advantage (and indeed
would suffer additional virtual function call overheadsgxeept when passing parameters to
constructors; specifically, antchanin could be passed in place of a parameter of tyaein.

To facilitate this latter use, implicit conversions are ghigd from A1tChanin tO Chanin — but
not, of course, in the opposite direction.

8. Channel Algorithms

In [24] Vella describes algorithms for implementing CSPrutels based on atomic instruc-
tions, for use in multi-processor systems. C++CSP2 everahaadvantage over the con-
straints that Vella had to work with. Vella is careful to netadd a process to the run-queue
before it has blocked, in case another thread takes it offithequeue and starts running it
simultaneously. In C++CSP2, this is not possible, becauseegses cannot move between
threads (so it will only be re-added to the run-queue forvts thread).

C++CSP2 does not use Vella’s algorithms however, becagseaimplications that are
added by supporting poisoning have not yet been resolved twé difficult atomic algo-
rithms. Instead, a mutex is used to wrap around the changaliims (one mutex per chan-
nel). There are two other changes from the original C++CSfPcél algorithms (described
in [4]), which are motivated in the following two sub-sectgon poison and destruction.

200 N. C. C. Brown / C++CSP2
8.1. Poison

C++CSP has always offered poisonable channels. Poisonihgranel is used to signal to
other processes using that channel that they should teteniBdaher end of a channel can
be used to poison it, and both ends will ‘see’ the poison (agoexception will be thrown)
when they subsequently try to use the channel.

The channel algorithms in C++CSP v1 had a curious behavidthrregards to poison.
Imagine, for example, that a reader was waiting for input azhannel. A writer arrives,
provides the data and completes the communication suctlgsas its next action the writer
poisons the channel. When the reader wakes up, it sees gwnmiraight away and throws a
poison exception. The data that the writer thought had ‘ss&ftilly’ been written is lost. This
could be further obscured if on a shared channel, one writepteted the communication
and another writer did the poisoning.

Sputh treats this as a fault in his JCSP algorithm, and crieg25]. | think that his
decision is correct, and the consequent implication that@SP’s original semantics (with
regards to poison) were flawed is also correct. This probsesolved by introducing an addi-
tional state flag into the channel, which indicates whethedast communication completed
successfully (before the poison) or not (it was aborted dysotson).

Another area in which poison semantics have been correctdsbifered channels. Pre-
viously, when a writer poisoned a buffered channel, theeeaduld see the poison imme-
diately, even if there was unread data in the buffer. Thisedwa similar problem to the one
above — data that the writer viewed as successfully sentdmvogillost. The new effects of
poisoning buffered channels are summarised below:

Writer poisonsthe channel: The channel is flagged as poisoned, the buffer is not modified.
Reader poisonsthe channel: The channel is flagged as poisoned, and the buffer is emptied.
Writer attemptsto usethe channel: Poison is always noticed immediately.

Reader attemptsto usethe channel: Poison is noticed only when the buffer is empty.

The semantics are asymmetric. The simplest rationale ¢hair choice is that poison-
ing a channel that uses a first-in first-out buffer of Sizaow has a similar effect to poisoning
a chain ofV identity processes.

8.2. Destruction

There are often situations in which the user of C++CSP2 walhirto have a single server
process serving many client processes. Assuming the comatiom between the two is a
simple request-reply, the server needs some way of repjegifically to the client who

made the request. One of the easiest ways of doing this ishéoclient to send a reply
channel-end with its request (channel-ends being inhgremdbile in C++CSP2):

//requestOut is of type Chanout< pair< int,Chanout<int> > >
//reply is of type int

{
One20neChannel<int> replyChannel;
requestOut << make_pair(7,replyChannel.writer());
replyChannel.reader() >> reply;

}

The corresponding server code could be as follows:

//requestIn is of type Chanin< pair< int,Chanout<int> > >
pair< int, Chanout<int> > request;

requestIn >> request;

request.second << (request.first * 2);

N. C. C. Brown / C++CSP2 201

For this trivial example, requests and replies are integard the server’'s answer is
simply double the value of the request.

If the old algorithms were used, this code would be potdgtizhsafe. The following
trace would have been possible:

Client sends request, server receives it.

Server attempts to send reply, must block (waiting fordiient).

Client reads reply, adds server back to the run-queue.

Client continues executing, destroyifig1yChannel.

Server wakes up and needs to determine whether it wokeibedawas poisoned
or because the communication completed successfully. ditverschecks the poison
flag; a member variable @kpiyChannel.

arwnPE

This situation thus leads to the server checking a flag in &ae=] channel. To help
avoid this problem, the first party to the channel (the one miist wait) creates a local stack
variable that will be used to indicate whether the commureoacompleted successfully, and
puts a pointer to it in a channel variable. The second parg tise pointer to modify the
variable. When the first party wakes up, it can then checlkdallstack variable successfully,
even if the channel has been destroyed.

9. Scoped Forking

Scope is a useful part of structured programming. In mosjuages, variable storage is
allocated when variables come into scope and de-allocated wariables go out of scope. In
C++ classes this concept is built on to execute a construdten an object variable comes
into scope, and a destructor to be called when an objectblargoes out of scope. This
feature, which is not present in Java, can be both useful andetous in the context of
C++CSP2. Both aspects are examined in this section.

C++CSP2 takes advantage of the scope of objects to offespadrorking object that
behaves in a similar manner to therkine mechanism of occam-[26]. In occams, one
might write:

FORKING
FORK some.widget ()

In C++CSP2 the equivalent is:

ScopedForking forking;
forking.fork(new SomeWidget) ;
} //end of block

The name of thecopedForking Object is arbitrary{orking is as good a name as any). At
the end of the scope of thlteopedForking Object (the end of the block in the above code), the
destructor waits for the forked processes to terminate -sdinee behaviour as at the end of
theForkInG block in occams.

The destructor of a stack object in C++ is called when theatdei goes out of scope —
this could be because the end of the block has been reachedlhgior because the function
was returned from, or an exception was thrown. In theserlatte cases the destructor will
still be executed.

For example:

202 N. C. C. Brown / C++CSP2

ScopedForking forking;
forking.fork(new SomeWidget) ;

if (something == 6)
return 5;

if (somethingFElse == 7)
throw AnException();

Regardless of whether the block is left because of the retiverthrow, or normally, the
code will only proceed once themewidget process has terminated. Using such behaviour
in the destructor allows us to emulate some language featireccams in C++, and even
take account of C++ features (such as exceptions) that aresent in occam= However,
there is one crucial difference — the occancompiler understands the deeper meaning be-
hind the concepts, and can perform appropriate safety shétkontrast, the C++ compiler
knows nothing of what we are doing. In section 8.2, one p@akptoblem of using objects
concurrently was demonstrated. There are two further kestéhat can be made using the
NnewscopedForking concept, which are explained in the following two sub-setdi

9.1. Exception Deadlock

Consider the following code:

One20neChannel<int> c,d;

try

{
ScopedForking forking;
forking.fork(new Widget(c.reader()));
forking.fork(new Widget(d.reader()));
c.writer() << 8;
d.writer() << 9;

}
catch (PoisonException)
{
c.writer() .poison();
d.writer() .poison();
}

At first glance this code may seem sensible. The try/catcbkbdi@als with the poison
properly, and the usefgkopedrorking process makes sure that the sub-processes are waited
for whether poison is encountered or not. Consider whathaibpen if the firstidget process
poisons its channel before the example code tries to writhdabchannel. As part of the
exception being thrown, the program will destroy Hepedrorking Objectbeforethe catch
block is executed. This means that the program will wait fathlwidgets to terminate before
poisoning the channels. If the secandget is waiting to communicate on its channel, then
deadlock will ensue.

This problem can be avoided by moving the declaration okt#agedrorking Object to
outside the try block. The general point, however, is thatGk+ compiler can offer no pro-
tection against this mistake. In a language such as Rain\\@vth offers both concurrency
and poison exceptions, the compiler could avoid such prabley detecting them at compile-
time in the first place, or by ensuring that all catch blockspfmison are executed before the
wait for sub-processes.

N. C. C. Brown / C++CSP2 203
9.2. Order of Destruction

Consider the following code:

{
ScopedForking forking;
One20neChannel<int> c,d;
forking.fork(new WidgetA(c.reader(),d.writer()));
forking.fork(new WidgetB(d.reader(),c.writer()));
}

This code creates two processes, connected together byalbaand then waits for
them to complete This code is very unsafe. In C++, objects are constructeorder of
their declaration. At the end of the block, the objects argrdged in reverse order of their
declaration. This means that at the end of the block in theyeloode, the channels will
be destroyed, and then theopedForking Object will be destroyed. So the processes will be
started, the channels they are using will be destroyed,f@the parent code will wait for
the processes to finish, while they try to communiate usirsgrdged channels.

Again, this problem can be avoided by re-ordering the datitams. This code is danger-
ous (in the context of our example):

ScopedForking forking;
One20neChannel<int> c,d;

This code is perfectly safe:

One20neChannel<int> c,d;
ScopedForking forking;

The subtle difference between the two orderings, the naieab relation between the
two lines, and the ramifications of the mistake (in all likelod, a program crash) make for a
subtle error that again cannot be detected by the C++ comipilanguages such as occam-
7 or Rain, this mistake can be easily detected at compile{tuargables must remain in scope
until the processes that use them have definitely termihatetithus avoided.

The documentation for the C++CSP2 library explains thetfallsi, and offers design
rules for avoiding the problems in the first place (for exapllways declare all channels
and barriers outside the block containing Hepedrorking Object). The wider issue here
is that adding concurrency to existing languages that havesal concept of it can be a
dangerous business. Compile-time checks are the only eéahce against such problems as
those described here.

10. Networking

C++CSP v1 had in-built support for sockets and networkeahctls, as detailed in [5]. The
network support was integrated into the C++CSP kernel;yetnre the kernel was invoked
for a context switch, it checked the network for new data, atteimpted to send out pend-
ing transmissions. Happe has benchmarked this model agdives models (with different
threading arrangements) [28]. His results showed thaguseparate threads (one for waiting
on the network and one for processing requests) producdiktigerformance. C++CSP2’s
network support (which has not yet been implemented) wiltbesidered in light of these
results, and with consideration for facilities availabidyoon Linux (such agpo11) or Win-
dows (such as I/0O completion ports).

2The same effect could have easily been achieafdlyusing theRun andInParallel constructs demon-
strated in section 4.

204 N. C. C. Brown / C++CSP2

11. Conclusions

C++CSP2 now supports true parallelism on multicore pramssand multi-processor sys-
tems. This makes it well-positioned as a way for C++ programsno take advantage of
this parallelism, either by wrapping the process-oriemedhodology that C++CSP2 offers
around existing code, or by developing their programs orofdp++CSP2 from the outset.

This paper has presented benchmarks of various mutexesetaalesl the fastest for
C++CSP2’'s algorithms. Where possible these algorithme ftually used atomically-
updated variables, avoiding the use of mutexes, in ordedoae contention for mutexes and
minimise the chance of processes being scheduled out wdldienly a mutex. The effect of
this work is to make C++CSP2 as fast as possible on multicuteraulti-processor machines
by reducing spinning and blocking to a minimum.

This work should prove relevant to the efforts to take adagetof multicore processors
in other CSP implementations. The atomic alting algoritresailibed in section 3.3 could
prove useful in JCSP, while the barrier algorithm and mutxdhmarks may be applicable
to the implementation of occam-

The major opportunities for future work are implementing tiretwork support (men-
tioned briefly in section 10) and formally proving some of tteav algorithms presented in
this paper. There are also new features being added to J@&Pas alting barriers, output
guards and broadcast channels [23] that would be advaniageadd to C++CSP2.

The C++CSP2 library will have been released before thispagriblished, and can be
found at [9]. In this new version, particular effort has beeminto improving and expanding
the documentation to make the library accessible to botice@and advanced users.

11.1. Final Thought

“I don’t know what the next major conceptual shift will be thhet that it will somehow be
related to the management of concurrencyBjarne Stroustrup, MIT Technology Review,
December 7, 2006.

References

[1] Anton Shilov. Single-core and multi-core processorpshénts to cross-over in 2006 — Intel.
http://www.xbitlabs.com/news/cpu/display/20051201235525.html, 10 February 2007.

[2] Fred Barnes. occam-pi: blending the best of CSP and tealpulus.http://www.occam-pi.org/, 10
February 2007.

[3] Peter H. Welch. Java Threads in Light of occam/CSP (Tatprin Andre W. P. Bakkers, editoRroceed-
ings of WoTUG-20: Parallel Programming and Jaysges 282—282, 1997.

[4] Neil C. C. Brown and Peter H. Welch. An Introduction to tkent C++CSP Library. In Jan F. Broenink
and Gerald H. Hilderink, editor§ommunicating Process Architectures 20p&ges 139-156, 2003.

[5] Neil C. C. Brown. C++CSP Networked. In lan R. East, Davidde, Mark Green, Jeremy M. R. Martin,
and Peter H. Welch, editor€ommunicating Process Architectures 20pdges 185-200, 2004.

[6] B. Orlic. and J.F. Broenink. Redesign of the C++ Commatiitg Threads Library for Embedded Control
Systems. In F. Karelse STW, edit&th Progress Symposium on Embedded Systpatges 141-156,
2004.

[7] Alex Lehmberg and Martin N. Olsen. An Introduction to CSET. In Frederick R. M. Barnes, Jon M.
Kerridge, and Peter H. Welch, editofSpmmunicating Process Architectures 20péges 13—-30, 2006.

[8] Kevin Chalmers and Sarah Clayton. CSP for .NET Based @&PJAn Frederick R. M. Barnes, Jon M.
Kerridge, and Peter H. Welch, editofSpmmunicating Process Architectures 20péges 59-76, 2006.

[9] Neil Brown. C++CSP2http://www.cppcsp.net/, 10 February 2007.

[10] C.A.R. Hoare.Communicating Sequential ProcessBsentice-Hall, 1985.

[11] Peter Welch. Communicating Sequential Processes &®B.J http://www.cs.kent.ac.uk/
projects/ofa/jcsp/, 10 February 2007.

[12] Gerald Hilderink. Communicating Threads for Javatp: //www.ce.utwente.nl/JavaPP/, 10 Febru-
ary 2007.

N. C. C. Brown / C++CSP2 205

[13] Fred Barnes. Kent Retargetable occam Compietp: //www.cs.kent .ac.uk/projects/ofa/kroc,
10 February 2007.

[14] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazayakd Henry M. Levy. Scheduler Activations:
Effective Kernel Support for the User-Level Managementardielism.ACM Transactions on Computer
Systemsl0(1):53-79, 1992.

[15] Brian D. Marsh, Michael L. Scott, Thomas J. LeBlanc, &whngelos P. Markatos. First-class user-level
threads. INSOSP '91: Proceedings of the thirteenth ACM symposium ondiipg systems principles
pages 110-121, New York, NY, USA, 1991. ACM Press.

[16] Per Brinch HansenOperating System Principle®rentice-Hall, 1973.

[17] C. A. R. Hoare. Monitors: an operating system structgrconcept. Communications of the ACM
17(10):549-557, 1974.

[18] Butler W. Lampson and David D. Redell. Experience witbgesses and monitors in Mes@ommun.
ACM, 23(2):105-117, 1980.

[19] Peter H. Welch and Jeremy M. R. Martin. Formal Analygi€oncurrent Java Systems. In Peter H. Welch
and Andre W. P. Bakkers, editoilSpmmunicating Process Architectures 20pfges 275-301, 2000.

[20] Thorsten Ottosen. Boost.Assignment Documentatiotkp: //www.boost.org/libs/assign/doc/,

10 February 2007.

[21] John M Mellor-Crummey and Michael L. Scott. Algorithrfier scalable synchronization on shared-
memory multiprocessoréd\CM Transactions on Computer Syste®(d):21-65, February 1991.

[22] Ulrich Drepper. Futexes are tricky. Technical Repo&, Red Hat, December 2005.

[23] Peter Welch, Neil Brown, Bernhard Sputh, Kevin Chalspand James Moores. Integrating and Extending
JCSP. In Alistair A. McEwan, Steve Schneider, Wilson [filhdaPeter Welch, editor€Sommunicating
Process Architectures 200@ages —, 2007.

[24] Kevin Vella. Seamless Parallel Computing On Heterogeneous NetworksuRipkdcessor Workstations
PhD thesis, University of Kent, 1998.

[25] Bernhard Herbert Carl SputtSoftware Defined Process NetwarkhD thesis, University of Aberdeen,
August 2006. Initial submission.

[26] Fred Barnes and Peter Welch. Prioritised Dynamic Comicating Processes - Part I. In James Pascoe,
Roger Loader, and Vaidy Sunderam, edit@smmunicating Process Architectures 20pages 321-352,
2002.

[27] Neil C. C. Brown. Rain: A New Concurrent Process-Or@ghProgramming Language. In Frederick R. M.
Barnes, Jon M. Kerridge, and Peter H. Welch, editG@@nmunicating Process Architectures 20péges
237-252, 2006.

[28] Hans Henrik Happe. TCP Input Threading in High PerfonceaDistributed Systems. In Frederick R. M.
Barnes, Jon M. Kerridge, and Peter H. Welch, editG@@nmunicating Process Architectures 20péges
203-214, 2006.

