
Communicating Process Architectures 2006 281
Peter Welch, Jon Kerridge, and Fred Barnes (Eds.)
IOS Press, 2006
© 2006 The authors. All rights reserved.

Compositions of Concurrent Processes
Mark BURGIN a and Marc L. SMITH b 1

a Department of Computer Science, University of California, Los Angeles
Los Angeles, California 90095, USA

b Department of Computer Science, Vassar College
Poughkeepsie, New York 12604, USA

Abstract. Using the extended model for view-centric reasoning, EVCR, we focus
on the many possibilities for concurrent processes to be composed. EVCR is an
extension of VCR, both models of true concurrency; VCR is an extension of CSP,
which is based on an interleaved semantics for modeling concurrency. VCR, like
CSP, utilizes traces of instantaneous events, though VCR permits recording parallel
events to preserve the perception of simultaneity by the observer(s). But observed
simultaneity is a contentious issue, especially for events that are supposed to be
instantaneous. EVCR addresses this issue in two ways. First, events are no longer
instantaneous; they occur for some duration of time. Second, parallel events need
not be an all-or-nothing proposition; it is possible for events to partially overlap in
time. Thus, EVCR provides a more realistic and appropriate level of abstraction for
reasoning about concurrent processes. With EVCR, we begin to move from
observation to the specification of concurrency, and the compositions of concurrent
processes. As one example of specification, we introduce a description of I/O-PAR
composition that leads to simplified reasoning about composite I/O-PAR processes.

Keywords. event, trace, composition, process, true concurrency, I/O-PAR.

Introduction

The motivation for view-centric reasoning (VCR) [13] stemmed from a desire to preserve
more information about the history of a computation than is preserved in a traditional CSP
trace. With the CSP model of concurrency, Hoare introduced the powerful notion that one
could reason about a computation by reasoning about its trace of observable events [4].
CSP is an interleaved model of concurrency, which means while some events may appear
to occur simultaneously during a computation, an observer records such occurrences in an
arbitrary, interleaved fashion. Such behavior by a computation’s observer results in a
decrease of entropy (i.e., imposing an order of events that did not actually exist during the
computation) within the CSP trace. VCR begins to address this issue with entropy-
preserving metaphors and abstractions, such as lazy observation; multiple, possibly
imperfect observers; and parallel event traces.

In particular, VCR traces were defined over multisets of observable events, rather than
atomic events. The laziness stems from sparing the observer the stressful decision of what
order to record simultaneous events. Furthermore, VCR distinguishes two types of trace: a
computation’s history, and its corresponding views. Since it is possible for a distributed
computation to be observed by more than one observer, consequences of relativity theory
provide for the possibility of different views of the same computation. Thus, the parallel

1 Corresponding Author: mlsmith@cs.vassar.edu

282 M. Burgin and M.L. Smith / Compositions of Concurrent Processes

event traces of VCR extend CSP in two important ways. First, VCR provides the entropy-
preserving abstraction of parallel events, and second, it provides a model for associating a
computation’s history with its multiple, possibly imperfect, but realistic views.

VCR’s contribution to the theory of CSP is not as general as it could be; a model of
true concurrency should support abstractions for events whose occurrence partially overlap
in time. Thus, the possibility of observed event simultaneity is not merely a Boolean
proposition, but rather a continuum: events A and B may overlap entirely, partially, or not
at all. Extended VCR (EVCR), which is introduced by the authors in [3], is the next step in
the evolution of CSP from a model that reduces concurrency to an interleaving of
sequential events, to a model of true concurrency that provides abstractions that represent
degrees of interleaving. EVCR provides abstractions that reflect the possibilities of
behavior that arise when composing today’s loosely-coupled, distributed systems, and
should therefore prove beneficial for modeling and reasoning about such computation.

In this paper, we extend the initial exposition of EVCR in [3], paying special attention
to compositions of concurrent processes. Compositions of systems and processes become
an important tool for the development of modern hardware and software systems with
complex sets of requirements. Unfortunately, as Neumann [11] writes, there is a huge gap
between theory and common practice: system compositions at present are typically ad hoc,
based on the intersection of potentially incompatible component properties, and dependent
on untrustworthy components that were not designed for interoperability – often resulting
in unexpected results and risks.

Results of this paper give additional evidence to this statement. The analysis of real
systems and processes made possible to find new types even for such a well-known
operation as sequential composition. This was possible because the authors considered not
only data-flow relations between systems and processes used in the conventional sequential
composition, but also temporal and causal relations.

In the first section, we develop a rigorous setting for studying and reasoning about
concurrent processes. We give strict definitions of different kinds of events and processes.
In the second section, we introduce and study basic temporal relations that exist between
events in concurrent processes. The topic of the third section is composition of concurrent
processes. Section 4 presents a case study of I/O-PAR composition, and the benefits of
EVCR abstractions for reasoning about the specification and properties of composite I/O-
PAR processes.

1. Systems, Processes and Events

The basic concept of a theory of concurrent processes is event. We consider two types of
events: abstract or process events and embodied or system events. Usually, a system
belongs to some environment, while a process interacts (communicates) with other
processes, which form the environment of the first process. Taking into account this natural
structure, we come to three categories of events.

Definition 1. An event in a system R (of a process P) is a change of [the state, or phase] of
the system R (in the process P).

For instance, an event in such system as a finite automaton or finite state machine is a
state transition of this automaton or machine. Sending a message is an event in a network.
Printing a symbol or a text, producing a symbol on the screen of the display, and
calculating 2 + 2 are events in a computer. The latter event can be also an event in a
calculator.

 M. Burgin and M.L. Smith / Compositions of Concurrent Processes 283

It is natural to consider events as multisets (cf., for example, [13]). Thus, a process can
contain several copies of the same event. At the same time, it is possible that two or more
processes contain different copies of an event in some cases, while they have a common
copy (or several common copies) of the same event. For instance, taking such an event as
sending a message, we see that different copies of this event belong, as a rule, to many
different processes. At the same, each copy of such an event as information (data) exchange
between two processes necessarily belongs to two processes.

Definition 2. An event by a system R (a process P) is a change in the environment of the
system R (the process P) caused by R.

For instance, when a system R sends information to another system, it is an event by
this system R.

Definition 3. An event for a system R (a process P) is a change in relations between the
system R (the process P) and its environment.

For instance, when a system R was connected to another system and then this
connection is broken, it is an event for this system R.

Definition 4. When the change is detectable, i.e., there are means to discern this change,
the corresponding event is called observable.

Not all events are observable if there are, for example, indistinguishable states in a
system or continuous changes are observed in a system where it is impossible to discern the
next state of the system. The question is why do we need unobservable events? The reason
for this is that in some cases, a researcher can build a better model of a process taking not
only observable events. For instance, in physics, the majority of physical quantities take
value in the set of all real numbers. Any interval of real numbers contains uncountable
quantity of numbers. However, it is known that measurement can give only a finite number
of values. Thus, the majority of values of continuous physical quantities, such as speed,
acceleration, temperature, etc., are unobservable but models that use real numbers are more
efficient than finite models.

Definition 5. A process is a system of related events.

This is a very general definition. For example, one event may be considered as a
process. Several events in some system also may be considered as a process. However, it is
reasonable to have, at first, such a general definition and then to separate different kinds of
processes relevant to concrete situations. It is also necessary to remark that this definition of
a process depends on our comprehension and/or description.

There are two types of processes: abstract processes, which consist of abstract events,
and embodied processes, consist of events in some system. There are also two types of
systems: structural or semiotic, such as a finite automaton or Turing machine, and physical,
such as computers, servers, routers, the World Wide Web. As a result, embodied processes
are subdivided into two classes: structurally and physically embodied.

Definition 6. A process P is called finite if it consists of a finite number of events.
Otherwise, P is called infinite.

For a long time, computer scientists studied and accepted only finite processes. The
finiteness condition was even included in definitions of the main mathematical models of

284 M. Burgin and M.L. Smith / Compositions of Concurrent Processes

algorithms, such as Turing machines. However, infinite processes become more and more
important in theoretical studies and practical applications (cf., for example [2, 12, 14]).

Definition 7. Any subset of a process P in which all relations between events are induced
by relations in P is called a subprocess of P.

Proposition 1. Any subprocess of a subprocess of P is a subprocess of P.

2. Temporal Relations between Events

There are different relations between events in a process, as well as between events in a
system. The pivotal is the ordering relation that defines time in the process or is defined by
time in the system to which these events belong.

Analyzing temporal relations in real computational and other processes, we can
distinguish several types of event pairs:

• A sequential pair of events consists of two events where one ends before the next
starts.

• A simultaneous pair of events consists of two events where both events start and end
simultaneously.

• A coexisting pair of events consists of two events where one starts before the next
ends.

• A separable pair of events consists of two events that are not coexisting.
• A separated pair of events consists of two events for which coexistence is excluded.
• An event r is included in an event q if the event q starts before or when the event r

starts and the event q ends after or when the event r ends.

Types of events are formally determined by the corresponding binary relations on sets
of events:

• The coexistence relation CER. This relation allows several interpretations, reflecting
different modalities. It can formalize situations in which events must go so that one
starts before another is finished (prescriptive coexistence). It can also formalize
situations in which one event really starts before another is finished (actual
coexistence). It can as well formalize situations in which one event may start before
another is finished (possible coexistence).

• The separability relation SPR. This relation shows when events are (or may be) not
coexisting.

• The ordering relation ODR. This relation allows several interpretations. It can
formalize the order in which events must happen (prescriptive order), e.g., at first,
we need to compute the value of a function, and only then to print the result. It can
also formalize the order in which events really happened (actual order). It can as
well formalize the order in which events may happen (possible order).

• The simultaneity relation STR. This relation allows several interpretations. It can
formalize situations in which events must go simultaneously (prescriptive
coexistence). It can also formalize situations in which events really go
simultaneously (actual coexistence). It can as well formalize situations in which
events may go simultaneously (possible coexistence).

• The inclusion relation ICR. This relation allows several interpretations. It can
formalize situations in which events are constrained so that the included event ends

 M. Burgin and M.L. Smith / Compositions of Concurrent Processes 285

before or when the other is finished and starts after or when the other starts
(prescriptive inclusiveness). It can also formalize situations in which the included
event really ends before or when the other is finished and really starts after or when
the other starts (actual inclusiveness). It can as well formalize situations in which it
is possible that the included event ends before or when the other is finished and
starts after or when the other starts (possible inclusiveness).

EVCR actually models arbitrary processes. Some illustrations of the above relations

may be found in music for the piano, where the musical notes are events. A piece of music
is composed from individual notes, each produced by a corresponding key on the piano,
according to a musical prescription, represented in the form of sheet music. The sheet
music prescribes when to play separated notes in succession (e.g., a run), and when to play
notes in different possible coexisting fashions. Chords, arpeggios, melodies, harmonies, and
syncopated rhythms are but a few examples of what can be prescribed by different
combinations of the above relations. Upon performing such a piece of music, members of
the audience subsequently make a determination of how well the actual composition of
musical notes match what they believe was prescribed. In some cases, the result is a round
of applause.

Returning our attention to grid automata, natural axioms on the above relations are
derived from an analysis of real computations and other processes:

Axiom (CP 1). CER is a complement of SPR .

An informal meaning of this is given by the following statement:

Corollary 1. Any two events are either coexisting or separable.

Axiom (CP 2). ODR is a subset of SPR .

An informal meaning of this is given by the following statement:

Corollary 2. Any two ordered events are separated.

Axiom (CP 3). STR and ICR are subsets of CER .

An informal meaning of this is given by the following statement:

Corollary 3. Any two simultaneous events (of which one is included into another) are
coexisting.

Definition 8. A binary relation Q is called a tolerance on a set X or of a set X if it is
reflexive, i.e. xQx for all x from X, and symmetric, i.e., xQy implies yQx for all x, y from X.

Axiom (CP 4). CER is a tolerance.

An informal meaning of this is given by the following statement:

Corollary 4. Any event is coexisting with itself.

Axiom (CP 5). STR is an equivalence.

This implies the following property:

286 M. Burgin and M.L. Smith / Compositions of Concurrent Processes

Corollary 5. Any event is simultaneous with itself.

Definition 9. A binary relation Q is called a preorder (or quasiorder) on a set X if it is
reflexive, i.e. xQx for all x from X, and transitive, i.e., xQy and yQz imply xQz for all x, y, z
from X. A preorder that also is antisymmetric is a partial order.

Axiom (CP 6). ODR is a partial quasiorder.

Axiom (CP 7). SPR is reflexive and symmetric.

Axiom (CP 8). ICR is a partial order.

An informal meaning of this is given by the following statement:

Corollary 6. Any event is included into itself.

These relations define connections between events:

Definition 10. If Q is binary relation, then the transitive closure Q* of Q is the smallest
transitive binary relation that contains Q.

As the intersection of transitive binary relations is a transitive relation, the transitive
closure of a relation is unique.

Definition 11. Two events a and b are existentially connected if aCE R
*b.

Informally, the existential connectedness of the events a and b means that there is

sequence of events a0 , a1 , a2 , a3 , … , an such that a0 = a, an = b, and ai-1 coexists with ai
for all i = 1, 2, 3, … , n.

Proposition 2. CER
* is an equivalence relation.

Definition 12. Two events a and b are sequentially connected if aODRb.

Sequential connectedness is a base for interleaving as the following result
demonstrates:

Theorem 1. Processes P1 , P2 , P3 , … , Pn are (potentially) interleaving if the relation ODR
can be extended to a total order on the set of all events from P1 , P2 , P3 , … , Pn.

Definition 13. Two events a and b are parallelly connected if aSTRb.

Let us consider some important types of complex events:

Definition 14. A parallel event is a group of simultaneous events.

Proposition 3. For any event a from a finite number of finite processes, there is a maximal
parallel event that contains a.

Definition 15. A complete parallel event is a group of all events that are simultaneous to
one event from this group.

 M. Burgin and M.L. Smith / Compositions of Concurrent Processes 287

Proposition 4. A complete parallel event does not depend on the choice of the event to
which all other events from this group are simultaneous.

Proposition 5. A complete parallel event is a maximal parallel event.

Proposition 6. If STR = CER, then ODR induces an order relation on the set of all complete
parallel events and it is possible to make this order linear.

Definition 16. A coexisting event is a group of events in which each pair of events is
coexisting.

Proposition 7. Any parallel event is a coexisting event.

However, in general, not every coexisting event is a parallel event. These concepts
coincide if and only if STR = CER.

Definition 17. A complete coexisting event is a maximal coexisting event.

As the simultaneity relation STR is a subset of the coexistence relation CER, we have
the following result:

Proposition 8. A complete coexisting event includes as subsets all parallel events of its
elements.

Proposition 9. Two events a and b are simultaneous if and only if a is included in b and b
is included in a, or formally, bSTRa ⇔ aICRb & aICRb.

Corollary 7. STR = ICR ∩ ICR
-1.

It is possible to extend all introduced relations from binary to n-ary relations on sets of

events for any n > 1. To do this, we assume that each event a takes some interval of time
t(a). Note that such an interval t(a) can have a zero length, i.e., to be a point of time. Let us
denote by bt(a) time of the beginning of the event a and by et(a) time of the end of the
event a. Then:

• The ordering relation ODR
n : for events a1 , a2 , … , an , ODR

n(a1 , a2 , … , an)
means that et(ai) ≤ bt(ai+1) for all i = 1, 2, …, n – 1.

• The simultaneity relation STR
n : for events a1 , a2 , … , an , STR

n(a1 , a2 , … , an)
means that et(ai) = et(aj) and bt(ai) = bt(aj) for all i , j = 1, 2, …, n.

• The inclusion relation ICR
n : for events a1 , a2 , … , an , ICR

n(a1 , a2 , … , an) means
that et(ai) ≤ et(ai+1) and bt(ai) ≥ bt(ai+1) for all i = 1, 2, …, n – 1.

• The coexistence relation CER
n: for events a1 , a2 , … , an , CER

n(a1 , a2 , … , an)
means that ∩i=1

n t(ai) is not void.
• The separability relation SPR

n . This relation shows when any pair of events a1 , a2 ,
… , an is (or may be) not coexisting.

For some of these relations, there is a natural correspondence with their binary analogues:

Proposition 10. ODR
2 = ODR , STR

2 = STR , ICR
2 = ICR , CER

2 = CER , and SPR
2 = SPR .

288 M. Burgin and M.L. Smith / Compositions of Concurrent Processes

Proposition 11. ODR
n (a1 , a2 , … , an) is true if and only if aiODRai+1 is true for all i = 1,

2, …, n – 1.

Proposition 12. ICR
n (a1 , a2 , … , an) is true if and only if aiICRai+1 is true for all i = 1, 2,

…, n – 1.

Proposition 13. STR
n (a1 , a2 , … , an) is true if and only if aiSTRaj are true for all i , j = 1,

2, …, n.

Similar property for the coexistence relation CER
n is true only in a linear time. Namely,

we have the following result:

Proposition 14. CER
n (a1 , a2 , … , an) is true if and only if aiCERaj are true for all i , j = 1,

2, …, n.

For non-linear time, this is not always correct as the following example demonstrates:

Example 1. Let us consider cyclic time [1] that goes from 1 to 12, while after 12 goes 1.
Taking events a, b, and c for which t(a) = [1, 7], t(b) = [5, 11], and t(c) = [10, 2], we have
that aCERb , cCERb and aCERc are true, while CER

3(a, b, c) is not true.

3. Compositions of Processes

Definition 18. Composition is an operation that combines two or more processes into one
process. If c is a composition operator and Pi , i ∈ I, are processes, then the result c(Pi , i ∈
I) is a process – also called a composition of the processes Pi .

For instance, the result of composition c of processes P and Q is denoted by c(P, Q).

Remark 1. Very often composition of systems induces composition of processes in these
systems.

Definition 19. Composition c of processes P and Q is called faithful if both of them
become, i.e., are isomorphic to, subprocesses of the result c(P, Q) of this composition.

Definition 20. Composition c of processes P and Q is called exact if both of them become,
i.e., are isomorphic to, disjoint subprocesses of the result c(P, Q) of this composition.

Example 2. Let us consider the sequential composition W of three processes A, B, and C
where A is the input process of data 7 and 11, B is the process of calculating/computing 7 +
11, and C is the process of printing the result of this calculation.

If we denote by P the sequential composition of processes A and B, and by Q the
sequential composition of processes B and C, then W is a faithful but not exact composition
of processes P and Q.

Definitions show that any exact composition is faithful. Proposition 1 implies the
following result:

Proposition 15. If c is a faithful (exact) composition of processes P and Q and d is a
faithful (exact) composition of processes c(P, Q) and R, then d(c(P, Q), R) is a faithful
(exact) composition of processes P, Q and R.

 M. Burgin and M.L. Smith / Compositions of Concurrent Processes 289

Definition 21. Composition c of processes P and Q is called strict if any event from c(P, Q)
belongs either to P or Q, or to both of them.

Proposition 16. If c is a strict composition of processes P and Q and d is a strict
composition of processes c(P, Q) and R, then d(c(P, Q), R) is a strict composition of
processes P, Q and R.

The most popular composition is the sequential composition of systems, functions,
algorithms, and processes. The first formalized form of the sequential composition was
elaborated for functions in mathematics. A similar construction for processes results in the
following concept:

Definition 22. The sequential composition PsQ of processes P and Q combines them so
that the process PsQ contains all events from P and Q and relations between them, all
output data of the first process are taken as input data of the second one, and any events a
from P and b from Q, we have aODRb, i.e., all events from P precede all events from Q.

The sequential composition is often used in computer science to prove different
properties of automata, algorithms, and formal languages. For instance, the sequential
composition of finite automata is used in [5] to prove that any regular language is the
language accepted by some finite automaton or to show that the class of all regular
languages is closed with respect to concatenation. In [2], sequential compositions are used
to prove that inductive Turing machines can compute (generate) and decide the whole
arithmetical hierarchy.

However, for computational and other processes, it is possible to build more kinds of
sequential composition:

Definition 23. The weak sequential composition PwsQ of processes P and Q combines
them so that the process PwsQ contains all events and relations between them from P and
Q and for any events a from P and b from Q, we have aODRb, i.e., all events from P
precede all events from Q.

Example 3. If we compute 7 + 11 by a process P and after compute 8⋅12 by a process Q
using the same computer, then the whole process W will be the weak sequential
composition of processes P and Q.

Remark 2. When a process P produces no output data, then for any process Q, the weak
sequential composition of processes P and Q coincides with the sequential composition of
processes P and Q.

Remark 3. When a process P produces no output data, it does not mean that the process P,
gives no result. The result of the processes P can be change in some system, information
transition or reception, etc.

Proposition 17. Any (weak) sequential composition is exact and strict.

Definition 24. The causal sequential composition PsQ of processes P and Q combines
them so that the process PsQ contains all events from P and Q and relations between them,
any events a from P and b from Q, we have aODRb, and the first process transmits
information to the second one.

290 M. Burgin and M.L. Smith / Compositions of Concurrent Processes

It is natural to make a distinction between data and control information (instructions,
commands, etc.) This separates the causal sequential composition into three subclasses:
data-driven, control-incited and combined sequential composition. Data-driven composition
is given in Definition 18.

Definition 25. The control-incited sequential composition PsQ of processes P and Q
combines them so that the process PsQ contains all events from P and Q and relations
between them, any events a from P and b from Q, we have aODRb, and the first process
sends some control information (e.g., an instruction or rule) that is used in the second
process.

It is possible that the second process uses both data and control information from the
first process. In this case, we have the combined sequential composition. The sequential
composition is related to sequential processes:

Definition 26. A process P is called sequential if for any two events a and b from P, we
have bODRa or aODRb – i.e. one event from any two precedes the other one.

Lemma 1. Any finite sequential process has the first and last events.

Proposition 18. Any subprocess of a sequential process is a sequential process.

Definition 27. Two events a and b are directly sequentially connected if aODRb and there
is no event c such that relations aODRc and cODRb are true.

Proposition 19. Any sequential process is a sequence of its directly sequentially connected
events.

Definition 28. A subprocess Q of a sequential process P is called complete if for any two
events a and b from Q, relations aODRc or cODRb imply that c also belongs to Q.

Proposition 20. Any sequential process is the sequential composition of, at least, two of its
complete subprocesses.

Theorem 2. The weak sequential composition of two sequential processes is a sequential
process.

As any sequential composition of processes is also the weak sequential composition,
we have the following result:

Corollary 8. The sequential composition of two sequential processes is a sequential
process.

This gives us an algebraic structure on the set of all sequential processes.

Corollary 9. The set of all sequential processes (in some system) is a semigroup with
respect to weak sequential composition.

Remark 4. The above result if valid for any composition operator (not all of which are
associative).

 M. Burgin and M.L. Smith / Compositions of Concurrent Processes 291

Definition 29. The parallel composition PparQ of processes P and Q combines them so
that (1) the process PparQ contains all events from P and Q and relations between them
and (2) any event a from P is coexisting to some event b from Q (i.e. we have aCERb).

Proposition 21. Any parallel composition is exact.

Proposition 22. If R is a subprocess of P, then RparQ is a subprocess of PparQ (for any
process Q).

Remark 5. However, if R is a subprocess of Q, then PparR is not necessarily a subprocess
of PparQ (for any process P). This shows that parallel composition of processes is not
symmetric.

Definition 30. The composition PparQ of processes P and Q is strictly parallel if (1) the
process PparQ contains all events from P and Q and relations between them, (2) any event
b from Q is coexisting to some event a from P (i.e. we have bCERa), and (3) any event a
from P is coexisting to some event b from Q (i.e. we have aCERb).

Lemma 2. Any strictly parallel composition is a parallel composition.

This means that the strictly parallel composition inherits many properties of the
parallel composition:

Proposition 23. Any strictly parallel composition par of processes is associative: i.e. for
any processes P, R and Q, we have (PparQ)parR = Ppar(QparR).

Remark 6. It is possible to show that sequential and parallel compositions of processes are
induced by temporal sequential and parallel compositions of systems. Temporal sequential
composition allows one to build sequential composition of system with itself.

Parallel composition of processes corresponds to the logical operation “and”. It is also
possible to build a composition of processes that corresponds to the logical operation “or.”
It is called selective composition.

Let P(x) be a predicate (function that takes value 0 and 1):

Definition 31. The selective composition P(x)(P | Q) of processes P and Q is equal to the
process P when P(x) = 1 and equal to the process Q when P(x) = 0.

Events can be elementary and complex. Complex events consist of other events. Thus,
it is possible to consider a process as complex event. Moreover, any set of events can
formally be considered as one complex event when we ignore relations between the initial
events.

Proposition 24. If aICRb and aICRc, then bCERc.

Corollary 10. If a is an elementary event, aCERb and aCERc, then bCERc.

Proposition 7 implies the following result:

Corollary 11. Coexisting elementary events are simultaneous.

Proposition 25. An event simultaneous with an elementary (for a set E) event is itself
elementary (for E).

292 M. Burgin and M.L. Smith / Compositions of Concurrent Processes

Definition 32. A faithful composition c of processes P and Q is quasi-parallel if the
processes P and Q considered as complex events are parallel events in c(P, Q).

Remark 7. It is not always that a quasi-parallel composition of two processes is parallel
and vice versa. If a composition c is quasi-parallel, it means that finite processes P and Q
start and end at the same time. It gives us the following result.

Proposition 26. If a composition c is quasi-parallel, then the first events from P and Q are
simultaneous and the last events from P and Q are simultaneous.

There are many other kinds of process composition, one of which is considered in the
next Section.

All introduced constructions of EVCR allow one to build VCR as submodel of EVCR.
In that submodel, only the simultaneity relation STR is considered because all events are
instantaneous.

4. Composition of I/O-PAR Processes

Why devote so much time to exploring so many different types of composition? One reason
is that thinking deeply about composition in general may lead to new ways of reasoning
about known properties of specific types of composition. For example, consider the
composition of I/O-PAR processes, studied by Welch, Martin, and others [8, 9, 15, 16].
Welch proved that a network of I/O-PAR processes is deadlock-free, and described
composite-I/O-PAR processes, that could in turn be used in further compositions. (The I/O-
SEQ design pattern for processes is also presented, but not focused on for the purposes of
this discussion.) The proofs of deadlock freedom and that I/O-PAR is closed under
composition are not simple, and reasoning about the closure of I/O-PAR under composition
from a process’s traces is challenging. We illustrate this point, and then present a definition
of composition that, in conjunction with EVCR, permits identifying a composite-I/O-PAR
process from its trace.

An I/O-PAR process is one that behaves deterministically and cyclically, by first
engaging in all the events of its alphabet, then repeating this behavior. For example,
consider the I/O-PAR process P, where:

P = (a SKIP ||| b SKIP) ; P

Process P’s behavior, represented by its set of all possible traces, traces(P), can be
succinctly described by the following VCR-style, parallel event trace:

trP = < {a, b}, {a, b}, {a, b}, … >

The benefits of the VCR-style representation of P’s behavior are evident. In particular,
the set of views of this trace all adhere to the definition of an I/O-PAR process. Now,
suppose we wished to reason about I/O-PAR process Q, whose specification and respective
parallel event trace is as follows:

Q = (b SKIP ||| c SKIP) ; Q

trQ = < {b, c}, {b, c}, {b, c}, … >

 M. Burgin and M.L. Smith / Compositions of Concurrent Processes 293

Now we have two I/O-PAR processes. It is natural to wish to compose P and Q in such
a way that the composition of P and Q is also I/O-PAR (technically, composite-I/O-PAR).
Notice, though, that P and Q both engage in event b, which implies that b is a
synchronizing event when P and Q are composed in parallel. In particular, we’d like to be
able to compose P and Q in such a way that the traces(P || Q) could be described by tr1,
expressed as a VCR-style parallel event trace:

tr1 = < {a, b, c}, {a, b, c}, {a, b, c}, … >

Such a trace clearly reflects an I/O-PAR process, and traces like tr1 are possible; but
the problem is that under existing parallel composition in CSP, other traces are also
possible. It is these other possible traces that make the composition of processes P and Q
difficult to recognize as being I/O-PAR. The existence of these traces also provides some
intuition into the difficulty in proving I/O-PAR processes are closed under composition.

Suppose process P completes one iteration of its events, then recurses before process Q
can engage in all of its events. At this point, process Q is still waiting to engage in its first
event c, even though process P has engaged in its second event a. However, process P can’t
get any further ahead of Q, because it’s waiting for the synchronizing event b, which won’t
occur until process Q first engages in its first event c, then recurses. Now suppose Q
“catches up” to P, by engaging in c and recursing. At this point, Q may engage in either
event of its alphabet, since process P is already waiting to engage in the synchronizing
event b. Suppose processes P and Q engage in synchronizing event b, then c. At this point,
both processes have completed two cycles of engaging in all the events in their respective
alphabets, which results in the following CSP-style trace:

tr2 = < a, b, a, c, b, c, … >

Trace tr2 isn’t readily recognizable as I/O-PAR, but Martin proved that such a trace of
a composite-I/O-PAR process is permissible, and still qualifies as I/O-PAR. However, it is
easy to imagine that a few more processes and larger alphabets would make such
compositions difficult to recognize as being I/O-PAR. Even the parallel event traces of
VCR do not provide much help in this regard:

tr3 = < {a, b}, {a, c}, {b, c}, … >

Trace tr3 no longer emulates the I/O-PAR design pattern behavior as shown in tr1. In
particular, it’s possible to observe two a’s by the time the first c is observed. Strictly
speaking, for this process to be I/O-PAR, events a, b, and c must each occur once before
any of a, b, or c occurs for a second time. However, Martin proved that a limited amount of
“slush” is possible, without losing the benefits of deadlock-freedom. In this sense, the
process that is capable of producing trace tr2 is I/O-PAR “enough.”

An interesting question is what type of composition could preserve the I/O-PAR
property as evident by such a composite-I/O-PAR process’s traces? We describe informally
how to compose such a process, and in so doing, introduce a new type of composition. The
goal of such a composition is to result in a process whose behaviour matches process R0:

R0 = (a SKIP ||| b SKIP ||| c SKIP) ; R0

Process R0 does not reflect the composition of processes P and Q, however. But
consider process R1, which is a little closer to the desired composition:

R1 = (a SKIP ||| b SKIP) |{b}| (b SKIP ||| c SKIP) ; R1

294 M. Burgin and M.L. Smith / Compositions of Concurrent Processes

Process R1 is a little closer in spirit to achieving our goal, since its definition reflects
the composition of the definitions of P and Q (without the recursive invocations of P and
Q). But if we are to define a type of composition for processes, we must be able to treat the
processes as black boxes, or at least not resort to changing the definitions (bodies) of the
processes being composed. Consider the naïve composition:

R2 = P |{b}| Q

This is the standard CSP parallel alphabetized composition, and this is the composition
that results in traces like tr1 and tr2. Processes R0 and R1 are refinements of each other,
because they both produce the same set of traces, tr1. Furthermore, processes R0 and R1
both represent a refinement of R2, since R2 is capable of producing all the traces of R0 and
R1 , as well as other possible traces (the traces with some limited “slush”).

How then can we compose processes P and Q so that only traces like tr1 are possible?
If we could solve this problem, we will have defined a type of composition that preserves
the I/O-PAR property.

We begin by renaming processes P and Q to P’ and Q’, respectively. That is, P’ and
Q’, are bound to the original definitions of P and Q. In particular, the recursions still refer
to the original process names, P and Q, within the bodies of P’ and Q’. Our goal is to
remove the “slush,” by synchronizing the recursive calls of the I/O-PAR processes being
composed. So far, we have:

P’ = (a SKIP ||| b SKIP) ; P

Q’ = (b SKIP ||| c SKIP) ; Q

Notice that P and Q are no longer recursive calls, since we renamed these processes.
We therefore need to provide new definitions for P and Q. The new definitions for P and Q
are trivial and recursively symmetrical:

P = x P’ (where the synchronizing event x is not in the alphabets of P or Q)

Q = x Q’

In this way, processes P’ and Q’ must synchronize on x before recursing. Now let us
define the composite-I/O-PAR process R3 to be the alphabetized parallel composition of P’
and Q’:

R3 = (P’ |{b, x}| Q’) \ {x}

which specifies the parallel composition of processes P’ and Q’, where events b and x are
synchronizing events. Furthermore, we are hiding event x from appearing in the traces(R).
The resulting traces(R), expressed in the VCR style, now look like tr1, which is
recognizably I/O-PAR. It is easy to see that this composition nests, i.e., it extends to three
or more processes.

We have exploited renaming to achieve our goal, though it is a renaming of processes,
rather than events, which is somewhat unusual in CSP. Still, this approach is not entirely
unrelated to the approach used to create multiple instances of a process, each with its own
unique instance of the events it engages in. The renaming of processes models what is
possible on a real computer, e.g., renaming the games “rogue” or “hack” to “vi” on a Unix
system (to appear to one’s boss, or advisor, that you are hard at work!); or even renaming a
compiled C program from a.out to a more meaningful executable name. The renaming of

 M. Burgin and M.L. Smith / Compositions of Concurrent Processes 295

the original processes being composed allowed us to introduce new definitions for the
original process names, and thus “insert” a synchronizing event into the recursion of the
processes being composed, without modifying the contents of the black boxes.

We haven’t named this type of composition yet, but we know enough about it to
describe its properties. Since processes P and P’, and Q and Q’, are mutually recursive and
synchronizing, this type of composition is a synchronized, mutually recursive renaming
composition. But it seems more appropriate to name this type of composition, I/O-PAR
composition.

A more thorough and formal treatment of I/O-PAR composition remains to be done,
including composition of three or more processes, and a formal proof of refinement,
showing that process R3 refines R0 (and vice-versa). In addition, we did not address I/O-
SEQ, another important design pattern used in addition to I/O-PAR to ensure deadlock
freedom.

5. Conclusions and Future Work

We continued the development of extended view-centric reasoning (EVCR) presented in
[3] with compositions of concurrent processes. The new definitions of events, and the many
ways events may coincide with other events, borrow abstractions from Grid Automata [2],
and form the basis for EVCR as a model that provides abstractions needed for reasoning
about properties of modern computational systems. In particular, EVCR provides for the
possibility of events A and B to overlap in varying degrees, instead of the all-or-nothing
simultaneity of VCR’s (and CSP’s) instantaneous events. This added dimension of event
duration makes EVCR a more natural model for reasoning about Grid Automata and
concurrent processes, which must take time and location into account.

We constructed compositions of processes on a system level and studied several kinds
of compositions. Doing this, we have only laid the foundation for a model that holds much
promise. To support this claim, we considered a case study of I/O-PAR composition, and
demonstrated that EVCR provides the basis for a much simpler proof of the
compositionality of I/O-PAR processes. A formal statement and proof remain to be shown.
The next step in this direction will be to continue to build a comprehensive model of
process composition.

Another prospective direction for the further development of EVCR is the automation
of commonsense reasoning, a long goal of the field of artificial intelligence. EVCR
provides a flexible base for enhancing the event calculus, which is used as an effective
technique for commonsense reasoning [6, 10].

Introduced constructions, defined concepts, and obtained results are steps toward the
development of a fundamental, adequate, and efficient theory of compositions of systems
and processes. Such a theory has to be developed on three levels. The first, organizational
or algorithmic level would deal with organization of connections and interactions between
composed systems and processes. The second, algebraic level would expand over algebras
of compositions. There are two types of such algebras: algebras of systems (processes), in
which compositions play the role of operations, and algebras of compositions themselves,
in which compositions play the role of elements. These two levels are necessary for the
development of reliable, safe, and efficient hardware and software systems from well-
designed components. The third, logical level of the theory of compositions of systems and
processes would provide means for reasoning about composed systems and processes. This
is necessary for assurance and verification of compounded systems.

296 M. Burgin and M.L. Smith / Compositions of Concurrent Processes

Acknowledgements

The authors are very grateful to the anonymous CPA referees for their diligent and
constructive feedback on our original submission and all the subsequent revisions. Their
work is greatly valued.

References

[1] M. Burgin, Elements of the System Theory of Time. LANL, Preprint in Physics 0207055, 2002, 21 p.
(electronic edition: http://arXiv.org).

[2] M. Burgin, Super-recursive Algorithms. Springer, New York, 2005.
[3] M. Burgin and M.L. Smith, From Sequential Processes to Grid Computation. In Proceedings of the 2006

International Conference on Foundations of Computer Science (FCS'06), Edited by Hamid R. Arabnia
and Rose Joshua, CSREA Press, Las Vegas, Nevada, USA, 26-29 June 2006.

[4] C.A.R. Hoare, Communicating Sequential Processes. Prentice Hall International Series in Computer
Science. UK: Prentice-Hall International, UK, Ltd., 1985.

[5] J.E. Hopcroft, R. Motwani, and J.D. Ullman, Introduction to Automata Theory, Languages, and
Computation. Addison Wesley, Boston/San Francisco/New York, 2001.

[6] R. Kowalski, and M. J. Sergot, (1986) A logic-based calculus of events. New Generation Computing, v.
4, pp. 67-95.

[7] W. Li, S.Ma, Y. Sui, and K. Xu, (2001) A Logical Framework for Convergent Infinite Computations.
Preprint cs.LO/0105020 (electronic edition: http://arXiv.org).

[8] J.M.R. Martin, I. East, and S, Jassim. (1994) Design Rules for Deadlock Freedom. Transputer
Communications, 3(2):121–133, John Wiley and Sons

[9] J.M.R. Martin, and P.H. Welch, (1996) A Design Strategy for Deadlock-Free Concurrent Systems.
Transputer Communications, 3(4):215–232, John Wiley and Sons

[10] E.T. Mueller, Commonsense reasoning. San Francisco, Morgan Kaufmann, 2006.
[11] P.G. Neumann, (2006) Risks relating to System Compositions. Communications of the ACM, v. 49,

No. 1, p. 128.
[12] M.O. Rabin, (1969) Decidability of Second-order Theories and Automata on Infinite Trees. Transactions

of the AMS, v. 141, pp. 1-35.
[13] M.L. Smith, View-Centric Reasoning about Parallel and Distributed Computation. PhD thesis,

University of Central Florida, Orlando, FL 32816-2362, December 2000.
[14] M.Y. Vardi and P. Wolper, (1994) Reasoning about Infinite Computations. Information and

Computation, v. 115, No.1, pp. 1—37.
[15] P.H. Welch, (1989) Emulating Digital Logic using Transputer Networks (Very High Parallelism =

Simplicity = Performance). International Journal of Parallel Computing, 9, North-Holland.
[16] P.H. Welch, G.R.R. Justo, and C.J. Willcock, Higher-Level Paradigms for Deadlock-Free High-

Performance Systems. In R. Grebe, J. Hektor, S.C. Hilton, M.R. Jane, and P.H.Welch, editors,
Transputer Applications and Systems ’93, Proceedings of the 1993 World Transputer Congress, volume
2, pages 981–1004, Aachen, Germany, September 1993. IOS Press, Netherlands.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

