Communicating Process Architectures 2006 253
Peter Welch, Jon Kerridge, and Fred Barnes (Eds.)

|OS Press, 2006

(© 2006 The authors. All rights reserved.

Rain VM: Portable Concurrency through
Managing Code

Neil BROWN

Computing Laboratory, University of Kent,
Canterbury, Kent, CT2 7NF, England.

neil@twistedsquare.com

Abstract. A long-running recent trend in computer programming is ttengh in pop-
ularity of virtual machines. However, few have included dsopport for concurrency
— a natural mechanism in the Rain programming language. géper details the
design and implementation of a secure virtual machine wigipert for concurrency,
which enables portability of concurrent programs.

Possible implementation ideas of many-to-many threadindets for the virtual
machine kernel are discussed, and initial benchmarks asepted. The results show
that while the virtual machine is slow for standard comgatatit is much quicker
at running communication-heavy concurrent code — withim@ater of magnitude of
the same native code.

Keywor ds. Process-oriented programming, Concurrency, Virtual NtastvM, Rain

I ntroduction

The over-arching trend of computer programming in the |&s&h years has been the growth
of interpreted/bytecode-based languages. It had becasae ttiat computers would always
be heterogeneous, and that compiling different versigms{s’) of programs in languages
such as C usually required a tangled mess of compiler drescand wrappers for various
native libraries (such as threading, networking, graphidsing an interpreter or bytecode
(grouped here into the term “intermediate language”) méaait the burden of portability
could be centralised and placed on the virtual machine (\Hd) tuns the intermediate lan-
guage, rather than the developers of the original programs.

Java, the .NET family, Perl, Python, Ruby — to name but a fewre-languages that
have become very widely-used and use virtual machines. &helapers of .NET coined the
term managed code [1] to describe the role that the virtuahina takes in managing the
resources required by the intermediate language prograimc@ptures nicely the advantage
of intermediate languages; the virtual machine manageytiweg for you, removing most
of the burden of portability.

Support for concurrency is a good example of the heterogeonéicomputers. Tradi-
tional single-CPU (Central Processing Unit) machines,emthreading processors, multi-
core processors, multi-CPU machines and new novel desigisas the Cell processor [2]
can all provide concurrency, usually in a multitude of forgsisch as interleaving on the same
CPU or actual parallelism using multiple CPUs). Targetiagheof these forms in a natively-
compiled language (such as C) requires different code téinatannot simply be wrapped
in a library because the differences between things suctuasrulti-CPU parallelism and
interleaving, or shared memory and non-shared memory argréat.

| believe that the best way to achieve portable concurrentiyrough the use of an inter-
mediate language. Programs based on a process-orientgdimming (no shared data, syn-

254 N.C.C. Brown / Rain VM: Portable Concurrency through Managing Code

chronous channel communications, etc) could be stored yexdde format. This bytecode
could then be interpreted by a virtual machine that is baillake advantage of the concur-
rency mechanisms in the machine that it is running on. Fomgka, on a single-core single-
CPU machine it could use very fast cooperative multitasklikg C++CSP [3]), whereas on

a multi-CPU machine it could use threads. More discussiasuch choices is provided later
in the paper in section 8.

Existing virtual machines (such as the Java and .NET VMg] terrely on Operating
System (OS) threads for concurrency (usually providedeéarhnaged program in a thread-
ing model with simplistic communication mechanisms sucheasaphores). This allows the
VM to take advantage of parallelism on multi-core and mGHYU machines, but is fairly
heavyweight. 32-bit Windows can only handle 2,000 threadiseadefault stack size (which
would use 2 Gigabytes of memory), and still only 13,000 ifsteck size is cut to 4kB (which
would use the same amount of memory due to page sizes) [4¢hvidhinfeasibly small for
many inherently-concurrent programs where concurrenaynigtural mechanism to use.

The only current VM-like system suitable for scalable pssebased languages is the
Transterpreter, an interpreter for the Transputer byte¢d[d The Transterpreter is admirably
small and concise, and provides portability for thed@Rcompiler. There are a number of
features that | wanted in a virtual machine, such as C++ iat@m, security, poisoning,
exception handling (all expanded on in this paper) that dbalve had to be grafted on rather
than being part of the design from the outset (never a goa@),itleerefore the Transterpreter
did not suit my needs.

The remainder of this paper details the design and implesientof a new concurrency-
focused virtual machine, named Rain VM after the prograngmanguage Rain described in
[6]. Many of Rain VM's features are motivated by the desigmRain.

1. Virtual Machine Design

Virtual machines can be implemented in a number of ways. &ka virtual machine is en-
tirely stack-based, whereas Parrot (the VM for Perl 6) isstegbased. The opposing ideas
are discussed in [7] by the designer of the Parrot VM. Whikettho most-used virtual ma-
chines, Java and .NET, use a stack-based architectureeshale shown that register-based
virtual machines can be faster [8]. Based on this researcbdecto make Rain VM primarily
register-based.

Some modern VMs include Just-In-Time (JIT) compiling — thieqess of translating
virtual machine code into native machine code when the foimaded. Due to the (man-
power) resources needed for JIT compiling, this is not aereid a likely possibility for this
project. Therefore, the focus in this paper is solely onrprigting virtual machine code.

Rain includes both process-oriented and functional-lik@gpamming, thus the virtual
machine must support easy context-switching between psesaas well as support for func-
tion calls. These two aspects are discussed below.

1.1. Security

Security in the context of this virtual machine consistsvad tain aims: protecting the vir-
tual machine from unintentional bugs in code and protedtigvirtual machine from ma-
licious code running on it (often referred to as sandboxiregydode). The latter is a partic-
ularly ambitious aim. The idea of mobility [9] in processwetks yields the possibility of
untrusted processes being run on a machine. In this casesgésntial to limit their behaviour
to prevent the untrusted code attacking the virtual machine

Naturally, security checks will impose a performance (anskime cases, memory) over-
head on the virtual machine. While security will be vital smme uses of the virtual machine,

N.C.C. Brown / Rain VM: Portable Concurrency through Managing Code 255

there will be users who will consider such security feattodse unnecessary. To this end, it
is intended to produce a compiled version of the virtual nreetvithout these checks (where
that is possible).

1.2. Concurrency

The difference between this virtual machine and most otisetisat it will be designed for
concurrency — this means that there will be many contexis foneach thread of execution.
In the case of a solely register-based machine, this woulhroae register block per thread.
However, consider the following pseudo-code:

int: x,y;
x = 3;
y =4

2 *x x;

<
1]

Assume for the sake of discussion that the above code is éeanym-optimised. Using
the register-based virtual machine design, each of the axts pf thepar would have their
own register block. Putting the initial value sfandy into the register blocks could be done
as they were created (before they were put on the run queuegetting the values back
into the parent’s register block after tipar is not as easy. The underlying mechanism of
the (un-optimisedpar is that the parent process will fork off the two parallel gaahd then
wait on a barrier for them to complete. The proper mechanarmgétting values back would
be channel communication — which seems somewhat oveleihét such straight-forward
code.

Instead a stack could be used; the valuesaridy could be on the stack, which could be
accessed by the sub-processes. For security, sub-precesse be given a list of valid stack
addresses in the parent process that they are permitteddssat¢o avoid concurrent writing.
Further justification for having a stack for special usesgside the general-use registers is
given in the next section.

1.3. Functions

The Rain programming language contains functions. Funstibat are guaranteed to be
non-recursive can be inlined during compilation — howe®ain supports recursive and
mutually-recursive functions, which means that this \aftmachine must too. Allowing
arbitrary-depth recursion (the depth of which cannot béipted at compile-time) with only
registers would require many contortions that can be addiyeusing a stack for arguments
to be passed on.

Function calls also require the return address for a fundtdoe stored. This is usually
done by storing it on the stack. An incredibly common techeigqn remotely breaking into
machines is that of buffer overflow, which often works by miyito overflow a stack buffer
and over-write the return address on the stack. Theorltiocalr type system (described later
in section 3) and other measures should prevent such abesaritg works best in layers,
however.

Function call return addresses will therefore be mainthre their own stack. Having
two stacks in a native program would be considered wasteflcambersome. One of the
advantages of a virtual machine is that there is greategadkxibility to do such things.
The overheads of having an extra stack are minimal — the abpritvof two registers.

256 N.C.C. Brown / Rain VM: Portable Concurrency through Managing Code

1.4. Forked Sacks

Consider the following pseudo-code that combines the piiegedeas:

int: x,y;
X = 4;
y =3

factorial(x); #Branch A
factorial(y); #Branch B

It has already been explained that the two parts ofpthehave access to the stack of
their parent’s process. It has also been decided that fumcalls use the stack for param-
eter passing. If the two factorial calls tried to use the sataek (inherited from the parent
process) for their parameter passing then there would beeah@zard — they would both
be writing to the same stack locations. Therefore the twemobesses must have their own
distinct stacks, yet still be able to access their paretdsks Hence the idea of forked stacks.

This concept is shown in a diagram below, at the point wheté btacks will be at
the deepest level of the factorial functiofe¢torial (1)). The 1, 2, 3, 4 progression are
the arguments to the factorial function. Return addressestared on a different stack as
described in the previous section. Return-address staeksaforked, as there is no need to
access the parent process’s stack.

Branch A
Index

0 1 Branch B
Index

1 2 1 0

2 3 2 1

3 4 3 2

4 y 3

5 X 4

Stacks are random access, with zero being the topmost itdheastack. Note that the
storage locations fox andy have different indexes in each branch. Accessing index 5 in
branch A is no different to accessing index 2 in terms of theeas method; the forking
mechanism is transparent for the purposes of stack itensacce

1.5. Exceptions

The paper on the design of the Rain language [6] exploresh&het not to include excep-
tions. It concludes that exceptions should be featuredanahguage (in a small way), and
hence as the target for the language, Rain VM must also ie¢hem. Like functions, excep-
tions are a mechanism best suited to using a stack. For semasons, the exception stack
will also be separate to the other stacks.

Unhandled exceptions cause a process to be terminateddibgevhat to do beyond
that is unclear — for now, pessimism prevails, and the entiteal machine is terminated.
Processes cannot catch their (parallel-composed) chitdexceptions. In future this could
be changed according to the latest research conclusions.

N.C.C. Brown / Rain VM: Portable Concurrency through Managing Code 257
2. Implementation Notes

The virtual machine has been developed using a rigorougesting approach. Mainly this
is done test-first. The virtual machine is written in C++; adtages of this are expanded on
in section 10.

Registers are addressed by one byte, therefore 256 regatebe addressed. The virtual
machine will guarantee that any of the 256 registers can &e. éss an optimisation however,
compilers targeting the virtual machine are encouragedldoade the lowest-indexed regis-
ters first. The virtual machine could initially allocateysaight or 16 registers and then in-
crease the size of the register block when higher-indexgdtess were accessed. This would
allow the memory footprint of short processes (that do net msiny registers) to be very
small.

A process context is a combination of: register block, ungion pointer, data stack,
return-address stack, and exception stack. Contextiswgan one virtual machine thread
(i.e. where no locks are needed) is as simple as changinguthent context pointer (and
possibly doing a small amount of processing to the run quéins should mean that context-
switching is as fast as executing any other virtual machirséruction, although this is a
combination of the speed of the former as well as the slowokth latter. This expectation
is tested in section 11.

3. Type System

This virtual machine is strongly statically typed. This isnparily to mirror the design of
Rain. As described in [6], Rain currently contains the failog data types:

e Boolean values.

e 8-,16-,32- and 64-bit integers, signed and unsigned.

e 32- and 64-bit floating point numbers (with the possibiliy 1@8-bit or larger in
future).

e Tuple types of sizes 1-255, containing any mixture of thesyim this list.

List types (implemented as either array or linked list) of aimgle type in this list.

Map types from any single type in this fisiith a total ordering (see below) to any

other single type in this lit

e Channels for communicating any single type in thistlist

e Reading/writing ends of the above channels.

[J

[J

Barriers and buckets.
Functions and processes.

The types that have a total ordering are: all numbers, tuphese all types have a total
ordering and lists containing a totally ordered type. Mdpsctions, processes and commu-
nication primitives are not ordered. All types supportitegftor equality.

These types are compositional, to an unlimited depth. Boalgintegers and floating
point numbers (which are contained by value in the 64-bitstegs) are referred to here as
primitive types, and all other types (that store a refereandbe 64-bit register) as complex
types. Complex types must all support four operations (refeto as type functions): cre-
ation, destruction, copying and comparison.

Naturally, because the types are compositional to an utddrdepth, the type functions
are as well. So the list copying function allocates a newolishe same size as the source list,
and then calls the copy function of its inner type for eachhef ¢lements in the list. These
functions could either have been written into the virtuakhiae itself, or could have been

lwith the exception that channels, channel ends, bucketbamigirs cannot be contained in any other type

258 N.C.C. Brown / Rain VM: Portable Concurrency through Managing Code

written using virtual machine code to be executed by theiginnachine. It was decided, for
the sake of speed, to write them into the virtual machine f)C

When some bytecode is initially loaded, the virtual maclstoges the types in a lookup
table (which prohibits duplicate keys for the same typdycailting the type its unique key.
Type functions for the type are created once, and storeddgdme key. Whenever a type
function is enacted on a class afterwards, it uses the kegpleed — because the types can
be of unlimited depth, the exact description is of unlimitexdgth, which could take a long
time to compare.

3.1. Type Safety

Each register in the virtual machine could have been simpi+hit integer. Any other values
(32-bit integers, references to lists or maps) would havenlmonverted into integer form
and stored. This would have allowed an instruction to treatstame integer as any of those
types without restriction. This, however, is bad from a sig$tand-point; an integer could
be treated as a pointer, and thus arbitrary memory locattonfd be accessed/written to.
Therefore type safety was added.

Each register in the virtual machine is an instance of detteage. Every data-storage
is a 64-bit value with an additional type identifier. Curtgrhis type identifier is a 32-bit
integer that references the lookup table described in theiqus section. This means the
data-storage is 12 bytes in size. A possible optimisatido isicrease this to 16 bytes for
better alignment on 64-bit machines (at the cost of memoages Every operation on this
data-storage is type-checked.

Deciding what to do when type-safety is broken is a difficutiigem that has not yet
been fully examined. Unlike invalid class casts in Javathatbe caught by the language, or
type errors in languages such as Perl where a conversionafiyiattempted, type exceptions
in this virtual machine are considered fatal, just as anlidvastruction code is. They are
not visible to the virtual machine code — that is, they cari®tetected or caught by the
virtual machine code. They are currently treated as unleaneceptions, and therefore (as
mentioned in section 1.5) terminate the virtual machine.

3.2. Decoupling

Rain VM is the target compilation platform for Rain. SincefRaill already enforce correct
typing at the language level, adding these extra checks &y superfluous. The checks
are born of a desire to decouple the virtual machine fromahguage; while | do not envi-
sion Rain targeting anything but the virtual machine, | htiz the virtual machine may be
targeted by other languages. Rain VM has a complete assdamglyage that the Rain com-
piler uses; there is no reason why other languages couldargsttthis assembly language.
These checks are therefore for other languages and alsotfasted code. A virtual machine
would also lose all its safety advantages over native cotleowi these checks.

4. Bytecode Design

The virtual machine instructions are entirely in 32-bitreiments — usually one 32-bit word
per instruction. This makes fetching the instruction gindfiorward. The majority of the in-
structions are in the format: 8-bit instruction opcode jt@+istruction sub-opcode, 8-bit des-
tination register, 8-bit source register. This is not fixesvkver, and is merely the convention
that is usually followed. A possible optimisation for thetfte is to fetch 64-bits at a time
(given that most machines in the future will be 64-bit, thsuhd be more efficient) and then
decode it into instructions.

N.C.C. Brown / Rain VM: Portable Concurrency through Managing Code 259

The below diagram depicts theitput bytecode instruction. The bits on the left are
the most significant. The first (most significant) byte is theyisional) output instruction
opcode. The next byte is unused, so it must be set to zero.hlideblyte is the index of the
register that holds the channel writing-end. The fourtagtesignificant) byte holds the data
to be sent down the channel.

0 8 16 24 bits
00001001 |Unused (0}] Chan Reg | Src Reg

5. Assembly Language

The virtual machine has its own assembly language and assefis should make it easy
for other programming languages to target the virtual mazhThe syntax is of the form
move r0,r2 — that instruction moves the contents of register 2 intostegiO. A full doc-
umentation of assembly syntax, bytecode instruction angasécs for all instructions is
currently being worked on, and should be made available werirtual machine is.

6. Terminology

Terms involved in concurrent programming often have amtigumeaning. In this paper
they are used as follows. Parallelism refers to two phydiezices acting in parallel (be
it multiple CPUs or multiple cores on the same CPU), whereag@grrency encompasses
parallelism and other techniques such as interleavingctiratey the effect of two processes
acting at the same time. A thread is used here to refer herentucrency at the Operating
System (OS) level — this may be termed threads or (confugjfigiocesses’ (used in quotes
to differentiate this use from mine) by the OS. To achievalbaism, multiple threads must
be used. A process refers to a block of code and an accompgprggram state. The virtual
machine contains a set of active processes to be run condyre& process in Rain VM is
more fine-grained than a process in Raipaa block in Rain is a process in Rain VM.

7. Communication

This section details a few issues which are common to all@&fyproaches to implementing
concurrency given in section 8.

Consider the OS threadl and7;. Ty has two processes it is currently inter-leaving
between:P, and Pg. Tj is inter-leaving betwee#, and Ps;. P4 and P, are connected by a
channel, as ar&z and P;.

T T,

260 N.C.C. Brown / Rain VM: Portable Concurrency through Managing Code

P, makes a call to write on its channel. Its thréBdcannot block on this write, dg,
must instead switch t&z while the communication is pending. That is, the commuirocat
must take place asynchronously.

There are two methods of making asynchronous calls: podlimdjinterrupts/callbacks.
Inter-thread communications via interrupts or callbacksaitricky area that is not ex-
plored here — as the thread would be interrupted asynchsedyoit could be in an
unknown/partially-invalid state when it was interruptedch as updating its run queue.

Polling would requirel; to check back periodically for completion of the communica-
tion by 77. This could be done by having shared memory between the t@adk protected
by a mutex (or similar), but if; holds the mutex whefd; goes to check the memory then
T, must either block (which this is intended to prevent) or masshe back again later. The
latter could lead to an indefinite wait'lf, always gets the mutex just befdfe arrives.

Therefore polling would have to be done through some sortefsage-passing system.
Each thread could have its own inbox of messages (from whicbhuld receive messages
from any virtual machine OS thread) for communication ncaifions. To implement this,
a Message-Passing Interface (MPI) [10] package could haee bised. Using buffering,
MPI systems can send messages asynchronously (withoditddcwhich would solve the
problem. However, MPI cannot guarantee this behaviouerAtitive mechanisms will be
explored in future; TCP sockets are one possibility, butviddial operating systems may
offer their own solution.

7.1. Mobility

There are complications with channel communications betmemncurrent processes in the
virtual machine, related to the implicit mobility of chanmads.

Consider a procesB, that allocates a one-to-one chantelP, spawnsPz and P in
parallel, passing them the two ends of the chanRglpawnsP, and Pz, giving the latter its
end ofC'. WhenPr and P~ come to use the channel, at least one of them will need to know
where the other end is. This is not a matter of the address mamne(that will be constant),
but whether the two processes are in the same thread (anéweam very quick communica-
tion) or in different threads (that will require a differesammunication mechanism). This is
compounded in some of the concurrency suggestions belogreydrocesses can move from
being in the same thread to being in separate threads dineigeixecution.

KRoC.net solves a similar problem [11] by coordinating the ct@®nds via an admin-
istration node for the channel. That is, when a channel entbiged, it contacts the admin-
istration node to register its new location and to find the-enirposition of the other end of
the channel. The implication of this and similar solutiog$hat moving a process to a new
thread involves a larger overhead than simply manipulatiegun queues. This cost should
be borne in mind when considering the options presenteckinéit section.

8. Concurrency in the Virtual Machine
8.1. Overview

In section , | posited that virtual machines would be the best to take advantage of the
variety of mechanisms for parallelism available on heterepus systems. Implementing
this virtual machine alongside a full programming langugtgtailed in [6]) has been a large
under-taking, so currently there is only a simple form of@amency present in the virtual

machine; a single-threaded interleaving through all trelable processes. This section dis-
cusses the various implementation ideas for a multi-treéadrtual machine and attendant
problems for the future.

N.C.C. Brown / Rain VM: Portable Concurrency through Managing Code 261

8.2. Context-Switching

There are a variety of methods for choosing when to contektl between processes. Con-
current systems will invariably context-switch when onegass makes a blocking call. OS
threads usually switch asynchronously when a timer inggrogcurs. Programs are usually
able to suggest or force a context switch through some forrie@td () call. occam-1t[12]
can compile in a possible context-switch at the end of lobpa.virtual machine, very fine-
grained control is possible — for example, a context-switohld be done after every 25
executed instructions.

In channel-based process-oriented systems communisagi@ usually frequent and
thus context-switches occur quite often (because the @haeads and writes will block
roughly one attempt in tw®). However, if a process is doing some computation it may Bot b
desirable to let it monopolise the processing resourcescéjdeing able to interrupt the vir-
tual machine after an arbitrary number of instructions tdgren a context-switch is a useful
option.

8.3. Interleaving

Interleaving is an incredibly simple mechanism for implenngg concurrency in the vir-
tual machine. One thread executes virtual machine insbngfor the current context until
a switch is made. The current context pointer is changed it pb the new context, and
those instructions are then executed until a further carsitch. The disadvantage is that
there is no parallelism involved, but it can be combined wither concurrent mechanisms
to form a many-to-many approach (multiple parallel threiatisrleaving various concurrent
processes).

8.4. Thread-per-process

Operating systems almost always offer parallelism thrahghmechanism of threading. This
may or may not be distinct from running multiple OS ‘processe Linux has historically
favoured the use ofork() to create new ‘processes’, whereas Windows favours threads
inside a single ‘process’. This is therefore an easy semtapte way for our virtual machine
to utilise true parallelism on multi-processor and mutiresystems.

One way to use threads would be to allocate one thread for madess. This would
make all inter-process communications identical (eacakeithicould simply block when wait-
ing for a channel communication), which would make the impatation relatively simple.
It would be wasteful however in terms of overhead, and wouténthat the virtual machine
had gained no performance benefits over the clunkiness edidisrand the restrictive limits
on their scalability described in section .

8.5. Srictly Hierarchical Many-to-many Approach

One way to combine the OS thread and interleaving approaebelsi be a hierarchy. Each
OS thread would be in charge of interleaving a set of prosesSeb-processes spawned
would remain in the same OS thread, unless the set of pracgsse beyond an arbitrary
limit, at which point another OS thread would be created todhethat process and its sub-
processes. The diagram below shows this approach — thesaimdweate a parental relation-
ship (e.g. A is the parent of D):

2With two parties involved in a communication, the first oneattempt to synchronise will block, but the
second will not as the first is already waiting.

262 N.C.C. Brown / Rain VM: Portable Concurrency through Managing Code

L !

A ©

This approach mirrors the hierarchical nature of processited programs. Most com-
munications between processes will occur between siblinggsses spawned by the same
parent — these communications would be quick ones betweeridaved processes in the
same OS thread. The main drawback is its inflexibility. If inegram has a worker/manager
pattern, then all the workers may end up in the same OS threatkarly undesirable. The
virtual machine could be amended to accept hints from thgraromer as to when to split
child processes into separate threads, but ideally aitocatould be done without such hints.

8.6. Pooling

In threading, pools of threads are a relatively common teglen To avoid the cost of the
creation and destruction of threads on demand, a pool o&disres created; if no work is
available then they sit idle. In this case, the work would éual machine processes to
execute. The pool in what | term ‘peered pooling’ would bedhiala shared memory area,
guarded by a mutex. By contrast, the idea of ‘dictated pgoimvolves an active manager
thread handling the pool of processes. These ideas areredielow.

8.6.1. Peered Pooling

The threads could work in one of two ways: either a threadd:talte a single process at a
time and return it to the pool when the process blocks, or gaelad could hold a number of
processes to interleave, and only pick up more when all neotiprocesses are blocked.

The first approach would make channel communications diffi¢@a process is moving
between threads then the message-passing system desaorgedion 7 would lack a per-
manent or even semi-permanent destination for a procesdmmunication would have to
change to being stored in a common shared memory area (fgdtaca mutex). This would
make the shared memory area very heavily used by all thedsyednich in turn would slow
all the threads down as only one could access the area at once.

The second approach would involve a thread taking on a neeepsoeach time that all
of its currently managed processes ones blocked. This wwaud to be cleverly limited, to
stop the thread taking on too many processes because ientomes happen to all block
simultaneously.

With either approach, new processes would have to be platedhe shared area once
created, awaiting a thread able to execute them. Idealhg thread was near-immediately
available, a new one would be created. This would requireedonm of central co-ordination
amongst the threads, which leads to the dictated pooliray ide

8.6.2. Dictated Pooling

Dictated pooling extends the peered pooling idea by inttodya central coordinator thread.
Rather than having a shared memory area for the shared iafiemthe coordinator thread
keeps all such information. Information is fed in via its s@&ge passing system, and sent
back out in the same way. Processes that block could be setdothe coordinator. Threads
with no more processes to run could request more from thedawator.

The peered pooling and dictated pooling are similar ideasrdtl pooling appears sim-
pler (although very inefficient), but dictated pooling motesely fits the channel-based com-

N.C.C. Brown / Rain VM: Portable Concurrency through Managing Code 263

munication that is used by process-oriented systems. Thiewsy to judge performance
trade-offs would be a trial implementation rather than egiee on-paper design considera-
tions.

8.7. Linux2.6

During the development of the Linux kernel 2.6, the old O(d)sheduler was replaced with
a new O(1) scheduler [13]. The Linux kernel scheduling peabls very similar to our VM
kernel scheduling problem, so the Linux kernel methodolsgyseful here for reference.

The Linux kernel is broadly similar to the ‘Strictly Hierdmcal Many-to-many Ap-
proach’ described above in section 8.5. Each CPU is in chafrgeaintaining a run-queue
for itself that is protected by a lock. Forked processes ap &n the same CPU initially. In
order to load-balance, CPUs with a light load find a busy CPilack its run-queue in order
to move some of the busy CPU’s processes onto the lightiged&PU.

8.8. Threads and CPUs

All of the above ideas are predicated around arranging thepvddesses into OS threads.
The number of threads to be used should be determined by thearwf CPUs/cores. Run-
ning only two threads on a four-CPU machine would not fulljisg the parallelism avail-
able. Running ten threads on a single-core single-CPU mackiould be very inefficient;
channel communications would be done between threads tadreusing the much quicker
mechanisms available within the same thread.

The ideal equilibrium would appear to be a thread per cord/Glowever, the OS will
not necessarily schedule each thread on a different CPUegeatrallelism may still be under-
utilised. The optimum number of threads is likely to be dligimigher than the number of
cores/CPUs available, except in the case of a single-CRidléscore) machine, where one
thread would be optimal. Experimentation (see the nexi@®cwill help to determine the
optimal amount.

8.9. Outcome

Various options have been proposed above for the concyrm@echanism for the virtual

machine. Rather than making an early decision, | intend f@ement the most promising
options and compare their performance. It may be the caselliiple systems are retained
in the virtual machine — the flexibility allowing good perfoance across multiple different
systems.

8.10. Implementation Transparency

Whichever mechanism is chosen on a particular OS, it wiltledparent to the programmer.
Allimplementations will have the same semantics (e.g. Byortised communication). While
the exact scheduling choices may differ, the advantageaxfgss-oriented programming is
that these choices should not affect the overall behavibtiveoprogram.

9. Debugging

While programming process-oriented systems, there ialelyicomes a time when a program
runs and at some point exits with the message “DEADLOCK”. iAséinctive reaction is to
want to know why — that is, what every process was doing atithe,tand which was the
last process to block (and hence cause the deadlock). Am&dyeof using a virtual machine
is that this information should be easy to provide.

264 N.C.C. Brown / Rain VM: Portable Concurrency through Managing Code

It is not just post-mortem inspection that a virtual mactdae facilitate; stepping though
a program with a debugger should be easier in a virtual madhen in native code. As with
many features, there has not yet been time to implement agdehwbut it should be possible.
The challenge will be to make the debugger work with some®thiheading that is intended.
There will inevitably be a performance hit for such a featima it would only be used by a
programmer during program development, and not when a @nogs actually deployed.

10. C++ Interface

Inevitably there will be a reason for programmers of intetpd languages to interface with
C/C++. This can be for a variety of reasons, such as needirgdess a C/C++ API for
which the particular language has no libraries, or for wgthigh-performance code. Ac-
cordingly, most languages offer a C interface. Java hasavee Native Interface [14]. Many
other languages are served by SWIG [15].

The other advantage of such an interface is that it givesrprogners a measure of com-
fort when trying a new language. As Advanced Perl Programgifiif] notes: “The ability of
languages such as Perl, Visual Basic, Python, and Tcl tgrate well with C accords them
the status of a serious development language, in contrastk@nd early versions of BASIC,
which were seldom used for production applications.” Ascdegd in [6], these practical
measures will encourage the transition from C++ to Rain.

The virtual machine is written in C++. Concepts such as dateage (described in sec-
tion 3.1), lists, channels and maps are all C++ objects. iflaikes exposing a C++ interface
to them very easy. Its channel and process concepts candagated with C++CSP. This
tight integration should be be very useful to C++ progransweshing to use Rain (or any
other languages that target Rain VM) with existing C++ code.

11. Benchmarks

The main aims for this virtual machine were support for carency, portability and security.
Time and time again however the barrier to adoption of a negramming tool amongst
programmers has been speed. Java faced a barrage of wrdtitiat it was too slow for years
after its initial release. | hope that this ‘speed is all-orant’ mentality will one day be left
behind but nevertheless in this section | present somalip@rformance benchmarks.

The benchmark timings are listed as real-time, not systere;teach results is the aver-
age of 50 runs and thus any interruptions on the machine gexrted to average out to allow
for a fair comparison. The benchmarks were carried out on i Athlon 64 3000+ (1.8
Ghz raw clock speed) CPU with dual-channel DDR memory rumi@entoo GNU/Linux.
Both Rain VM and the GCC-compiled tests were using nativéif4ode, but KRC (the
occam-ttcompiler [17]) was compiled for 32-bit as some of its depemiles do not currently
support compilation for 64-bit.

11.1. Instruction Speed Test

The first benchmark is intended to measure the rough spedx ofitual machine through
timing a simple counting loop. The C++ version is simply:

for (usign64 i = 0; i < 1000000; i++) {}

and theoccam-ttversion is the equivalent code. The Rain assembly versiosists of two
instructions (an add and a conditional jump) to achieve #meeseffect. The timing for each
loop iteration (averaged out over fifty separate runs of daniloops) is as follows:

N.C.C. Brown / Rain VM: Portable Concurrency through Managing Code

Language/Compiler

265

Time per loop iteration

(nanoseconds)
occam-1VKRoC 1.4.0 11
C++/GCC 3.4.5 1
Rain VM 404

The results show that the virtual machine is roughly 400 sislewer than the native-
compiled code. This is a slightly disappointing result.

11.2. Context-switching Test

The next benchmark tests (when compared to the previoushbrerk) test the context-
switching speed. The C++CSP code racopies of this code:

for (usign64 i = 0; i < 1000000; i++) {yield();}

in parallel. The Rain assembly version had three instrosti@ yield, an add and a condi-
tional jump), withz copies of that code running in parallel. Thecam-Tt version was the
equivalent of those two. The results for= 2 andx = 10 are given below.

Language/Compiler

Time per loop iteratior) Time per loop iteration
x = 2 (nanoseconds) = = 10 (nanoseconds)

occam-1TKRoC 1.4.0 26 128
C++CSP/GCC 3.4.5 534 2645
Rain VM 1063 5126

The times given above ‘per loop iteration’ are for the timedd x iterations. That is,
given the timet for 2 copies of the loop running0® times in parallel, the times recorded
above aret/10°%, not¢/(2 x 10°%). These times are perhaps more useful when compared
amongst the same system. Such comparisons are given belawideal (zero-overhead for
concurrency) world, the ratios would Be 1 and5 : 1.

Language/Compiler | (x = 2):Sequential (x = 10):(x = 2)

Ratio, 2 d.p. Ratio, 2 d.p.
occam-1VKRoC 1.4.0 236 : 1 4.92:1
C++CSP/GCC 3.4.5 534.00 : 1 495:1
Rain VM 2.63:1 4.82:1

The impact of introducing the context-switches to the C+8R¢ code is immediately
apparent. Running two yielding copies in parallel is apprately 250 times worse than the
ideal ratio. By comparison, Rain offers a reduction not fanf the optimaP : 1, as does
KRoC. All the systems scale approximately linearly in the numiifecopies being run in
parallel. The performances being slightly better thandimie thought to be related to the
cache.

A naive bit of arithmetic, subtracting the calculation tsne section 11.1 from the times
with context switching forr = 2 in the table above (divided by two), gives a rough idea of
the time that context-switching takes:

Language/Compiler | Rough estimate of

context-switch time

(nanoseconds)
occam-T'KRoC 1.4.0 2
C++CSP/GCC 3.4.5 266
Rain VM 128

266 N.C.C. Brown / Rain VM: Portable Concurrency through Managing Code

This indicates that the virtual machine can switch contdatter than the native-
compiled C++CSP code, which is very encouraging. As everp®&Rerforms incredibly
well.

11.3. Commstime Test

The virtual machine is intended for concurrency, so a berchmwith concurrent commu-
nicating processes is more apt. The quasi-standard CommeqI8] benchmark is chosen.
This benchmark consists of a process ring containing a gredicess, a successor and a delta
process also connected to a recorder. In essence, CommisTlancencurrent version of the
counting loop used in the above benchmark. C++CSRy&RBnd the Rain VM all use inter-
leaving concurrency in the same OS thread, so the compasi$ain (whereas JCSP uses OS
thread-level concurrency, so it is not included). The tigsiare given below.

Language/Compiler | Time per CommsTime iteration

(nanoseconds)
occam-1VKRoC 1.4.0 272
C++CSP/GCC 3.4.5 1327
Rain VM 1991

The results show that the virtual machine is only around fitycent slower than the
native-compiled C++CSP code at performing CommsTime. Trdgates that the perfor-
mance difference between native-code and the virtual macbh communication-heavy
code (as CSP code is wont to be) will be less than an order ohitualg. KRoC has the best
time again, but is less than an order of magnitude differ@Rain VM.

12. Conclusions and Future Work

This paper has detailed the design of a new virtual machisgded specifically for highly-
concurrent process-oriented programs. The virtual macisimtended to run programs for
the Rain programming language [6], but can be targeted bylaarguage. There is a full
assembly language for programming the VM. Much of the virtnachine has been imple-
mented and tested.

The VM contains type safety to remain stable if it encountifective code and dy-
namic register allocation will soon be added to allow smadicesses to have a very small
memory footprint. A C++ interface is planned, to allow irgetion with existing C++ code
via C++CSP. A debugger is also intended for implementat@id programming in Rain and
other languages that target the VM.

A detailed discussion of threading models and associatellgms was provided in
sections 7 and 8. The process-oriented programming stideslconcurrency to be used
naturally and easily but in order to provide this, tools sashthis VM must be built on
top of existing unwieldy and unsafe concurrent mechanisfiesenl by modern operating
systems. Experimentation with implementing the variowggsstions has been proposed —
the outcome of which will guide the final choice of threadingdal.

The benchmarks show that the virtual machine is two ordermagnitude slower
than native code for executing standard instructions. hewehe concurrent CommsTime
benchmark was only twice as slow as native C++CSP code, shjotlat for concurrent
communication-oriented code the virtual machine is witlnorder of magnitude of native
C++CSP and KReC.

The primary focus of future work will naturally be finishing@ optimising the virtual
machine. This includes both implementing the remaindehefinstruction set and also ex-

N.C.C. Brown / Rain VM: Portable Concurrency through Managing Code 267

perimenting with and implementing the threading model.cBss priorities are an obvious
candidate feature for inclusion when implementing theatineg model.

Trademarks

Java is a trademark of Sun Microsystems, Inc. Windows is estexgd trademark of Mi-
crosoft Corporation. Linux is a registered trademark ofusirmorvalds. Python is a trade-
mark of the Python Software Foundation. ‘Cell Broadbandii#igs a trademark of Sony
Computer Entertainment Inoccam is a trademark of SGS-Thomson Microelectronics Inc.
Gentoo is a trademark of Gentoo Foundation, Inc. ‘AMD Athisra trademark of Advanced
Micro Devices, Inc.

References

[1] Brad Abrams (Microsoft). What is managed code?
http://blogs.msdn.com/brada/archive/2004/01/09/48925. aspx, June 2006.

[2] IBM. Cell Broadband Engine Architecturéttp://domino.research.ibm. com/comm/
research projects.nsf/pages/cellcompiler.cell.html, June 2006.

[3] N.C.C. Brown and P.H. Welch. An Introduction to the Kent&CSP Library. In J.F. Broenink and G.H.
Hilderink, editors Communicating Process Architectures 2003, pages 139-156, 2003.

[4] Raymond Chen (Microsoft). Does Windows have a limit of 0RO threads per process?
http://blogs.msdn.com/oldnewthing/archive/2005/07/29/444912.aspx, June 2006.

[5] Christian Jacobson and Matthew C. Jadud. The TranstenprA Transputer Interpreter. In lan R. East,
David Duce, Mark Green, Jeremy M. R. Martin, and Peter H. Weéditors,Communicating Process
Architectures 2004, pages 99-106, 2004.

[6] N.C.C. Brown. Rain: A New Concurrent Process-OrienteagPamming Language. In Peter Welch, Jon
Kerridge, and Fred Barnes, edito@ymmunicating Process Architectures 2006, pages 237-251, Septem-
ber 2006.

[7] Dan Sugalski. Registers vs stacks for interpreter desig
http://www.sidhe.org/ dan/blog/archives/000189.html, June 2006.

[8] Andrew Beatty Yunhe Shi, David Gregg and M. Anton Ertl.ridial Machine Showdown: Stack versus
Registers. IMACM/SIGPLAN Conference of Virtual Execution Environments (VEE 05), pages 153-163,
June 2005.

[9] F.R.M.Barnes and P.H.Welch. Prioritised Dynamic Commmating and Mobile Processes.IEE
Proceedings-Software, 150(2):121-136, April 2003.

[10] A. Skjellum W. Gropp, E. LuskUsing MPI: Portable Parallel Programming with the Message-Passing
Interface. MIT Press, 1994.

[11] Mario Schweigler. Adding Mobility to Networked CharlriEypes. In lan R. East, David Duce, Mark
Green, Jeremy M. R. Martin, and Peter H. Welch, edit@@nmunicating Process Architectures 2004,
pages 107-126, 2004.

[12] Fred Barnes. occam-pi: blending the best of CSP anditbalpulus.
http://www.cs.kent.ac.uk/projects/ofa/kroc/, June 2006.

[13] Josh Aas (Silicon Graphics Inc). Understanding theuki®.6.8.1 CPU Scheduler.
http://josh.trancesoftware.com/linux/linux_cpu_scheduler.pdf, June 2006.

[14] Sun Microsystems Inc. Java Native Interface (INI).
http://java.sun.com/j2se/1.5.0/docs/guide/jni/, June 2006.

[15] Simplified Wrapper and Interface Generator (SWI&)tp: //www.swig.org/, June 2006.

[16] Sriram SrinivasanAdvanced Perl Programming. O'Reilly, 1997.

[17] University of Kent at Canterbury. Kent Retargetabtecam Compiler. Available at:
http://www.cs.ukc.ac.uk/projects/ofa/kroc/.

[18] Roger M.A. Peel. A Reconfigurable Host Interconnectazheme for Occam-Based Field Programmable
Gate Arrays. In Alan G. Chalmers, Henk Muller, and Majid Mehdi, editorsCommunicating Process
Architectures 2001, volume 59 ofConcurrent Systems Engineering, pages 179-192, I0S Press, Amster-
dam, The Netherlands, September 2001. IOS Press.

