
Communicating Process Architectures 2006
Peter Welch, Jon Kerridge, and Fred Barnes (Eds.)
IOS Press, 2006
c© 2006 The authors. All rights reserved.

253

Rain VM: Portable Concurrency through
Managing Code

Neil BROWN

Computing Laboratory, University of Kent,
Canterbury, Kent, CT2 7NF, England.

neil@twistedsquare.com

Abstract. A long-running recent trend in computer programming is the growth in pop-
ularity of virtual machines. However, few have included good support for concurrency
— a natural mechanism in the Rain programming language. Thispaper details the
design and implementation of a secure virtual machine with support for concurrency,
which enables portability of concurrent programs.

Possible implementation ideas of many-to-many threading models for the virtual
machine kernel are discussed, and initial benchmarks are presented. The results show
that while the virtual machine is slow for standard computation, it is much quicker
at running communication-heavy concurrent code — within anorder of magnitude of
the same native code.
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Introduction

The over-arching trend of computer programming in the last fifteen years has been the growth
of interpreted/bytecode-based languages. It had become clear that computers would always
be heterogeneous, and that compiling different versions (‘ports’) of programs in languages
such as C usually required a tangled mess of compiler directives and wrappers for various
native libraries (such as threading, networking, graphics). Using an interpreter or bytecode
(grouped here into the term “intermediate language”) meantthat the burden of portability
could be centralised and placed on the virtual machine (VM) that runs the intermediate lan-
guage, rather than the developers of the original programs.

Java, the .NET family, Perl, Python, Ruby — to name but a few — are languages that
have become very widely-used and use virtual machines. The developers of .NET coined the
term managed code [1] to describe the role that the virtual machine takes in managing the
resources required by the intermediate language program. This captures nicely the advantage
of intermediate languages; the virtual machine manages everything for you, removing most
of the burden of portability.

Support for concurrency is a good example of the heterogeneity of computers. Tradi-
tional single-CPU (Central Processing Unit) machines, hyper-threading processors, multi-
core processors, multi-CPU machines and new novel designs such as the Cell processor [2]
can all provide concurrency, usually in a multitude of forms(such as interleaving on the same
CPU or actual parallelism using multiple CPUs). Targeting each of these forms in a natively-
compiled language (such as C) requires different code. It often cannot simply be wrapped
in a library because the differences between things such as true multi-CPU parallelism and
interleaving, or shared memory and non-shared memory are too great.

I believe that the best way to achieve portable concurrency is through the use of an inter-
mediate language. Programs based on a process-oriented programming (no shared data, syn-
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chronous channel communications, etc) could be stored in a bytecode format. This bytecode
could then be interpreted by a virtual machine that is built to take advantage of the concur-
rency mechanisms in the machine that it is running on. For example, on a single-core single-
CPU machine it could use very fast cooperative multitasking(like C++CSP [3]), whereas on
a multi-CPU machine it could use threads. More discussion onsuch choices is provided later
in the paper in section 8.

Existing virtual machines (such as the Java and .NET VMs) tend to rely on Operating
System (OS) threads for concurrency (usually provided to the managed program in a thread-
ing model with simplistic communication mechanisms such assemaphores). This allows the
VM to take advantage of parallelism on multi-core and multi-CPU machines, but is fairly
heavyweight. 32-bit Windows can only handle 2,000 threads at the default stack size (which
would use 2 Gigabytes of memory), and still only 13,000 if thestack size is cut to 4kB (which
would use the same amount of memory due to page sizes) [4], which is infeasibly small for
many inherently-concurrent programs where concurrency isa natural mechanism to use.

The only current VM-like system suitable for scalable process-based languages is the
Transterpreter, an interpreter for the Transputer bytecode [5]. The Transterpreter is admirably
small and concise, and provides portability for the KRoC compiler. There are a number of
features that I wanted in a virtual machine, such as C++ integration, security, poisoning,
exception handling (all expanded on in this paper) that would have had to be grafted on rather
than being part of the design from the outset (never a good idea), therefore the Transterpreter
did not suit my needs.

The remainder of this paper details the design and implementation of a new concurrency-
focused virtual machine, named Rain VM after the programming language Rain described in
[6]. Many of Rain VM’s features are motivated by the design ofRain.

1. Virtual Machine Design

Virtual machines can be implemented in a number of ways. The Java virtual machine is en-
tirely stack-based, whereas Parrot (the VM for Perl 6) is register-based. The opposing ideas
are discussed in [7] by the designer of the Parrot VM. While the two most-used virtual ma-
chines, Java and .NET, use a stack-based architecture, studies have shown that register-based
virtual machines can be faster [8]. Based on this research I chose to make Rain VM primarily
register-based.

Some modern VMs include Just-In-Time (JIT) compiling — the process of translating
virtual machine code into native machine code when the former is loaded. Due to the (man-
power) resources needed for JIT compiling, this is not considered a likely possibility for this
project. Therefore, the focus in this paper is solely on interpreting virtual machine code.

Rain includes both process-oriented and functional-like programming, thus the virtual
machine must support easy context-switching between processes as well as support for func-
tion calls. These two aspects are discussed below.

1.1. Security

Security in the context of this virtual machine consists of two main aims: protecting the vir-
tual machine from unintentional bugs in code and protectingthe virtual machine from ma-
licious code running on it (often referred to as sandboxing the code). The latter is a partic-
ularly ambitious aim. The idea of mobility [9] in process networks yields the possibility of
untrusted processes being run on a machine. In this case it isessential to limit their behaviour
to prevent the untrusted code attacking the virtual machine.

Naturally, security checks will impose a performance (and in some cases, memory) over-
head on the virtual machine. While security will be vital forsome uses of the virtual machine,
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there will be users who will consider such security featuresto be unnecessary. To this end, it
is intended to produce a compiled version of the virtual machine without these checks (where
that is possible).

1.2. Concurrency

The difference between this virtual machine and most othersis that it will be designed for
concurrency — this means that there will be many contexts, one for each thread of execution.
In the case of a solely register-based machine, this would mean one register block per thread.
However, consider the following pseudo-code:

int: x,y;

x = 3;

y = 4;

par

{

x = 2;

y = 5;

}

y = 2 * x;

Assume for the sake of discussion that the above code is compiled un-optimised. Using
the register-based virtual machine design, each of the two parts of thepar would have their
own register block. Putting the initial value ofx andy into the register blocks could be done
as they were created (before they were put on the run queue), but getting the values back
into the parent’s register block after thepar is not as easy. The underlying mechanism of
the (un-optimised)par is that the parent process will fork off the two parallel parts and then
wait on a barrier for them to complete. The proper mechanism for getting values back would
be channel communication — which seems somewhat over-the-top for such straight-forward
code.

Instead a stack could be used; the values ofx andy could be on the stack, which could be
accessed by the sub-processes. For security, sub-processes could be given a list of valid stack
addresses in the parent process that they are permitted to access, to avoid concurrent writing.
Further justification for having a stack for special uses alongside the general-use registers is
given in the next section.

1.3. Functions

The Rain programming language contains functions. Functions that are guaranteed to be
non-recursive can be inlined during compilation — however,Rain supports recursive and
mutually-recursive functions, which means that this virtual machine must too. Allowing
arbitrary-depth recursion (the depth of which cannot be predicted at compile-time) with only
registers would require many contortions that can be avoided by using a stack for arguments
to be passed on.

Function calls also require the return address for a function to be stored. This is usually
done by storing it on the stack. An incredibly common technique in remotely breaking into
machines is that of buffer overflow, which often works by trying to overflow a stack buffer
and over-write the return address on the stack. Theoretically, our type system (described later
in section 3) and other measures should prevent such abuse. Security works best in layers,
however.

Function call return addresses will therefore be maintained on their own stack. Having
two stacks in a native program would be considered wasteful and cumbersome. One of the
advantages of a virtual machine is that there is greater design flexibility to do such things.
The overheads of having an extra stack are minimal — the equivalent of two registers.
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1.4. Forked Stacks

Consider the following pseudo-code that combines the preceding ideas:

int: x,y;

x = 4;

y = 3;

par

{

x = factorial(x); #Branch A

y = factorial(y); #Branch B

}

It has already been explained that the two parts of thepar have access to the stack of
their parent’s process. It has also been decided that function calls use the stack for param-
eter passing. If the two factorial calls tried to use the samestack (inherited from the parent
process) for their parameter passing then there would be a race hazard — they would both
be writing to the same stack locations. Therefore the two sub-processes must have their own
distinct stacks, yet still be able to access their parent’s stack. Hence the idea of forked stacks.

This concept is shown in a diagram below, at the point where both stacks will be at
the deepest level of the factorial function (factorial(1)). The 1, 2, 3, 4 progression are
the arguments to the factorial function. Return addresses are stored on a different stack as
described in the previous section. Return-address stacks are not forked, as there is no need to
access the parent process’s stack.

Stacks are random access, with zero being the topmost item onthe stack. Note that the
storage locations forx andy have different indexes in each branch. Accessing index 5 in
branch A is no different to accessing index 2 in terms of the access method; the forking
mechanism is transparent for the purposes of stack item access.

1.5. Exceptions

The paper on the design of the Rain language [6] explores whether or not to include excep-
tions. It concludes that exceptions should be featured in the language (in a small way), and
hence as the target for the language, Rain VM must also include them. Like functions, excep-
tions are a mechanism best suited to using a stack. For security reasons, the exception stack
will also be separate to the other stacks.

Unhandled exceptions cause a process to be terminated. Deciding what to do beyond
that is unclear — for now, pessimism prevails, and the entirevirtual machine is terminated.
Processes cannot catch their (parallel-composed) children’s exceptions. In future this could
be changed according to the latest research conclusions.
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2. Implementation Notes

The virtual machine has been developed using a rigorous unit-testing approach. Mainly this
is done test-first. The virtual machine is written in C++; advantages of this are expanded on
in section 10.

Registers are addressed by one byte, therefore 256 registers can be addressed. The virtual
machine will guarantee that any of the 256 registers can be used. As an optimisation however,
compilers targeting the virtual machine are encouraged to allocate the lowest-indexed regis-
ters first. The virtual machine could initially allocate, say, eight or 16 registers and then in-
crease the size of the register block when higher-indexed registers were accessed. This would
allow the memory footprint of short processes (that do not use many registers) to be very
small.

A process context is a combination of: register block, instruction pointer, data stack,
return-address stack, and exception stack. Context-switching in one virtual machine thread
(i.e. where no locks are needed) is as simple as changing the current context pointer (and
possibly doing a small amount of processing to the run queue). This should mean that context-
switching is as fast as executing any other virtual machine instruction, although this is a
combination of the speed of the former as well as the slownessof the latter. This expectation
is tested in section 11.

3. Type System

This virtual machine is strongly statically typed. This is primarily to mirror the design of
Rain. As described in [6], Rain currently contains the following data types:

• Boolean values.
• 8-,16-,32- and 64-bit integers, signed and unsigned.
• 32- and 64-bit floating point numbers (with the possibility of 128-bit or larger in

future).
• Tuple types of sizes 1-255, containing any mixture of the types in this list1.
• List types (implemented as either array or linked list) of any single type in this list1 .
• Map types from any single type in this list1 with a total ordering (see below) to any

other single type in this list1 .
• Channels for communicating any single type in this list1 .
• Reading/writing ends of the above channels.
• Barriers and buckets.
• Functions and processes.

The types that have a total ordering are: all numbers, tupleswhere all types have a total
ordering and lists containing a totally ordered type. Maps,functions, processes and commu-
nication primitives are not ordered. All types support testing for equality.

These types are compositional, to an unlimited depth. Booleans, integers and floating
point numbers (which are contained by value in the 64-bit registers) are referred to here as
primitive types, and all other types (that store a referencein the 64-bit register) as complex
types. Complex types must all support four operations (referred to as type functions): cre-
ation, destruction, copying and comparison.

Naturally, because the types are compositional to an unlimited depth, the type functions
are as well. So the list copying function allocates a new listof the same size as the source list,
and then calls the copy function of its inner type for each of the elements in the list. These
functions could either have been written into the virtual machine itself, or could have been

1With the exception that channels, channel ends, buckets andbarriers cannot be contained in any other type
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written using virtual machine code to be executed by the virtual machine. It was decided, for
the sake of speed, to write them into the virtual machine (in C++).

When some bytecode is initially loaded, the virtual machinestores the types in a lookup
table (which prohibits duplicate keys for the same type), allocating the type its unique key.
Type functions for the type are created once, and stored by the same key. Whenever a type
function is enacted on a class afterwards, it uses the key forspeed — because the types can
be of unlimited depth, the exact description is of unlimitedlength, which could take a long
time to compare.

3.1. Type Safety

Each register in the virtual machine could have been simply a64-bit integer. Any other values
(32-bit integers, references to lists or maps) would have been converted into integer form
and stored. This would have allowed an instruction to treat the same integer as any of those
types without restriction. This, however, is bad from a security stand-point; an integer could
be treated as a pointer, and thus arbitrary memory locationscould be accessed/written to.
Therefore type safety was added.

Each register in the virtual machine is an instance of data-storage. Every data-storage
is a 64-bit value with an additional type identifier. Currently this type identifier is a 32-bit
integer that references the lookup table described in the previous section. This means the
data-storage is 12 bytes in size. A possible optimisation isto increase this to 16 bytes for
better alignment on 64-bit machines (at the cost of memory usage). Every operation on this
data-storage is type-checked.

Deciding what to do when type-safety is broken is a difficult problem that has not yet
been fully examined. Unlike invalid class casts in Java thatcan be caught by the language, or
type errors in languages such as Perl where a conversion is usually attempted, type exceptions
in this virtual machine are considered fatal, just as an invalid instruction code is. They are
not visible to the virtual machine code — that is, they cannotbe detected or caught by the
virtual machine code. They are currently treated as unhandled exceptions, and therefore (as
mentioned in section 1.5) terminate the virtual machine.

3.2. Decoupling

Rain VM is the target compilation platform for Rain. Since Rain will already enforce correct
typing at the language level, adding these extra checks may seem superfluous. The checks
are born of a desire to decouple the virtual machine from the language; while I do not envi-
sion Rain targeting anything but the virtual machine, I hopethat the virtual machine may be
targeted by other languages. Rain VM has a complete assemblylanguage that the Rain com-
piler uses; there is no reason why other languages could not target this assembly language.
These checks are therefore for other languages and also for untrusted code. A virtual machine
would also lose all its safety advantages over native code without these checks.

4. Bytecode Design

The virtual machine instructions are entirely in 32-bit increments — usually one 32-bit word
per instruction. This makes fetching the instruction straightforward. The majority of the in-
structions are in the format: 8-bit instruction opcode, 8-bit instruction sub-opcode, 8-bit des-
tination register, 8-bit source register. This is not fixed however, and is merely the convention
that is usually followed. A possible optimisation for the future is to fetch 64-bits at a time
(given that most machines in the future will be 64-bit, this would be more efficient) and then
decode it into instructions.
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The below diagram depicts theoutput bytecode instruction. The bits on the left are
the most significant. The first (most significant) byte is the (provisional) output instruction
opcode. The next byte is unused, so it must be set to zero. The third byte is the index of the
register that holds the channel writing-end. The fourth (least significant) byte holds the data
to be sent down the channel.

5. Assembly Language

The virtual machine has its own assembly language and assembler. This should make it easy
for other programming languages to target the virtual machine. The syntax is of the form
move r0,r2 — that instruction moves the contents of register 2 into register 0. A full doc-
umentation of assembly syntax, bytecode instruction and semantics for all instructions is
currently being worked on, and should be made available whenthe virtual machine is.

6. Terminology

Terms involved in concurrent programming often have ambiguous meaning. In this paper
they are used as follows. Parallelism refers to two physicaldevices acting in parallel (be
it multiple CPUs or multiple cores on the same CPU), whereas concurrency encompasses
parallelism and other techniques such as interleaving thatconvey the effect of two processes
acting at the same time. A thread is used here to refer here to concurrency at the Operating
System (OS) level — this may be termed threads or (confusingly) ‘processes’ (used in quotes
to differentiate this use from mine) by the OS. To achieve parallelism, multiple threads must
be used. A process refers to a block of code and an accompanying program state. The virtual
machine contains a set of active processes to be run concurrently. A process in Rain VM is
more fine-grained than a process in Rain; apar block in Rain is a process in Rain VM.

7. Communication

This section details a few issues which are common to all of the approaches to implementing
concurrency given in section 8.

Consider the OS threadsT0 andT1. T0 has two processes it is currently inter-leaving
between:PA andPB. T1 is inter-leaving betweenPα andPβ. PA andPα are connected by a
channel, as arePB andPβ.
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PA makes a call to write on its channel. Its threadT0 cannot block on this write, asT0

must instead switch toPB while the communication is pending. That is, the communication
must take place asynchronously.

There are two methods of making asynchronous calls: pollingand interrupts/callbacks.
Inter-thread communications via interrupts or callbacks is a tricky area that is not ex-
plored here — as the thread would be interrupted asynchronously, it could be in an
unknown/partially-invalid state when it was interrupted,such as updating its run queue.

Polling would requireT0 to check back periodically for completion of the communica-
tion byT1. This could be done by having shared memory between the two threads protected
by a mutex (or similar), but ifT0 holds the mutex whenT1 goes to check the memory then
T1 must either block (which this is intended to prevent) or mustcome back again later. The
latter could lead to an indefinite wait ifT0 always gets the mutex just beforeT1 arrives.

Therefore polling would have to be done through some sort of message-passing system.
Each thread could have its own inbox of messages (from which it could receive messages
from any virtual machine OS thread) for communication notifications. To implement this,
a Message-Passing Interface (MPI) [10] package could have been used. Using buffering,
MPI systems can send messages asynchronously (without blocking), which would solve the
problem. However, MPI cannot guarantee this behaviour. Alternative mechanisms will be
explored in future; TCP sockets are one possibility, but individual operating systems may
offer their own solution.

7.1. Mobility

There are complications with channel communications between concurrent processes in the
virtual machine, related to the implicit mobility of channel ends.

Consider a processPA that allocates a one-to-one channelC. PA spawnsPB andPC in
parallel, passing them the two ends of the channel.PB spawnsPD andPE, giving the latter its
end ofC. WhenPE andPC come to use the channel, at least one of them will need to know
where the other end is. This is not a matter of the address in memory (that will be constant),
but whether the two processes are in the same thread (and can have a very quick communica-
tion) or in different threads (that will require a differentcommunication mechanism). This is
compounded in some of the concurrency suggestions below, where processes can move from
being in the same thread to being in separate threads during their execution.

KRoC.net solves a similar problem [11] by coordinating the channel ends via an admin-
istration node for the channel. That is, when a channel end ismoved, it contacts the admin-
istration node to register its new location and to find the current position of the other end of
the channel. The implication of this and similar solutions is that moving a process to a new
thread involves a larger overhead than simply manipulatingthe run queues. This cost should
be borne in mind when considering the options presented in the next section.

8. Concurrency in the Virtual Machine

8.1. Overview

In section , I posited that virtual machines would be the bestway to take advantage of the
variety of mechanisms for parallelism available on heterogeneous systems. Implementing
this virtual machine alongside a full programming language(detailed in [6]) has been a large
under-taking, so currently there is only a simple form of concurrency present in the virtual
machine; a single-threaded interleaving through all the available processes. This section dis-
cusses the various implementation ideas for a multi-threaded virtual machine and attendant
problems for the future.
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8.2. Context-Switching

There are a variety of methods for choosing when to context-switch between processes. Con-
current systems will invariably context-switch when one process makes a blocking call. OS
threads usually switch asynchronously when a timer interrupt occurs. Programs are usually
able to suggest or force a context switch through some form ofyield() call. occam-π [12]
can compile in a possible context-switch at the end of loops.In a virtual machine, very fine-
grained control is possible — for example, a context-switchcould be done after every 25
executed instructions.

In channel-based process-oriented systems communications are usually frequent and
thus context-switches occur quite often (because the channel reads and writes will block
roughly one attempt in two2). However, if a process is doing some computation it may not be
desirable to let it monopolise the processing resources. Hence, being able to interrupt the vir-
tual machine after an arbitrary number of instructions to perform a context-switch is a useful
option.

8.3. Interleaving

Interleaving is an incredibly simple mechanism for implementing concurrency in the vir-
tual machine. One thread executes virtual machine instructions for the current context until
a switch is made. The current context pointer is changed to point at the new context, and
those instructions are then executed until a further context switch. The disadvantage is that
there is no parallelism involved, but it can be combined withother concurrent mechanisms
to form a many-to-many approach (multiple parallel threadsinterleaving various concurrent
processes).

8.4. Thread-per-process

Operating systems almost always offer parallelism throughthe mechanism of threading. This
may or may not be distinct from running multiple OS ‘processes’ — Linux has historically
favoured the use offork() to create new ‘processes’, whereas Windows favours threads
inside a single ‘process’. This is therefore an easy semi-portable way for our virtual machine
to utilise true parallelism on multi-processor and multi-core systems.

One way to use threads would be to allocate one thread for eachprocess. This would
make all inter-process communications identical (each thread could simply block when wait-
ing for a channel communication), which would make the implementation relatively simple.
It would be wasteful however in terms of overhead, and would mean that the virtual machine
had gained no performance benefits over the clunkiness of threads and the restrictive limits
on their scalability described in section .

8.5. Strictly Hierarchical Many-to-many Approach

One way to combine the OS thread and interleaving approacheswould be a hierarchy. Each
OS thread would be in charge of interleaving a set of processes. Sub-processes spawned
would remain in the same OS thread, unless the set of processes grew beyond an arbitrary
limit, at which point another OS thread would be created to handle that process and its sub-
processes. The diagram below shows this approach — the arrows indicate a parental relation-
ship (e.g. A is the parent of D):

2With two parties involved in a communication, the first one toattempt to synchronise will block, but the
second will not as the first is already waiting.
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This approach mirrors the hierarchical nature of process-oriented programs. Most com-
munications between processes will occur between sibling processes spawned by the same
parent — these communications would be quick ones between interleaved processes in the
same OS thread. The main drawback is its inflexibility. If theprogram has a worker/manager
pattern, then all the workers may end up in the same OS thread —clearly undesirable. The
virtual machine could be amended to accept hints from the programmer as to when to split
child processes into separate threads, but ideally allocation would be done without such hints.

8.6. Pooling

In threading, pools of threads are a relatively common technique. To avoid the cost of the
creation and destruction of threads on demand, a pool of threads is created; if no work is
available then they sit idle. In this case, the work would be virtual machine processes to
execute. The pool in what I term ‘peered pooling’ would be held in a shared memory area,
guarded by a mutex. By contrast, the idea of ‘dictated pooling’ involves an active manager
thread handling the pool of processes. These ideas are explored below.

8.6.1. Peered Pooling

The threads could work in one of two ways: either a thread could take a single process at a
time and return it to the pool when the process blocks, or eachthread could hold a number of
processes to interleave, and only pick up more when all its current processes are blocked.

The first approach would make channel communications difficult; if a process is moving
between threads then the message-passing system describedin section 7 would lack a per-
manent or even semi-permanent destination for a process. The communication would have to
change to being stored in a common shared memory area (protected by a mutex). This would
make the shared memory area very heavily used by all the threads, which in turn would slow
all the threads down as only one could access the area at once.

The second approach would involve a thread taking on a new process each time that all
of its currently managed processes ones blocked. This wouldhave to be cleverly limited, to
stop the thread taking on too many processes because its current ones happen to all block
simultaneously.

With either approach, new processes would have to be placed into the shared area once
created, awaiting a thread able to execute them. Ideally, ifno thread was near-immediately
available, a new one would be created. This would require some form of central co-ordination
amongst the threads, which leads to the dictated pooling idea.

8.6.2. Dictated Pooling

Dictated pooling extends the peered pooling idea by introducing a central coordinator thread.
Rather than having a shared memory area for the shared information, the coordinator thread
keeps all such information. Information is fed in via its message passing system, and sent
back out in the same way. Processes that block could be sent back to the coordinator. Threads
with no more processes to run could request more from the coordinator.

The peered pooling and dictated pooling are similar ideas. Peered pooling appears sim-
pler (although very inefficient), but dictated pooling moreclosely fits the channel-based com-
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munication that is used by process-oriented systems. The best way to judge performance
trade-offs would be a trial implementation rather than extensive on-paper design considera-
tions.

8.7. Linux 2.6

During the development of the Linux kernel 2.6, the old O(n) 2.4 scheduler was replaced with
a new O(1) scheduler [13]. The Linux kernel scheduling problem is very similar to our VM
kernel scheduling problem, so the Linux kernel methodologyis useful here for reference.

The Linux kernel is broadly similar to the ‘Strictly Hierarchical Many-to-many Ap-
proach’ described above in section 8.5. Each CPU is in chargeof maintaining a run-queue
for itself that is protected by a lock. Forked processes are kept on the same CPU initially. In
order to load-balance, CPUs with a light load find a busy CPU and lock its run-queue in order
to move some of the busy CPU’s processes onto the lightly-loaded CPU.

8.8. Threads and CPUs

All of the above ideas are predicated around arranging the VMprocesses into OS threads.
The number of threads to be used should be determined by the number of CPUs/cores. Run-
ning only two threads on a four-CPU machine would not fully utilise the parallelism avail-
able. Running ten threads on a single-core single-CPU machine would be very inefficient;
channel communications would be done between threads rather than using the much quicker
mechanisms available within the same thread.

The ideal equilibrium would appear to be a thread per core/CPU. However, the OS will
not necessarily schedule each thread on a different CPU, so the parallelism may still be under-
utilised. The optimum number of threads is likely to be slightly higher than the number of
cores/CPUs available, except in the case of a single-CPU (single-core) machine, where one
thread would be optimal. Experimentation (see the next section) will help to determine the
optimal amount.

8.9. Outcome

Various options have been proposed above for the concurrency mechanism for the virtual
machine. Rather than making an early decision, I intend to implement the most promising
options and compare their performance. It may be the case that multiple systems are retained
in the virtual machine — the flexibility allowing good performance across multiple different
systems.

8.10. Implementation Transparency

Whichever mechanism is chosen on a particular OS, it will be transparent to the programmer.
All implementations will have the same semantics (e.g. synchronised communication). While
the exact scheduling choices may differ, the advantage of process-oriented programming is
that these choices should not affect the overall behaviour of the program.

9. Debugging

While programming process-oriented systems, there inevitably comes a time when a program
runs and at some point exits with the message “DEADLOCK”. Theinstinctive reaction is to
want to know why — that is, what every process was doing at the time, and which was the
last process to block (and hence cause the deadlock). An advantage of using a virtual machine
is that this information should be easy to provide.
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It is not just post-mortem inspection that a virtual machinecan facilitate; stepping though
a program with a debugger should be easier in a virtual machine than in native code. As with
many features, there has not yet been time to implement a debugger, but it should be possible.
The challenge will be to make the debugger work with some of the threading that is intended.
There will inevitably be a performance hit for such a feature, but it would only be used by a
programmer during program development, and not when a program is actually deployed.

10. C++ Interface

Inevitably there will be a reason for programmers of interpreted languages to interface with
C/C++. This can be for a variety of reasons, such as needing toaccess a C/C++ API for
which the particular language has no libraries, or for writing high-performance code. Ac-
cordingly, most languages offer a C interface. Java has the Java Native Interface [14]. Many
other languages are served by SWIG [15].

The other advantage of such an interface is that it gives programmers a measure of com-
fort when trying a new language. As Advanced Perl Programming [16] notes: “The ability of
languages such as Perl, Visual Basic, Python, and Tcl to integrate well with C accords them
the status of a serious development language, in contrast toawk and early versions of BASIC,
which were seldom used for production applications.” As described in [6], these practical
measures will encourage the transition from C++ to Rain.

The virtual machine is written in C++. Concepts such as data-storage (described in sec-
tion 3.1), lists, channels and maps are all C++ objects. Thismakes exposing a C++ interface
to them very easy. Its channel and process concepts can be integrated with C++CSP. This
tight integration should be be very useful to C++ programmers wishing to use Rain (or any
other languages that target Rain VM) with existing C++ code.

11. Benchmarks

The main aims for this virtual machine were support for concurrency, portability and security.
Time and time again however the barrier to adoption of a new programming tool amongst
programmers has been speed. Java faced a barrage of criticisms that it was too slow for years
after its initial release. I hope that this ‘speed is all-important’ mentality will one day be left
behind but nevertheless in this section I present some initial performance benchmarks.

The benchmark timings are listed as real-time, not system time; each results is the aver-
age of 50 runs and thus any interruptions on the machine are expected to average out to allow
for a fair comparison. The benchmarks were carried out on an AMD Athlon 64 3000+ (1.8
Ghz raw clock speed) CPU with dual-channel DDR memory running Gentoo GNU/Linux.
Both Rain VM and the GCC-compiled tests were using native 64-bit code, but KRoC (the
occam-π compiler [17]) was compiled for 32-bit as some of its dependencies do not currently
support compilation for 64-bit.

11.1. Instruction Speed Test

The first benchmark is intended to measure the rough speed of the virtual machine through
timing a simple counting loop. The C++ version is simply:

for (usign64 i = 0; i < 1000000; i++) {}

and theoccam-π version is the equivalent code. The Rain assembly version consists of two
instructions (an add and a conditional jump) to achieve the same effect. The timing for each
loop iteration (averaged out over fifty separate runs of a million loops) is as follows:
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Language/Compiler Time per loop iteration
(nanoseconds)

occam-π/KRoC 1.4.0 11
C++/GCC 3.4.5 1
Rain VM 404

The results show that the virtual machine is roughly 400 times slower than the native-
compiled code. This is a slightly disappointing result.

11.2. Context-switching Test

The next benchmark tests (when compared to the previous benchmark) test the context-
switching speed. The C++CSP code ranx copies of this code:

for (usign64 i = 0; i < 1000000; i++) {yield();}

in parallel. The Rain assembly version had three instructions (a yield, an add and a condi-
tional jump), withx copies of that code running in parallel. Theoccam-π version was the
equivalent of those two. The results forx = 2 andx = 10 are given below.

Language/Compiler Time per loop iteration Time per loop iteration
x = 2 (nanoseconds) x = 10 (nanoseconds)

occam-π/KRoC 1.4.0 26 128
C++CSP/GCC 3.4.5 534 2645
Rain VM 1063 5126

The times given above ‘per loop iteration’ are for the time for all x iterations. That is,
given the timet for 2 copies of the loop running106 times in parallel, the times recorded
above aret/106, not t/(2 × 106). These times are perhaps more useful when compared
amongst the same system. Such comparisons are given below. In an ideal (zero-overhead for
concurrency) world, the ratios would be2 : 1 and5 : 1.

Language/Compiler (x = 2):Sequential (x = 10):(x = 2)
Ratio, 2 d.p. Ratio, 2 d.p.

occam-π/KRoC 1.4.0 2.36 : 1 4.92 : 1
C++CSP/GCC 3.4.5 534.00 : 1 4.95 : 1
Rain VM 2.63 : 1 4.82 : 1

The impact of introducing the context-switches to the C++(CSP) code is immediately
apparent. Running two yielding copies in parallel is approximately 250 times worse than the
ideal ratio. By comparison, Rain offers a reduction not far from the optimal2 : 1, as does
KRoC. All the systems scale approximately linearly in the number of copies being run in
parallel. The performances being slightly better than linear is thought to be related to the
cache.

A naive bit of arithmetic, subtracting the calculation times in section 11.1 from the times
with context switching forx = 2 in the table above (divided by two), gives a rough idea of
the time that context-switching takes:

Language/Compiler Rough estimate of
context-switch time

(nanoseconds)
occam-π/KRoC 1.4.0 2
C++CSP/GCC 3.4.5 266
Rain VM 128
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This indicates that the virtual machine can switch contextsfaster than the native-
compiled C++CSP code, which is very encouraging. As ever, KRoC performs incredibly
well.

11.3. Commstime Test

The virtual machine is intended for concurrency, so a benchmark with concurrent commu-
nicating processes is more apt. The quasi-standard CommsTime [18] benchmark is chosen.
This benchmark consists of a process ring containing a prefixprocess, a successor and a delta
process also connected to a recorder. In essence, CommsTimeis a concurrent version of the
counting loop used in the above benchmark. C++CSP, KRoC and the Rain VM all use inter-
leaving concurrency in the same OS thread, so the comparisonis fair (whereas JCSP uses OS
thread-level concurrency, so it is not included). The timings are given below.

Language/Compiler Time per CommsTime iteration
(nanoseconds)

occam-π/KRoC 1.4.0 272
C++CSP/GCC 3.4.5 1327
Rain VM 1991

The results show that the virtual machine is only around fiftypercent slower than the
native-compiled C++CSP code at performing CommsTime. Thisindicates that the perfor-
mance difference between native-code and the virtual machine on communication-heavy
code (as CSP code is wont to be) will be less than an order of magnitude. KRoC has the best
time again, but is less than an order of magnitude different to Rain VM.

12. Conclusions and Future Work

This paper has detailed the design of a new virtual machine designed specifically for highly-
concurrent process-oriented programs. The virtual machine is intended to run programs for
the Rain programming language [6], but can be targeted by anylanguage. There is a full
assembly language for programming the VM. Much of the virtual machine has been imple-
mented and tested.

The VM contains type safety to remain stable if it encountersdefective code and dy-
namic register allocation will soon be added to allow small processes to have a very small
memory footprint. A C++ interface is planned, to allow interaction with existing C++ code
via C++CSP. A debugger is also intended for implementation to aid programming in Rain and
other languages that target the VM.

A detailed discussion of threading models and associated problems was provided in
sections 7 and 8. The process-oriented programming style allows concurrency to be used
naturally and easily but in order to provide this, tools suchas this VM must be built on
top of existing unwieldy and unsafe concurrent mechanisms offered by modern operating
systems. Experimentation with implementing the various suggestions has been proposed —
the outcome of which will guide the final choice of threading model.

The benchmarks show that the virtual machine is two orders ofmagnitude slower
than native code for executing standard instructions. However, the concurrent CommsTime
benchmark was only twice as slow as native C++CSP code, showing that for concurrent
communication-oriented code the virtual machine is withinan order of magnitude of native
C++CSP and KRoC.

The primary focus of future work will naturally be finishing and optimising the virtual
machine. This includes both implementing the remainder of the instruction set and also ex-
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perimenting with and implementing the threading model. Process priorities are an obvious
candidate feature for inclusion when implementing the threading model.

Trademarks

Java is a trademark of Sun Microsystems, Inc. Windows is a registered trademark of Mi-
crosoft Corporation. Linux is a registered trademark of Linus Torvalds. Python is a trade-
mark of the Python Software Foundation. ‘Cell Broadband Engine’ is a trademark of Sony
Computer Entertainment Inc.occam is a trademark of SGS-Thomson Microelectronics Inc.
Gentoo is a trademark of Gentoo Foundation, Inc. ‘AMD Athlon’ is a trademark of Advanced
Micro Devices, Inc.
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