Communicating Process Architectures 2006 203
Peter Welch, Jon Kerridge, and Fred Barnes (Eds.)

|OS Press, 2006

(© 2006 The authors. All rights reserved.

TCP Input Threading in High
Performance Distributed Systems

Hans H. HAPPE

Department of Mathematics and Computer Science,
University of Southern Denmark, DK-5230 Odense M, Denmark

hhh@imada.sdu.dk

Abstract. TCP is the only widely supported protocol for reliable conmization.
Therefore, TCP is the obvious choice when developing Bisteid systems that need
to work on a wide range of platforms. Also, for this to work areleper has to use the
standard TCP interface provided by a given operating system

This work explores various ways to use TCP in high performeatistributed sys-
tems. More precisely, different ways to use the standard OGP API efficiently are
explored, but the findings apply to other operating systesngedl. The main focus is
how various threading models affect TCP input in a proceastihs to handle both
computation and /0.

The threading models have been evaluated in a cluster okbhimrkstations and
the results show that a model with one dedicated I/O threadnadly is good. Itis at
most 10% slower than the best model in all tests, while theratiodels are between
30 to 194% slower in specific tests.

Keywords. Distributed systems, HPC, TCP

I ntroduction

The Transmission Control Protocol (TCP) has become theate fandard for reliable In-

ternet communication. As a result, much work has gone infarawving TCP at all levels

(hardware, kernel, APIs, etc.). This makes TCP the onlylgiahoice for distributed appli-

cations that need to be deployed outside the administrdtiveain of the deployer. l.e., one
might have gained access to a remote cluster, but this ddesesn that the administrator
is willing to meet specific communication requirements {pcols, operating systems). Grid
and peer-to-peer are other examples of environments wimé#ture.

TCP was designed as a reliable connection-oriented cdierver protocol. From the
users point of view, TCP provides a way to stream bytes betwege endpoints. Therefore,
the user has to provide a stream encoding mechanism thatesrsgparation of individual
messages (message framing). Encoding and decoding stneakesT CP development more
complicated and it can lower performance.

Message framing and other issues have been addressed igirgnamotocols like the
Stream Control Transmission Protocol (SCTP) [1] and theaB@am Congestion Control
Protocol (DCCP) [2]. These protocols still need to maturé become generally available.
This leaves TCP as the only choice.

This work describes and evaluates various ways to use TCPnooimation in high
performance distributed systems. Particularly in systetmsre nodes act as both client and
server. In this context a node is a Unix user-process that tihgekernel TCP API for com-
munication. This duality raises the question of threadlhg. client is I/O-bound, with re-
gards to communication, it can take on the role as serverewtsliting. This will avoid the

204 H.H. Happe/ TCP Input Threading in High Performance Distributed Systems

services client

[/0 library]

user process

[TCP sockets]

Figurel. System overview.

overhead of context switching. In other scenarios multipfeads could be a better option.
These different threading models are the main focus of thikw

The work generally applies to a wide range of distributedesys that are based on TCP
communication. Especially systems where nodes conclyrieave to handle tasks outside
the communication context, might benefit from this work. iHpggrformance message passing
[3,4] and software-based distributed shared memory [y&Esns fit into this category. Grid
and peer-to-peer based systems could also benefit from tinks w

1. System Overview

Basically a distributed system consists of multiple intéireg nodes. Each node is responsible
for a subset of the system and might be a client entry poirtitésystem.

In the context of this paper a node is a process in an opersyistgm, which can have
multiple threads of execution all sharing its address spand/O library will handle TCP
communication with other processes.

Figure 1 gives a simple overview of the different compon@ntsprocess. Services han-
dle the distributed system responsibilities of the proc€hss includes communication, pro-
tocols, storage, etc. In some cases it is convenient thattslcan become part of the process.
In these cases performance and/or simplicity are more itapothan client separation.

2. Unix TCP Communication

The basis for TCP communication in Unix is the socket, whih general abstraction for
all types of network related I/0. As most kernel resourceycket is referenced from user-
space by a file descriptor that is valid until the user exghicloses the socket. Before actual
communication can start a TCP socket has to be connected tthbr end. Now data can be
streamed between the endpoints by reading and writing tedbleets.

2.1. Sending

Sending a message is very simple because the decision tansplieks that the content and
context of the message is known. Basically the content jestia to be encoded into a mes-
sage format that can be decoded at the receiver. Then thagesszn be written to the socket
that represents the destination.

Writing to a TCP socket will copy the data to an in-kernel TGQRfdr, but in case this
buffer is full the connection is saturated. Obviously, tbauld result in deadlocks if not
handled carefully. Avoiding deadlocks in distributed gys$ is a system design issue that

H.H. Happe/ TCP Input Threading in High Performance Distributed Systems 205

can not universally be solved by a communication abstradiif® library). Features like
buffering can help to avoid deadlocks, but in the end it is gistem design that should
guarantee deadlock-free operation based on these features

2.2. Receiving

It is a general fact in communication that the receiving ssdlearder to handle. Initially the
receiver is notified about pending input, but only after theut is read can its context be
determined. l.e., the kernel needs to process IP and TCRtssacrder to route input to the
correct destination socket. A similar kind of input prodegshas to be done in user-space in
order to route data to the correct subsystem of an applitatio

2.3. Monitoring Multiple TCP Sockets

The fact that each TCP connection is represented by one §itxigeor, poses the question of
how to monitor multiple connections simultaneously.

Having one thread per socket to handle input is a simple wanyoitor multiple sockets.
This trades thread memory overhead for simplicity. Whilis themory overhead might be
acceptable it can also result in context switching overhesnich in turn pollutes the CPU
cache and TLB (multiple stacks). In practice a thread watsrput by doing a blocking
read system call on the socket. When the kernel receivedatatee socket, it copies it to the
buffer provided by the read call and wakes up the thread thatean return to user-space.
This "half” system call (return from kernel) is a short wakepath and the input data will be
available upon return.

Most operating systems provide a way for a single thread toitmomultiple sockets
simultaneously. Unix systems generally provide the systalis[poll() andselect(), but these
has scalability issues [7]. Therefore, various other $taland non-standard methods has
been invented. Linux provide thapoll [8] mechanism which is a general way to wait for
events from multiple file descriptors. Basically, a threat evait for multiple events in a
single system callgpoll_wait()). The call returns with a list of one or more ready events that
need to be handled. In the socket input case an event is lthoyll#oing a read on the ready
socket. Compared to the multi threaded model describedeathis is a whole system call
per socket in addition to thepoll _wait() system call. This overhead should be smaller than
the context switching overhead in the multi threaded modiettis single threaded method
to be an advantage. With a low input rate or single socketiacthis will not be the case.

3. Input Models

Both services and clients can start large computations asudt of new input. If communi-
cation should continue asynchronously during these coatiputs, multiple threads are re-
quired. The best way to assign threads depends on the spbsifiouted system.

The focus of this paper is a system where clients has theirtbmad. The thread might
do communication or service work, but only when the clierliscato the 1/O library or a
service. From the client’s point view this is a natural dasigecause it controls when to
interact with the distributed system.

Another characteristic is that services are 1/0O bound. d&dlgi they function as state
machines acting on events from the 1/O library and/or thent)iwithout doing much com-
putation. Extra threads could be added to handle servicgutations, but this will not be
addressed in this paper.

Figure 2 illustrates common input cases. Case a) is inpetiid to a service or a client
without producing new output (response/forward). This loarihandled in the context of the

206 H.H. Happe/ TCP Input Threading in High Performance Distributed Systems

110 service client
//_\
a) I
\% ______ —_ -
d - - - T T = - - =
b) &_//r .

Figure 2. Input scenarios. Dashed arrows indicate events that nmigjbtif.

clientthread wheniitis ready, because the input event dutesffiect other parts of the system.
In case b) a service produces new output as a result of the. ifipis output could be a
response to a request or some sort of forwarding and migimpertant for other nodes. The
input should therefore be handled as soon as possible am@weto wait for the client to be
available for communication. This requires at least oneagtkiread for input handling.

The following sections describe the threading models thidbe evaluated in section 4.
Only the input path is described, while details about semdimd setting up connections are
left out.

3.1. Model 1: Sngle Thread

In this model 1/0O and service processing are only handledwthe client thread calls into
these. When such a call can not be served locally the cligaaithwill be directed to the
I/O library in order to handle new input. When input arrivewill be handled and in case it
matches the requirements of the client, control is retutaede client (Figure 3).

Case a) is handled perfectly because context switches aréeavwhen input for the
client arrives. However, in case b) progress in the oveyallesn can be stalled if the client is
CPU-bound. Also, this model requires that multiple sockatsbe monitored simultaneously
as described in section 2.3.

client services 1/10
D |
2 D wait fol
|| input
l B |
service l
input IZZZZZZI

Figure3. Single thread model.

H.H. Happe/ TCP Input Threading in High Performance Distributed Systems 207

client services 1/10

l______ wait fol
I-D_______ input
i | |

service Or---"[R =
input T T T

Figured. Input thread model. The white thread is the input thread.

3.2. Mode 2: Input Thread

In this model a thread is used for input handling. The thréadssin the 1/O library and when
input arrives it delivers this to one of the services or thentl(Figure 4). The exact details
of how this multiplexing is done is not important in this cexi. In case the client is waiting
for input the input thread must wake up the client when thmutrarrives. This adds context
switching overhead, but solves the issues with input cas&dgin, this model requires that
multiple sockets can be monitored simultaneously.

3.3. Model 3: A Thread per Socket

This model works similarly to M2 except that each socket hakedicated input thread.
This removes the overhead of monitoring multiple sockaisalso introduces new issues as
described in section 2.3.

3.4. Models 1 and 2: Hybrid

Given the cons and pros of the described models a hybrid eatwel and M2 would be
interesting. The idea is to make the client handle I/O evesiie it is otherwise waiting
for input. This requires a way to stop and restart the inprgatl by request from the client
thread. While this is possible, it can not be done in a gemweaiglwithout producing context
switches. The problem is that the input thread has to exitraadter the event monitoring
system call. New kernel functionality is needed in ordertfos model to work and it will
therefore not be evaluated in this paper.

4. Evaluation

The evaluation was done with a software-based distributedesl memory system, which
currently is work in progress. It is based on the PastSet mgmodel [6] and fits into the
system model described in section 1. The memory subsystempismented as services and
applications act as clients using these services.

The results show the performance of the various models fsfiecific distributed sys-
tem. Performance variations in these results have not beesnieed in close detail, but some
hints to why models perform differently are given in the dgson. Low-level information
about cache misses and context switches would be integabthre goal was to improve op-
erating systems, but this work targets the use of genenadljadole communication methods.

208 H.H. Happe/ TCP Input Threading in High Performance Distributed Systems

4.1. Application

A special evaluation application that can simulate difféi@mputation and communication
loads has been developed. Basically each process runs aenwiberations that have a
communication and a computation part. How these parts wodach run are specified by
load-time parameters.

In the communication part one process writes some data tegh@emory and all others
read this data (like multicasting). The writer in each itena is chosen in a round-robin
fashion. A parametefomm defines how much data is written in each iteration.

The computation part does a series of local one byte readtepalculations. A param-
etermem defines how much memory is touched by these calculationssatigerefore the
minimum number of read/updates done in each iteration. lakes it possible to test the
effect of memory use in computations. Another parametér defines a maximum number
of read/updates that will be done, but the actual numberaat/tgpdates carried out in each
iteration is chosen randomly from the rangeem; calc]. This makes computations uneven
and ensures that processes are not in sync. A pseudo-rangoiven generator is used to
ensure comparability and the generator is initialized ifferent seeds on for each process.

4.2. Test Platform

The evaluation was performed on a 32 node Linux clusterdoterected by Gigabit Ethernet.
Each node had an Intel Pentium 4 541 64-bit CPU with Hypeeating and ran version
2.4.21 of the Linux kernel. The kernel supported the new\WalOSIX Threading Library
(NPTL) [9] and was used in the evaluation.

Hyper-Threading was turned off so that the multi threadedefodid not get an advan-
tage. This was done by forcing processes to stay on one CRlthvataskset(1) tool.

The less scalablpoll() system call was used to monitor multiple sockets, becauese th
kernel did not suppospoll (available in versions 2.6.x). This could have a negatifexcebn
the performance of the M1 and M2 models.

4.3. Results

The tests were done by running a series of communicate/cenitptations (see section 4.1)
and hereby measure the average iteration time. Each test erthree times to test for
variations between runs. The variations were insignifieatk therefore the average of these
three runs are used in the following results.

4.3.1. 1/O-bound

Figures 5 and 6 show the scalability of the different modethout computation. M1 per-
forms better than the other two threaded models, as expdttisdonly marginally better
than M2 and the difference is not even visible when commuioicancreases (Figure 6).
Therefore, M2 only imposes a small context switching ovadcheompared to M1. The many
threads in M3 give even more overhead as the number of nodemase (Figure 5). With
added communication and therefore higher memory utibretihe overhead of threading re-
ally decreases performance (Figure 6). With 32 nodes M3 stitniples the completion time
compared to the other models. These observations indibatethread memory overhead
(stacks and task descriptors) is the cause of M3’s perfocmesue.

When plotting time as a function of communication load, tbemperformance of M3
becomes even more apparent (Figure 7). M1 and M2 do equally wile there is an
anomaly starting at 16KB. M3 does not have this anomaly whidictates that the monitor-
ing of multiple socketsfoll()) is the cause. Longer I/O-burst increases the chance thia th

H.H. Happe/ TCP Input Threading in High Performance Distributed Systems 209

mem=1B, comm=32B, calc=1

0.001

0.0009

0.0008

0.0007

0.0006

0.0005

time (s)

0.0004

0.0003

0.0002

0.0001

Figure5. Scalability with 32B read/write and no computation.

mem=1B, comm=16KB, calc=1

0.004 FM3 == 0- - _
0.0035 |-+ A g
0.003 [.

L0025 [+++++eesee s TR SI I e

time (s)

0.002

0.0015

0.001

0.0005

Figure6. Scalability with 16KB read/write and no computation.

are multiple sockets with input wheoll() is called. This reduces the number of calls and
therefore the total overhead pdll().

210 H.H. Happe/ TCP Input Threading in High Performance Distributed Systems

32 nodes, mem=1B, calc=1
0.012 T T T T T T T T T T

T o
0.008 |-

0.006 [jele —

time (s)

0.004

0.002

32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
comm (B)

Figure7. Different read/write sizes and no computation.

32 nodes, mem=1B, comm=32B
0.07

0.06

0.05

0.04

time (s)

0.03

0.02

0.01

0
10000 100000 1le+06 2e+06
calc iterations

Figure 8. Different computation loads and 32B read/write.

4.3.2. CPU-bound

Figures 8 and 9 show how the models perform with differenellewof computation in the
clients. Remember that the actual number of iterationsndam, but the displayed values
are maximums. As expected M1 does not perform well when ceatipa is increased, while
M3 becomes the best model. The long computation periodagm@mmunication events in

H.H. Happe/ TCP Input Threading in High Performance Distributed Systems 211

32 nodes, mem=1B, comm=16KB
0.07 T T

0.06

0.05

0.04

time (s)

0.03

0.02

10000 100000 1le+06 2e+06
calc iterations

Figure 9. Different computation loads and 16KB read/write.

32 nodes, comm=32B, calc=1

0.11

0.1

0.09

0.08

0.07

0.06

time (s)

0.05

0.04

0.03

0.02

0.01

64 128 256 512 1024 2048
memory (KB)

Figure 10. Client memory utilization test with 32B read/write.

time. The short wakeup path in M3 benefits from this, while ekerhead ofpoll() is not
amortized by handling multiple events per call. ConsedueMt is slower than M3, but this
might be resolved by using a more scalable monitoring mesiniot asepoll.

When the computations touch memory M2 wins, while M3 now Inee® second best
(Figure 10). This is presumed to be caused by the larger wgret of M3.

212 H.H. Happe/ TCP Input Threading in High Performance Distributed Systems
5. Related Work

Much work addresses TCP kernel interfaces [10,8,11,7]evalves around monitoring mul-
tiple sockets. The general conclusion is that the perfoomari event-based interfaces are
superior to threading. For CPU-bound workloads threadmgeeded, though. This is in line
with the findings of this paper, because the best overall i®dd&) combines event-based
I/O and threads.

TCP communication latency hiding by overlapping commutnbcewith computations is
explored in [12,13]. While the advantages of this overlaggre clear the evaluation is very
limited. Only two nodes is used and the applications havédefined I/O and CPU-bursts.

In [14] an MPI [3] implementation that uses separate comcation and computation
threads is compared with a single-threaded implementafibase implementations corre-
spond to models M2 and M1 respectively and the results angasim

6. Conclusions

Various ways to handle TCP input in high performance digted systems have been eval-
uated. This was done for a specific case where nodes act aslmsthand server. In this
context a node is a Unix user-process that uses the kerneARCRr communication.

Three input models with different ways of using threads wex@uated. The exact de-
tails of these models can be found in section 3, but this h&ga short summary:

M1: A single thread handling all work.
M2: A dedicated thread handling all TCP input and a client¢#lak.
M3: A thread per TCP socket and a client thread.

The overall winner of the three models is M2. In cases whereoM#3 are better, M2
is 10% slower at most. M1 wins in 1/O-bound tests, becausesithgle thread in this case
only has to handle input events. On the other hand, it is thetwoeodel in CPU-bound tests.
M3 only wins in CPU-bound tests with low memory utilizatiofihe short input wakeup
path and large memory working set (thread state) of M3, iebed to be the reason for its
effectiveness in this special case.

M1 and M2 were implemented using tpell() system call for socket event monitoring.
More scalable methods such gmll were not available on the test platform. Using such
methods should shorten the wakeup path in these models.

A hybrid between M1 and M2 would be an interesting subjectiatfer research. When
the client is waiting for input it might as well handle inpwtemts. At the time the input it
is waiting for becomes available, it can start using it immaggly without doing a context
switch.

References

[1] J. Yoakum L. Ong. RFC 3286: An Introduction to the Sream Control Transmission Protocol (SCTP),
2002.

[2] S. Floyd E. Kohler, M. HandleyRFC 4340: Datagram Congestion Control Protocol (DCCP), 2006.

[3] Message Passing Interface Forum. MPI: A message-pasgirface standard. Technical Report UT-CS-
94-230, 1994.

[4] V. S. Sunderam. PVM: a framework for parallel distribdiomputing.Concurrency, Practice and Expe-
rience, 2(4):315-340, 1990.

[5] David Gelernter. Generative communication in lind&M Transactions on Programming Languagesand
Systems (TOPLAS), 7(1):80-112, 1985.

[6] Brian Vinter. PastSet: A Structured Distributed Shared Memory System. PhD thesis, Department of
Computer Science, Faculty of Science, University of TroNmway, 1999.

H.H. Happe/ TCP Input Threading in High Performance Distributed Systems 213

[7] Dan Kegel.The C10K problem, 2004. http://www.kegel.com/c10k.html.
[8] L. Gammo, T. Brecht, A. Shukla, and D. Pariag. Comparing avaluating epoll, select, and poll event
mechanismsProceedings of 6th Annual Linux Symposium, 2004.
[9] U. Drepper and I. Molnar. The Native POSIX Thread Libréoy Linux. White Paper, Red Hat, Fevereiro
de, 2003.
[10] J. Ousterhout. Why threads are a bad idea (for most seg)oPresentation given at the 1996 Usenix
Annual Technical Conference, January, 1996.
[11] J. Lemon. Kqueue: A generic and scalable event notifindacility. Proceedings of the USENIX Annual
Technical Conference, FREENIX Track, 2001.
[12] Volker Strumpen and Thomas L. Casavant. Implementargraunication latency hiding in high-latency
computer networks. IRIPCN Europe, pages 86—93, 1995.
[13] Volker Strumpen. Software-based communication lagdriding for commaodity workstation networks. In
ICPP, \ol. 1, pages 146-153, 1996.
[14] S. Majumder, S. Rixner, and V.S. Pai. An Event-driverciitecture for MPI Libraries.Proceedings of
the Los ALamos Computer Science Ingtitute Symposium (LACS’ 04),0ctober, 2004.

