
Communicating Process Architectures 2006
Peter Welch, Jon Kerridge, and Fred Barnes (Eds.)
IOS Press, 2006
c© 2006 The authors. All rights reserved.

109

A Study of Percolation Phenomena
in Process Networks

Oliver FAUST, Bernhard H. C. SPUTH and Alastair R. ALLEN

Department of Engineering, University of Aberdeen,
Aberdeen, AB24 3UE, UK

{o.faust , b.sputh , a.allen}@abdn.ac.uk

Abstract. Percolation theory provides models for a wide variety of natural phenom-
ena. One of these phenomena is the dielectric breakdown of composite materials.
This paper describes how we implemented the percolation model for dielectric break-
down in a massively parallel processing environment. To achieve this we modified
the breadth-first search algorithm such that it works in probabilistic process networks.
Formal methods were used to reason about this algorithm. Furthermore, this algorithm
provides the basis for a JCSP implementation which models dielectric breakdowns
in composite materials. The implementation model shows that it is possible to apply
formal methods in probabilistic processing environments.

Keywords. Percolation, Breadth-first search, JCSP, Probabilistic process networks,
channel poisoning

Introduction

The percolation problem has been extensively investigated by mathematicians and physicists.
In this paper we analyse the problem from a computer science point of view. One of the
reasons for this cross disciplinary interest is the fact that the percolation problem yields ex-
tremely simple systems exhibiting the intriguing complexities of phase transitions. These sys-
tems can be associated with many physical realisations [1,2]. S. R. Broadbent and J. M. Ham-
mersley posed the original percolation problem in the context of graph theory [3]. They con-
sidered an arbitrary linear graph, like the one shown in Figure 1, in which the vertices are
points of the model, and a given pair of vertices is linked by an edge with probability p
independently of all other pairs; this is an example of bond percolation.

Figure 1. A linear graph as one realisation of a bond percolation problem

More recent work has focused on applications of percolation theory in the physical
world. Of special interest were connectivity studies in various materials. S. Reder has studied
percolation and conduction in a random resistor diode network [4]. Such a network extends
the bond percolation theory by allowing directed (diode) and undirected (resistor) edges.
Closer to the bond percolation theory are dielectric breakdown models. Such models are used

110 O. Faust, B.H.C. Sputh and A.R. Allen / Percolation Phenomena in Process Networks

to abstract a physical system where conducting particles are distributed at random in an in-
sulating material. A dielectric breakdown between two conducting particles occurs if the dis-
tance between them is below a certain threshold. A dielectric breakdown of the insulating
material occurs if there is a conducting path through the insulating material. F. Peruani et al.
have generalised the dielectric breakdown model (DBM) to describe dielectric breakdown
patterns in conductor-loaded composite materials [5].

In this paper we analyse a simple DBM. Figure 2 shows a possible realisation of an
experimental dielectric breakdown setup. Each vertex between the two plates represents a
conducting particle and an edge indicates that there is an electrical path between the particles.
In this particular realisation of the model a dielectric breakdown occurs, because there is a
conducting path between the plates.

Conducting particle

Connecting path

Plate

Source

Figure 2. Experimental dielectric breakdown setup

In order to determine whether or not a particular realisation of the experiment is conduct-
ing we implemented a simulation setup in a massively parallel processing environment. Each
conducting particle is modelled as an individual process. Electrical breakdown between two
particles is modelled as a communication channel between two processes. A dielectric break-
down of the material is similar to the ability of the process network to transmit a message
from one side to the opposite side over the communication channels between the processes.

In general, a message represents a communication between sequential processes. Hoare’s
CSP (Communicating Sequential Processes) provides the theoretical basis to reason about
such communication in a very skilful manner [6,7]. In this paper we use CSP to derive an ele-
gant solution for the ‘find cluster from node’ problem. The proposed solution does not require
any sequentialisation during the algorithm design. With sequentialisation we mean the design
of cascaded loops and control structures. Standard solutions for student education and even
more sophisticated algorithms, as in [8], use such structures to achieve the required function-
ality. Unfortunately, the design and implementation of these structures increases complexity
and code size of the algorithm. This results in an increased error density [9]. Compared with
these sequential algorithms the CSP model yields code with a lower error density, because it
is simpler and more compact. To show the practical viability of these ideas we implemented
the algorithm using JCSP.

The following section provides a short review of percolation theory. Section 2 introduces
the find cluster from node algorithm, which is an adaptation of breadth first search for parallel
processing platforms. The algorithm is proved for a particular network setup and in a second
step it is shown that the algorithm works for an arbitrary network setup. The last section
discusses the application of the algorithm in an experimental implementation of a dielectric
breakdown model. The model is implemented with JCSP (CSP for Java). Statistical tests
show that this implementation behaves according to percolation theory.

O. Faust, B.H.C. Sputh and A.R. Allen / Percolation Phenomena in Process Networks 111

1. Bond Percolation Theory

This section briefly establishes the basic definitions and notation of bond percolation in a d
dimensional integer space Zd. The main result of this section is the definition of a proba-
bility space which allows us to reason about bond percolation problems in terms of proba-
bility. From this theoretical discussion we gain sufficient insight to propose the foundations
of a practical implementation model. This discussion follows loosely Geoffrey Grimmett’s
introduction to percolation [10].

To start we define the (graph-theoretic) distance δ(x, y) from x to y by:

δ(x, y) =
d∑

i=1

| xi − yi | x, y ∈ Zd (1)

The space Zd is turned into a so called d-dimensional cubic lattice, by adding edges between
all pairs x, y of points of Zd with δ(x, y) = 1. We call the resulting lattice Ld and think of Zd

as the set of vertices in Ld. The edges are described by Ed.
Next we introduce probability to the lattice. Let p and q satisfy 0 6 p 6 1 and q = 1−p.

We declare each edge of Ld to be open with probability p and closed otherwise, independently
of all other edges. This can be expressed in a more formal way by the following probability
space. As sample space we take Ω =

∏
e∈Ed{0, 1} points of which are represented as ω =

ω(e) : e ∈ Ed and called configurations; the value ω(e) = 0 corresponds to e being closed,
and ω(e) = 1 corresponds to e being open. We take F to be the σ-field of subsets of Ω
generated by the finite-dimensional cylinders. Finally, we take product measure with density
p on (ω,F):

Pp =
∏
e∈Ed

µe (2)

where µe is the Bernoulli measure on {0, 1}, given by

µe(ω(e) = 0) = q µe(ω(e) = 1) = p (3)

We write Pp for this product measure, and Ee for the corresponding expectation operator.
The probability space is summarised as (Ω,F , Pp).

We used the following device to construct the experimental setup described in the sub-
sequent sections. Suppose that (X(e) : e ∈ Ed) is a family of independent random variables
indexed by the edge set Ed, where each X(e) is uniformly distributed in the range [0, 1]. We
may couple together all bond percolation processes on Ld as p ranges over the interval [0, 1]
in the following way. Let p satisfy 0 6 p 6 1 and define ηp(∈ Ω) as:

ηp(e) =

{
1 if X(e) < p
0 if X(e) > p

(4)

We say that the edge e is p-open if ηp(e) = 1. The random vector ηp has the following
properties:

P(ηp(e) = 0) = 1− p, P(ηp(e) = 1) = p (5)

112 O. Faust, B.H.C. Sputh and A.R. Allen / Percolation Phenomena in Process Networks

We may think of ηp as being the random outcome of the bond percolation process on
Ld with edge-probability p. Now, ηp1 6 ηp2 whenever p1 6 p2, which is to say that we
may couple together two percolation processes with edge probabilities p1 and p2 in such a
way that the set of open edges of the first process is a subset of the set of open edges of
the second. More generally, as p increases from 0 to 1, the configuration ηp runs through
typical configurations of percolation processes with all edge probabilities. Figure 3 shows a
realization of bond percolation on a 20 × 20 section of the two dimensional (d = 2) square
lattice for p1 = 0.2. This means each edge exists with a 20% chance. In Figures 4 – 6 p is
increased by 0.2 for each try, such that p1 = 0.2 < p2 = 0.4 < p3 = 0.6 < p4 = 0.8.
The seed for the random variable is the same (seed = 3) for all realisations, therefore the set
of edges of the first realisation is a subset of the set of edges of the second and so on, and
the 4th realisation contains all edges of the previous realisations. We say that each graph is a
subgraph of the next.

Figure 3. Realisation: 20× 20, p1 = 0.2, seed = 3 Figure 4. Realisation: 20× 20, p2 = 0.4, seed = 3

Figure 5. Realisation: 20× 20, p3 = 0.6, seed = 3 Figure 6. Realisation: 20× 20, p4 = 0.8, seed = 3

1.1. The Critical Phenomenon

In the introduction we stated that the percolation problem yields extremely simple systems
exhibiting the intriguing complexities of phase transitions. To discuss phase transitions, it is
necessary to define the critical quantity of interest. For percolation problems this is the so
called percolation probability θ(p) which is the probability that an infinite cluster exists in the

O. Faust, B.H.C. Sputh and A.R. Allen / Percolation Phenomena in Process Networks 113

graph. Figure 7 indicates how the percolation probability θ(p) depends on the edge existence
p. The exact relationship depends on the dimension of the graph d. Harry Kesten proved that
the phase transition probability for a two dimensional graph is θc(2) = 0.5 [11]. Section 3
provides a validation of that result.

p
0

θ(p)

1pc(d)

1 (1, 1)

Figure 7. Theoretical percolation probability θ(p)

2. Find Cluster from Node Algorithm

This section describes an adaptation of the breadth first search algorithm for massively par-
allel processing systems. The proposed algorithm discovers all nodes which are connected
over a path to one particular node, therefore the algorithm is called find cluster from node.

In a first step the algorithm discovers the network by spreading over every available
channel. If there are no new nodes to discover, each individual node returns its ID and the
IDs from all other nodes it received to the node which initially discovered the node under
discussion.

To investigate the algorithm in further detail, the following subsection provides a CSP
model of the algorithm for a particular network. The network, shown in Figure 8, consists of
5 nodes (processes) and directed edges (channels) between them. A connection between two
processes is established by connecting them with two channels in opposite directions. The
channels are named c.from.to where from represents the sender ID and to is the receiver ID.
The process S has the ID 0, it is a special process because it can initiate the find cluster from
node algorithm.

2.1. CSP Model

As a first step in the CSP model the network setup is defined with a configuration function
CFG(x) where x is a process ID. For a specific process ID x, the configuration function returns
a set of process IDs. This set defines to which processes the process with ID x is connected.
Equation 6 defines the configuration function for the network shown in Figure 8.

CFG(1) ={0, 2, 3}
CFG(2) ={1, 3, 4}
CFG(3) ={1, 2}
CFG(4) ={2} (6)

The process S initiates the discovery phase of the find cluster from node algorithm by
sending an empty set {} to P(1). After that the process S expects the result, i.e. a set with

114 O. Faust, B.H.C. Sputh and A.R. Allen / Percolation Phenomena in Process Networks

S

P(1)

P(2) P(3)

P(4)

c.0.1 c.1.0

c.1.2 c.2.1 c.1.3c.3.1

c.2.3

c.3.2
c.2.4 c.4.2

Figure 8. SYSTEM process model

all the IDs of the discovered nodes. This goes on recursively. Equation 7 provides a CSP
short-hand for this functionality.

S = c.0.1!{} → c.1.0?Y → S (7)

Where {} is the empty set event to start the algorithm and Y is the set with all discovered
node IDs. The process S engages in the events described by its alphabet:

αS = {c.0.1, c.1.0} (8)

The network process P(x), where x is the process ID, models the find cluster from node
functionality. A network process P waits until it receives an empty set: the sender of this
message constitutes the so called uplink. The from parameter of the channel over which the
empty set is received determines the ID of the uplink. The indexed external choice operator,

2
i∈a

where a is the set of parameters, enables the process to receive the empty set event
over one of its inputs.

P(x) =2
i∈CFG(x)

c.i.x?Y : {} → PC(x, i, CFG(x)\{i}, CFG(x)\{i}, {x}) (9)

In the inner recursion state PC, the process checks whether or not there are still messages
to be sent or received.

PC(x, u, A, B, C) =if (A = {} ∧ B = {}) then

c.x.u!C → P(x)

else

PR(x, u, A, B, C) (10)

O. Faust, B.H.C. Sputh and A.R. Allen / Percolation Phenomena in Process Networks 115

where x is the process ID, u is the uplink ID, A is the set of all IDs from which the process has
received a message, B is the set of all process IDs to which the process has sent a message
and C is the set of all IDs returned from the discovered processes. Equation 10 defines that if
sets A and B are empty then it is safe to send a message back to the originator of the message.
In all other cases, the process transits into a state where it is waiting to send or receive a
message.

In the PR state the process is ready to either receive the IDs of discovered processes or
send the empty set message. This activity totally depends on the neighbours, therefore the
functionality is modelled with an external choice to choose between reading and writing.
Reading and writing themselves employ indexed external choices to select the channel over
which the appropriate event travels.

PR(x, u, A, B, C) =
(
2

i∈A
c.i.x?Y → PC (x, u, A\{i}, B, Y ∪ C)

)
2

(
2

i∈B
c.x.i!{} → PC (x, u, A, B\{i}, C)

)
(11)

PR has the same parameters as PC. The process engages in events determined by the
following function:

αP(x) = {c.x.i, c.i.x | i ∈ CFG(x)} (12)

where x is again the process ID.
All processes in the network execute in parallel. In CSP the parallel execution of the

processes P(x) is modelled with the general indexed parallel. The following equation defines
the process NT as :

NT = ‖
i∈{1..n}

P(i) (13)

where n is the number of nodes in the network. NT engages in:

αNT =
⋃

i∈{1..n}

αP(i) (14)

The process diagram, shown in Figure 8, indicates that NT executes in parallel to the
supervisor process S. In CSP notation:

SYSTEM = NT αNT‖αS S (15)

The resulting process (SYSTEM) models the system shown in Figure 8. In general, the
SYSTEM process represents a model for the network defined by the configuration function,
Equation 6.

2.2. Refinement Checks

This section discusses how the CSP model checker FDR [12] was used to verify the key
aspects of the find cluster from node algorithm. First we instruct FDR to verify that the
system, described by the CSP model SYSTEM is deadlock and livelock free (deterministic).
The following two commands instruct FDR to carry out these checks:

116 O. Faust, B.H.C. Sputh and A.R. Allen / Percolation Phenomena in Process Networks

assert SYSTEM : [deadlock free [F]]

assert SYSTEM : [deterministic [FD]] (16)

Next we check that the system behaves according to specification. This is done by defin-
ing a process SPEC which produces all sequences of events (traces) the SYSTEM process
must exhibit:

SPEC = c.0.1!{} → c.1.0?Y : {{1, 2, 3, 4}} → SPEC (17)

Now we ask FDR to verify that the set of all traces of SYSTEM is a subset of the set of
all traces of the specification (SPEC)

SPEC @T SYSTEM (18)

Asking the question the other way around, namely is the set of all specification traces a
subset of all system traces, establishes whether or not the system behaves according to the
specification.

SYSTEM @T SPEC (19)

Both questions, stated in Equations 18 and 19, can only be answered with yes if the traces
of system and specification are equal. Figure 9 shows that all tests were successful. That
means we proved that the algorithm is deadlock and livelock free. Moreover, the algorithm
exhibits the desired functionality for that particular deterministic network. In the next section
we extend the use of the algorithm to probabilistic networks.

Figure 9. FDR refinement check results

3. JCSP Implementation

This section demonstrates how we used the find cluster from node algorithm to simulate con-
ductivity experiments. An ordinary PC system served as processing platform for the simula-
tion. The PC system employs a sequential processor which provides only one thread of ex-
ecution. Therefore, this sequential processor must be abstracted by software which provides
a virtual parallel processing environment. We used JCSP [13] to implement the process net-
work for the conductivity experiment, because this environment provides such a virtual paral-
lel processing environment. Moreover, the JCSP environment provides basic CSP constructs
such as channels and processes.

The percolation phenomenon is a statistical phenomenon, hence many simulation runs
with different matrix configurations must be performed. Creating a new matrix requires for

O. Faust, B.H.C. Sputh and A.R. Allen / Percolation Phenomena in Process Networks 117

the 80×80 matrix that 6404 processes, and hence threads, are initialised and started. The JVM
(Java Virtual Machine) requires a long time to start these threads, for measurement results
see Section 3.4. To speed up the reconfiguration process of the network we used a method
called poison and antidote to bring the network into an initial, well defined, state after each
simulation run. Despite its complexity, this approach is faster than creating the matrix afresh.

3.1. Implementation Problems

The algorithm previously described relies on the fact that each node employs external choice
operators to receive and send messages over connected channels, see Equations 9 and 11. In
other words, the environment dictates which messages are sent and received. Unfortunately,
JCSP does not provide such an external choice construct, it only provides the alternative con-
struct, which waits for the arrival of a message from one of multiple channels. Considering
only the JCSP standard channels this results in a potential deadlock condition. The deadlock
condition occurs when two nodes try to send each other a message, because during sending
they are unable to receive, thus they will both wait indefinitely for their receiver to receive.
There are two possible solutions to this problem: develop an external choice construct for
JCSP, or use channels that do not block when writing to them. Developing an external choice
construct for JCSP is a complex task beyond the scope of this project. A buffered channel
is available in JCSP (class jcsp.lang.One2OneChannelX). However, making this channel
poisonable would result in almost a complete rewrite of it. Developing a simple non-blocking
channel was quicker. This simple non-blocking channel neither blocks when writing to it nor
does it block when trying to read from it. To make the non-blocking nature of the channels
clearly visible we use the terms send and receive instead of write and read. This is similar to
a sender using an antenna to send a message, but it cannot be sure that the receiver receives
it. The receiver on the other hand can acquire a signal from an antenna at any time, but it
is unsure whether or not there is a message encoded in the signal. However, at the receiver
side the non-blocking channel allows the use of JCSP’s alternative construct to wait for a
message from multiple channel inputs. Moreover, our non-blocking channels support stateful
poisoning, and neutralisation of poison using an antidote.

3.1.1. Non-blocking Channel Implementation

Internally, the non-blocking channel is a stripped down version of a normal JCSP One2One-

Channel: like this channel, the non-blocking channel can store a single message. Sending a
message over the channel results in the use of this buffer and alarms a possible alternation
object about the availability of a message, similarly to JCSP’s normal One2OneChannel.
After this the send method returns to the caller, which now could try to send another message
over this channel. However, as long as the message is not delivered to the receiver any attempt
to send another message over this channel fails, and the non-blocking channel throws an
exception at the sender. Trying to receive a message from the channel, while no message is
available also results in an exception. This sums up how the non-blocking part of the non-
blocking channel operates.

A second interesting property of the non-blocking channel is its support for stateful poi-
soning and the neutralisation of poison. The non-blocking channel after being injected with
poison behaves similarly to a poisonable-channel introduced in [14]. The poisonable-channel,
presented in that paper, stays in this state until it is destroyed. For the percolation experi-
ment presented in this paper this is undesirable, because we would like to reuse all objects
and channels for the next try. Hence, we enabled the non-blocking channel to neutralise any
poison it received: after the neutralisation the non-blocking channel is ready to be used again.

118 O. Faust, B.H.C. Sputh and A.R. Allen / Percolation Phenomena in Process Networks

To represent non-conductive channels, each channel has a flag indicating whether a chan-
nel is open or closed, visible to the individual nodes. However, this flag does not affect the
ability of a channel to be poisoned.

The connections of a percolation matrix are bidirectional, however channels in CSP are
unidirectional. To overcome this we implemented a bidirectional channel consisting of two
non-blocking channels.

3.2. Creation of the Percolation Matrix

Figure 10 shows the structure of the percolation matrix we implemented using JCSP.
In Section 2 the percolation matrix is constructed out of processes and channels. The

processes behave according to the find cluster from node algorithm. However, there are two
special nodes as part of this matrix, the plus-pole and the minus-pole.

The Plus − Pole initiates the find cluster from node algorithm. Once the message has
returned to it, it poisons the process network. This leads to a complete termination of all
processes of the percolation matrix.

The Minus − Pole monitors whether or not is has received a message and reflected it.
When it is poisoned it generates a trace message indicating whether it received the message
or not. These trace messages were collected and converted to the diagrams of Figures 11 and
12.

Plus− Pole

CP

N1,1 N1,2 N1,m

N2,1 N2,2 N2,m

Nn,1 Nn,2 Nn,m

CM

Minus− Pole

Figure 10. Structure of the percolation matrix implemented in JCSP

3.3. Randomisation of Channel Conductivity

The complete percolation matrix is a CSP process. The percolation theory, Equation 4, de-
fines whether or not a bidirectional channel between two processes is open or closed. To

O. Faust, B.H.C. Sputh and A.R. Allen / Percolation Phenomena in Process Networks 119

implement that functionality we collect all bidirectional channels in a list. Now, before each
conductivity test, this list is iterated and depending on the desired probability p the channels
are either tagged as closed or open. Furthermore, during this iteration each channel is also
injected with an antidote to neutralise the poison. As pseudo random number source we used
the Java class java.util.Random which provides uniformly distributed integer values. The
pseudo random generator is reset to its initial state whenever the probability of channel con-
ductivity is changed. This ensures that once a channel is conducting at a probability pc, it will
be conductive for all higher probabilities p ≥ pc. Therefore, the implementation represents
the features of the percolation matrix shown in Figures 3 – 6.

3.4. Algorithm Runtime

Our aim for this implementation of the percolation experiment was to have at least 3000
processes. However, in statistical experiments it is always desirable to have as many tries as
possible and for percolation the more nodes in the matrix the better. We therefore chose to
use a 80× 80 matrix giving us a total of 6404 threads, nodes of the percolation matrix, plus-
pole and minus-pole. The test-bed machine1, took around 13s to create these 6404 threads.
After the initial thread creation, a single conductivity test took around 500ms. This demon-
strates how the poisoning and neutralising can speed up algorithm implementations. The im-
plementation with poisoning and neutralising is around 26 times faster than an implementa-
tion which recreates the network from scratch for each conductivity experiment. This short
execution time of a single run allowed us to increase the number of tests to a level suitable
for statistical observations. Figures 11 and 12 show the result of these observations. The first
of these figures shows the approximated percolation probability θ̂(p) over a probability range
from 0 to 1. Each point, indicated by a cross in the graphs, represents the mean value of 100
different experiments with the same probability p but different seeds for the random number
generators. Each point is accompanied by a vertical line which indicates the confidence inter-
val. To be specific, the vertical line indicates the range where we are 95% sure that the actual
approximated percolation probability θ̂(p) is located. The graph in Figure 11 shows that a
phase transition occurs around the probability p = 0.5. Figure 12 shows the approximated
percolation probability over a probability range from 0.45 to 0.55. In effect that zooms in
on the graph around the phase transition. The resulting graph shows a monotonic increase of
θ̂(p) as p increases. This is only an approximation of the theoretical result, which states that
there is no infinite cluster, i.e. no percolation, for p < 0.5.

4. Conclusions and Further Work

This paper described the find cluster from node algorithm. This algorithm is an adaptation
of the breadth first search such that it can be used in massively parallel processing systems
for probabilistic networks. The probabilistic network was created according to percolation
theory. The implementation part of this paper described how the find cluster from node algo-
rithm was applied to theoretical conductivity experiments. But this algorithm is not limited
to that particular application. The mechanisms discussed for the algorithm can be used in all
scenarios which are modelled with percolation theory. This makes the ideas widely appli-
cable: for example, a distributed signals network which exchanges information via wireless
links. If we assume that there is only a certain probability that such a link exists then we
can discuss the resulting network in terms of percolation theory. The find cluster from node
algorithm can be used to discover the network from some sort of base station.

1IBM Thinkpad R50p with a 1.7GHz Pentium-M and 1.5GB RAM, running Sun Java 1.5 on Linux kernel
2.6.15

120 O. Faust, B.H.C. Sputh and A.R. Allen / Percolation Phenomena in Process Networks

p
0

θ̂(p)

1

0.5

1

0.5

Figure 11. Percolation result

p
0.45

θ̂(p)

0.55

0.5

1

0.5

Figure 12. Transition zone result (p = [0.45, ..., 0.55])

Furthermore, this paper demonstrated that stateful poisoning together with poison neu-
tralisation can lead to drastically reduced execution times of applications performing statisti-
cal simulations, in the area of percolation.

Acknowledgements

The authors want to thank James P. Sethna, Karin A. Dahmen and Christopher R. Myers for
their support and guidance in all matters of percolation.

References

[1] Vinod Shante and Scott Kirkpatrick. An introduction to percolation theory. Advances In Physics,
20(85):325–357, May 1971.

[2] J. W. Essam. Percolation theory. Reports on Progress in Physics, 43:833–912, July 1980.
[3] S. R. Broadbent and J. M. Hammersley. Percolation processes. I. Crystals and mazes. Mathematical and

physical sciences, 53:629–641, 1957.
[4] S. Redner. Percolation and conduction in a random resistor-diode network. Journal of Physics A: Mathe-

matical and General, 14:349–354, 1981.
[5] F. Peruani, G. Solovey, I. M. Irurzun, E. E. Mola, A. Marzocca, and J. L. Vicente. Dielectric break-

down model for composite materials. Physical Review E(Statistical, Nonlinear, and Soft Matter Physics),
67:066121–(6), 2003.

[6] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, Upper Saddle River, New Jersey
07485 United States of America, first edition, 1978.

[7] A. W. Roscoe. Theory and Practice of Concurrency. Prentice Hall, Upper Saddle River, New Jersey 07485
United States of America, first edition, 1997.

[8] M. E. J. Newman and R. M. Ziff. Fast Monte Carlo algorithm for site or bond percolation. Phys. Rev. E,
64(1):016706, Jun 2001.

[9] Les Hatton. Reexamining the Fault Density-Component Size Connection. IEEE Software, 14(2):89–97,
March / April 1997.

[10] Geoffrey Grimmett. Percolation, volume 321. Springer-Verlag, Tiergartenstrasse 17 D-69121 Heidelberg,
Germany, first edition, 1989.

[11] Harry Kesten. The critical probability of bond percolation on the square lattice equals 1/2. Communica-
tions in Mathematical Physics, 74(1):41 – 59, February 1980.

[12] Formal Systems (Europe) Ltd., 26 Temple Street, Oxford OX4 1JS England. Failures-Divergence Refine-
ment: FDR Manual, 1997.

[13] P. H. Welch and P. D. Austin. JCSP Home Page, December 2005. http://www.cs.kent.ac.uk/
projects/ofa/jcsp/.

http://www.cs.kent.ac.uk/projects/ofa/jcsp/
http://www.cs.kent.ac.uk/projects/ofa/jcsp/

O. Faust, B.H.C. Sputh and A.R. Allen / Percolation Phenomena in Process Networks 121

[14] Bernhard Sputh and Alastair Allen. JCSP-Poison: Safe Termination of CSP Process Networks. In Jan
Broenink, Herman Roebbers, Johan Sunter, Peter Welch, and David Wood, editors, Communicating Pro-
cess Architectures 2005, September 2005.

