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Abstract. In this paper we investigate two major topics; firstly, thgbua survey given
to graduate students in a parallel message passing prognanstass, we categorize
the errors they made (and the ways they fixed the bugs) intordbeuof categories.
Secondly, we analyze these answers and provide some iirdighbw software could
be built to aid the development, deployment, and debugdipgiallel message pass-
ing systems. We draw parallels to similar studies done fqusstial programming,
and finally show how the idea of multilevel debugging relatethe results from the
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Introduction

“If debugging is the process of removing bugs, then programynmust be the process of
putting them in’, This well known quote from Dijkstra was probably said intjdsit seems
to hold some amount of truth.

A number of papers have been written about debugging, botbeiguential and paral-
lel programming, but many of the debugging systems theyridesare not being used by
the average programmer. Numerous reasons for this are,gwnenthey include restrictive
interfaces, information overload, and wrong level of gianty. They also fail to take into
account the types of the errors that occur in parallel mespagsing programs by primary
focusing on well known sequential errors. In other words, same level of granularity is
used for all error types, which we believe is a big mistakee fitst step to a solution to this
problem is to obtain a better understanding of the type aireithat programmers encounter.

To better understand this problem, a class of graduate isidd the University of
Nevada, Las Vegas, answered a questionnaire about theirierpes with programming par-
allel message passing programs. We also asked them to espoytsingle runtime-error they
encountered throughout the semester. Along with each tréipey submitted information
about the cause of the error, how the error was found, and diogvit took to find.

In this paper we present the analysis of the error reportstenguestionnaire along with
a number of suggestions for how development environmentsgparticular debuggers can
be developed around these error types. In addition, we drgwemultilevel debugging can
be a useful new debugging methodology for parallel messaggipg programs.

Thus we propose, as tool developers, that we need to undérsta types of errors that
our clients (the programmers) make. If we do not understheskt errors we cannot provide
tools and techniques that will carry a big impact.
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1. Related Work

1.1. The Parallel Programming Domain

Parallel programming involves a set of components that mash be considered when de-
veloping a parallel system. This set, which we regard as #nallel programming domain,
includes, among others, the following aspects of the caatiential code, interprocess com-
munication, synchronization, and processor utilizationderstanding the issues involved
with the components of this domain makes understandingdahece and manifestation of
errors easier. This understanding is useful for deterrgitiie approach needed to efficiently
debug parallel programs. In addition, it helps determinenstio focus the debugging effort,
depending on which component of the domain the programnogsltor errors in.

In [1] a four stage model for constructing a parallel prograeferred to as PCAM,
representing the parallel programming domain, is sugde$tee four components are:

1.

2.

3.

Partitioning. The computation to be performed and the data which it opeatare
decomposed into small tasks.

Communication. The communication required to coordinate task executioeier-
mined, and the appropriate communication structures gatiims are defined.
Agglomeration. The task and communication structures defined in the first two
stages of a design are evaluated with respect to perfornmagagements and imple-
mentation costs.

Mapping. Each task is assigned to a processor in a manner that attengaissfy the
competing goals of maximizing processor utilization andimizing communication
Ccosts.

The two last components, agglomeration and mapping, arédyramcerned with per-
formance issues which, while important, are outside thpsad this paper.

For the first two components, partitioning and communicgtiee propose the following
additional breakdown:

1.

Algorithmic changes. Many parallel programs begin life as a sequential program.
If parallel algorithms are based on, or derived from, erggtalgorithms and/or pro-
grams, then a transformation from the sequential to thdlphdmain must occur.
The transformation of a sequential program into a paratialjam typically consists

of inserting message passing calls into the code and chatiggnexisting data lay-
out; for example, shrinking the size of arrays as data igidiged over a number
of processes. However, if the sequential algorithm is naéable for parallel imple-
mentation, a new algorithm must be developed. For exant@gipe-and-roll matrix
multiplication algorithm [2] does not have a sequentialrteupart.

. Data decomposition.When a program is re-implemented, the data is distributed ac

cording to the algorithm being implemented. Whether it is ttansformation of a
sequential program or an implementation of a parallel agor from scratch, data
decomposition is a nontrivial task that cannot be ignoredmwriting parallel pro-
grams, as not only correctness, but efficiency also greathedds on it.

Data exchangeAs parallel programs consist of a number of concurrentlycaetiag
processes, the need to explicitly exchange data inevitaidgs. This problem does
not exist in the sequential world of programming where adl tata is available in
the process running the sequential program. However, @lphprograms, the need
for data exchange is present. On a shared memory machindathecan be read
directly from memory by any process. There is still the peoblof synchronized
access to shared data to consider, but no sending and regeividata is needed.



J.B. Pedersen / Classification of Programming Errors in PeldViessage Passing Systems 365

When working with a cluster of processors, each having aragpeaemory, message
passing becomes necessary.

When message passing systems like MPI [3] and PVM [4] are, isegrogrammer
is responsible for a number of different tasks: specifying ¢torrect IDs of the in-
volved processes, packing messages into buffers, usingpthect functions to pack
the data depending on the type, and assigning tags to thegeeda part, the diffi-
culty of using a message passing library like PVM and MPI & ltdw level of the
interface of the message passing system.

4. Protocol specification.The protocol for a parallel system is defined as the content,
order, and overall structure of the message passing beta@®amunicating pro-
cesses. Along with the data exchange, the communicatidoqwloof the program is
a new concept that has been introduced by parallelizingltoeithm.

Sequential Program Sequential
Program Transformation Program
1 Program Messages

Communication Protocol

|
|
N Programs

Figure 1. The sequential versus the parallel programming domain

Figure 1 shows a stylized representation of a sequentialaapdrallel program. As
shown, a sequential program is depicted as a single boxegepting the sequential code of
the program. The parallel program is represented as a nuohlibexes, each consisting of
three nested boxes. The innermost of these boxes représestguential program that each
process in the parallel program executes. The sequentig cbthe parallel program can
either be an adaption of the existing sequential program, @mpletely rewritten piece of
code. The middle box represents the messages being semicanded in the system (the data
exchange), and the outer box represents the protocol thabthmunicating processes must
adhere to.

1.2. The Debugging Process

A well known approach to debugging was proposed by Arakiykawa and Cheng [5]. They
describe debugging as an iterative process of developipgthgses and verifying or refuting
them. They proposed the following four step process:

1. Initial hypothesis set. The programmer creates a hypothesis about the errors in the
program, including the locations in the program where srmoay occur, as well as a
hypothesis about the cause, behaviour, and modificaticedenkto correct them.

2. Hypothesis set modification.As the debugging task progresses, the hypothesis
changes through the generation of new hypotheses, refingameithe authentication
of existing ones.

3. Hypothesis selectionHypotheses are selected according to certain strategiels, s
as narrowing the search space and the significance of the erro
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4. Hypothesis verification. The hypothesis is verified or discarded using one or more
of the four different techniques: static analysis; dynaamalysis (executing the pro-
gram); semi-dynamic analysis (hand simulation and syroletecution) and pro-
gram modification.

If the errors have not been fixed after step four, the procaspieated from step two. In
the above model, step four, hypothesis verification, is tleei$ of our work. Step one can in
some situations be automated to a certain degree; exanfesioautomation include the
deadlock detection and correction presented in [6].

1.3. The Why, How and What of Errors

M. Eisenstadt describes in [7] a 3-dimensional space in vBeguential errors are placed
according to certain criteria. This classification showsieadnteresting results, which we
briefly summarize. 51 programmers were asked to participatestudy in which program-
ming errors are placed into a 3-dimensional space. The 3rdiioes are:

1. Why is the error difficult to find?
2. How is the error found?
3. What is the root cause of the error?

For dimension 1 29.4% fell in the catega@ause/effect chasiivhat makes the errors
hard to find is the fact that the symptom of the error is far remdan space and time from
the root cause. The second most frequent answeila@ls inapplicable or hamperedhich
covers the so called 'Heisen bugs’ [8]. It is notable thatrd@% of the cases are caused
by these two categories. The first category, the causefetiasm is greatly amplified in the
parallel programming domain, and the second category ig/ealsave already pointed out,
one of the problems we are researching.

Dimension 2, concerned with how an error was found; the mesjuent answer was
Gathering data(53% of answers fell in this category). This category covkesuse of print
statements, debuggers, break points etc. The second gsefit answer wdaspeculation
which covers hand simulation and thinking about the code5%?5of answers fell in this
category.

An interesting, but not surprising, result is that data gdtig (e.g., print statements)
and hand simulation account for almost 78% of the technigepsrted in locating errors
(in Eisenstadt’s study). This result corroborates thelteguPancake [9]: up to 90% of all
sequential debugging is done using print statements.

While the use of print statements is straightforward wherkimg with sequential pro-
grams, their use in parallel programs is often more comg@da:aOften, processes run on re-
mote processors, which makes redirecting output to theatemnsfficult. Even when output
can be redirected to the console, all processes are writirtiget same window, thus mak-
ing the interpretation of the output a challenging tasksTisian example of the information
overload theory mentioned earlier. Furthermore, the oofi¢éhe output (i.e., the debugging
information from the concurrently executing processesjpisthe same for every run, as the
processes execute asynchronously and only synchroneginmessage passing. A possi-
ble solution is to have each process write its output to afdeskHowever, this introduces the
problem of non-flushed file buffers; if a process crasheshtifier might not be flushed, thus
missing output written by the program. Of course this candbees! by inserting calls to flush
the 1/0O buffers, but if these are missing, the programmes eipcspending time on debugging
the code he added for debugging purposes! In the worst ceaseatinlead the programmer to
believe that the process crashed somewhere between thpifdsdtatement that appears in
the file, and the first one that does not. A lot of time can thewasted looking for an error
in a place where no error can be found.
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The third dimension, the root cause of the error, containfféent categories; the most
noteworthy is the most frequent oridemory which covers errors such as overwriting a re-
served portion of the memory causing the system to crashamag subscripts out of bounds.
25.5% of answers fell on this category. The second most éeigquot cause was faulty hard-
ware (with 17.7%) and in third and fourth place, with 13.7%l d41.8% respectively, came
faulty design logic (Algorithmic design/implementatioroplems) and initialization, which
covers wrong types, redefinition of the meaning of systenwkegls, or incorrectly initial-
ization of a variable.

Nearly 50% of the errors are caused by the first two categdrigs also perfectly agrees
with previous studies where tools and runtime systems aseritbed as a source of errors [9].
The classification used in dimension 3 is a mixture of deep plaalysis [10,11] and phe-
nomenological analysis [12]. Deep plan analysis stateslaay bugs can be accounted for
by analyzing the high level abstract plans underlying dpeprograms, and by specifying
both the possible fates that a plan component may undeggon(iissing or misplaced). An al-
ternative phenomenological taxonomy can be found in [1Z3nehhe root causes are divided
into nine categories.

Although all errors essentially trace back to a piece of satjal code that executed on
a processor somewhere in the parallel system, we should@tisider the errors that occur
at conceptually higher levels of the parallel programmiogndin. By ignoring the higher
levels and attempting to use tools from a lower level we oftelmieve information overload
or other problems. Even though a protocol error is causedeljuential code somewhere
in the system, such errors are easier found if the level afdaaity is that of the protocol.
Naturally, it is vital that the tool at this level can map threoe back to the sequential code as
the correction will have to be made here. (This is one of thenmdasign goals of multilevel
debugging)

If we accept the decomposition of the parallel programmiogdin as we stated it
above, as well as the overall debugging technique of hygatlievelopment and verification,
we still need to gather information about the error typee Hisenstadt did for sequential
errors. This is the study presented in the following sestion

2. The Framework

The main goal of this research is to clarify a number of subjeslated to parallel program-
ming and debugging of parallel programs. First of all, wehatis obtain some insight into
the types of errors the programmers encounter, and secohtilin data about the techniques
they used to locate and correct them. We believe that thisnmtion serves as a good basis
for how programming and debugging tools for parallel (mgegaassing) programs should
be developed. It is important to understand the programrmaorgain (in this situation, the
parallel programming domain with message passing) in cw@nake qualified decisions
about how to correct the errors.

The subject of error types are useful for a tool developernaraber of ways. First and
foremost, if a large percentage of errors are of a certaie, tiyfis important to tailor the tools
to assist the user in locating and correcting this type afrerrather than a different type
that might not occur as frequently. Secondly, it gives tla# tieveloper an idea of where the
errors are located, that is, are most errors in the seqlientie, are they related to the data
decomposition, the functional decomposition or could theyelate to the use of the message
passing API. Such information is invaluable to developérgrogramming environments as
well. It pinpoints the area where the tool has the greatemt@h of having an impact on the
development cycle.

One of the main reasons for this research is a result by CRantake [13] which states
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that tools for parallel programming/debugging are oftety arsed by their developer. She
claims that this is caused by the fact that the tool develaperthe tool user might have
different foci on what they want/need from a tool.

3. The Error Reports

The programmers were asked to submit a small web questienabout all the run-time
errors they encountered throughout the semester. Theseswiemitted though a simple web
interface, and contained just three questions:

e Describe the bug.
e How did you find/fix it?
e How long did it take?

We attempt to mimic the study by Eisenstadt as closely aslggdsy asking how the
error was found and what caused it. There questions are tbodanensions 2 and 3 of
Eisenstadt’s questionnaire.

3.1. The Programs

In this section we briefly describe the six different progsaire programmers wrote through-
out the semester. The following list (in no particular ojdgives a brief description of the
programs

e Equation Solver— Using one master andslave processes to solve a upper triangu-
lar system of equations.

e Mandelbrot — Using one master and slaves in a work farm model to compute a
Mandelbrot set.

e Matrix Multiplication — Implement the Pipe-and-Roll [2] matrix multiplicatior al
gorithm.

e Partial Sum — Implement a partial sum algorithm that runs in ti@éog n).

e Pipeline Computation — Using functional decomposition, implement a multistage
pipeline with dispersers and collectors that allow for nplgtinstances of some stages
of the computation to achieve a good load balance.

e Differential Equation Solver — Solve a differential equation using a discrete
method.

Depending on the type of the error, we categorize‘Describe the bug”question into
seven different categories. We chose seven different cagsgbased on the two first cate-
gories in the PCAM model [1], namely partitioning and comreation. The partitioning is
further subdivided into data decomposition and functiaeomposition, and the communi-
cation is divided into API usage as well as the three majaltenf the parallel programming
domain: sequential, message, and protocol. Finally a oatdgr errors ¢ther) that do not
fit any other category was added. In more detail, the sevegodes we chose are:

e Data Decomposition— The root of the bug had to do with the decomposition of the
data set from the sequential to the parallel version of thgnam.

e Functional Decomposition— The root of the bug was the decomposition of the
functionality when implementing the parallel version o ghrogram.

e API Usage— This type of error is associated with the use of the MPI ARlsca
Typical errors here include passing data of the wrong typmisunderstanding the
way the MPI functions work.

e Sequential Error — This type of error is the type we know from sequential progsa
This includes using instead of= in tests etc.
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e Message Problem— This type covers sending/receiving the wrong data, thétis
concerned with the content of the messages, not the entiteqml of the system.

e Protocol Problem — This error type is concerned with stray/missing messdugs t
violate the overall communication protocol of the paradigstem.

e Other — Bugs that do not fit any of the above categories are repogéatizer’. This
include wrong permissions on programs to be spawned, faalgilel 10 etc.

We believe that this breakdown will reveal a lot of infornmatiabout where the bugs
are located and where focus should be placed in the develdmnd debugging process. It
should be clear that the first 3 items are issues that couldled & the development process
where as the next three should have strong debugging sufjst partitioning of course
does not rule out development support for message and ptgboablems or debugging
support for data of functional partitioning.

The base for all these programs was either a sequentialgro@quation Solver, Man-
delbrot, Differential Equation Solver) or a abstract patadlgorithm. The program were to
be implemented in C using the MPI [3] message passing imerfa

4. The Questionnaire

The second part of the Survey was a questionnaire given atrtieof the semester. The
objectives of this questionnaire were to discover out whatgrogrammers thought was the
hardest topic, to learn about their general debugging siadid to obtain a picture of the type
of errors they perceive as being the most frequently enesedt Furthermore, we asked for
a wish list with respect to the functionality of developmeantl debugging tools. The survey
contained the following 6 questions:

1. Please mark the level of difficulty for each of the follogyipoints (1=easy, 5=hard):

Data decomposition
Function decomposition
Communication Calls
Debugging the code

What do you think is the hardest part of developing a palrplogram?
List the 3 types of errors you encountered the most.

What was your main approach to debugging.

What sort of programming support would you find useful @ebugging).
What sort of debugging support would you find useful?

oankwn

The answers to these questions should give an indicatiorhat the programmer per-
ceives to be hard, and when compared to the actual errortsegawill show if their percep-
tion of parallel message passing programming is correetdtfition, it will be revealed if the
errors they think they get most frequently are indeed thergthey reported.

5. Result of Error Reporting

Table 1 summarizes the results of the online error reposdimyey and figure 2 shows a
graphical representation of the result.

As can be seen, 16.77%+8.39% = 25.16% of errors fall in therdgosition categories,
and 14.84%+10.32%+24.52% = 49.68% fall into one of the tpaés of the decomposition
of the PCAM model (all non-decomposition errors shouldifalh either of these categories!
Here we do not count the API usage category). It is notablealmaost one quarter of the
errors are protocol related. This means that serious stigpoeeded at this level. Approxi-
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Figure 2. The results of the error reports
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Data Functional APl Sequential Message Protocol
Decomp. Decomp. Usage Error Problem Problem Other
Equation 2 0 1 0 1 3 4
Solverf; = 8) 20.00% 0.00% 12.50% 0.00% 12.50% 37.50% 12.50%
Mandelbrot 10 7 11 5 5 7 4
(ne = 49) 20.41% 14.29% 22.45% 10.20% 10.20% 14.20%  8.16%
Matrix 9 3 6 2 3 10 0
Mult.(n3 = 33) 27.27% 9.09% 18.18% 6.06% 9.09% 30.30%  0.00%
Partial 2 2 3 7 3 8 1
Sum iy = 26) 7.69% 7.69% 11.54% 26.92% 11.54% 30.77%  3.85%
Pipeline 0 1 1 1 0 1 0
Comp.(s = 4) 0.00% 25.00% 25.00% 25.00% 0.00% 25.00%  0.00%
Differential 3 0 9 8 4 9 2
Eq. (hg = 35) 8.57% 0.00% 25.71% 22.86% 11.43% 25.71% 5.71
Total 26 13 31 23 16 38 8
(n = 155) 16.77% 8.39% 20.00% 14.84% 10.32% 24.52% 5.16%

Table 1. Results of the online error reporting survey

mately 15% of the errors are sequential, and if counting tReusage errors we reach a total
of almost 45% of errors that a directly linked to faulty seafied code. This strongly suggests
that support for sequential debugging is extremely impur@f course such support should
not suffer from the problem current tools do (e.g., infonm@toverloading and granularity
mismatch).

As a side note, we believe that it would be reasonable to assuahthe 20% of the errors
that fell in API Usage category will be reduced as the progn@mbecomes more familiar
with the message passing API. We are certain that many ARjeusiaors could be reduced
through the use of a development environment that can aigrtgrammer in choosing the
right values/types for the arguments.

5.1. Debugging Time and Print Statements

The third question on the error reporting page asked theranogiers to give an estimate of
the time it took to locate and correct the bug. The followiaglé shows the result of this
question along with the count of how many times the bug waatéat using regular print

statements inserted in the code at strategical places.

Program Average Time Print Statements # Answers
Equation Solver 43 minutes 2 (25.00%) 8
Mandelbrot 45 minutes 22 (44.90%) 49
Matrix Multiplication 47 minutes 14 (42.42%) 33
Partial Sum 63 minutes 19 (73.09%) 26
Pipeline Computation 28 minutes 0 (00.00%) 4
Differential Equation 61 minutes 16 (45.71%) 35
Total 52 73 (47.10%) 155

Table 2. Average debugging time and the use of print statements

The error reports show a staggering 52 minute average fdr @fihe 155 bugs there
were reported. This is a lot higher than we suspected. Thatssa good indication that it
really is difficult to locate errors and correct them whenlishggwith a number of processes
executing concurrently and communicating asynchronoesigecially when not using any
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parallel debugging tools. For comparison, the averageititnek to correct the 23 sequential
errors reported was 37 minutes per error.

Table 2 shows that for certain problems (like the partial guoblem), the debugging
task was accomplished by using print statements in 73.09%eafime. The average use of
print statements for debugging was 47.10%. For sequentgrams it was stated in [13]
that 90% of programmers still used print statements as fiveinary debugging tool. The
use of print statements as a primary debugging tool for [gnalessage passing programs
can adversely impact the time the debugging takes. Not amyitde challenging to get the
output re-routed to the console, but with a number of prazeall using the same console, the
output will be interspersed, and the interpretation of thgot becomes more challenging.

6. Results of the Questionnaire

The first question of the end-of-semester questionnairedatie students to rate the level
of difficulty on a scale from 1 (easy) to 5 (hard) for 4 diffetréapics. The results of this
guestion can be seen in table 3.

Data Functional Communication
Decomposition Decomposition Calls Debugging
2.92 3.35 2.31 4.04

Table 3. Average level of difficulty for the topics in question 1 (odtopossible)

As expected, debugging proved to be the most difficult task@ated with writing par-
allel message passing programs. This again emphasizeseatdar techniques and tools for
debugging parallel message passing programs.

The second question on the survey asked what part of dewglagparallel program was
regarded the hardest. The answers covered all 4 of the topiogable 3 with approximately
25% answering ‘debugging’. To quote one of the answers: tigging, and debugging, and
sometimes debugging.”

The third question asked for a list of the three kinds of eremcountered most often.
The answers that occurred the most frequent were: Procegspsematurely, incorrect data
transferred, mismatch between sender and receiver, segjusmnors, and incorrect APl us-
age. The second most frequent answers (to question 3) mdeadlock, process rank prob-
lems, and message tag problems.

For this question the answers fall into 3 clear categorigsre in the sequential code,
errors associated with message content, and finally emdheioverall communication pro-
tocol. We will return to this division later and show why thgsan important grouping, and
how it has been used to develop a new debugging methodology.

The fourth question asked which technique was more fretyjuesed for debugging.
Most questionnaires had at least 2 different answers, btaggsring 100% of the ques-
tionnaires contained “print statements” as a primary oosdary debugging tool. This of
course does not mean that all errors were located by the yseostatements, and reported
in the previous section, although not 100% of all errors wereght and corrected using
print statements, a large percentage was. The second ragsefit answer for debugging ap-
proaches was various types of manual code inspection orahaade execution. Both print
statements, code inspection and hand simulation are abgr&isenstadt’s two categories
“Inspeculation” and “Gather Data”, which for sequentiabgrams accounted for 25.5% and
53% respectively. That is, 78.5% of all errors in sequemtiagrams were found using tech-
niques in either of these two groups. According to the erepoort surveys for the parallel
programs, 100% of how the error was found fall into one of ¢hestegories.
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The last two questions asked what kind of programming andgtgibg support the pro-
grammer would like. Two answers stood out: Integrated @agning/development environ-
ments and debugging tools specifically tailored to messagsipg programs, and not just a
sequential debugger attached to each process.

7. Conclusions from the Survey

The overall result of the end-of-semester questionnaiethvat most programmers still de-
bug like they do when writing sequential programs, whichoatuinately is primarily by the
use of print statements. Furthermore, the errors seemed totb one of 3 main categories:
Sequential errors, message errors, and protocol erroeseMias an overall agreement that
(better) IDEs and specialized debugging tools were the oeeful programming/debugging
support that a programmer could ask for.

7.1. The Error Reports

According to table 1, the error-type most often reported Weastocol Problem’. Surprisingly,
the "API Usage’ takes second place, followed by 'Data Decositppon’, 'Sequential Errors’
and finally 'Message Problem’, and 'Functional Decompositi

The 7 error categories can be grouped into two groups: ipRygramming/ planning
problem, and ii) Actual programming errors. The former gsveroblems that fall in the
data decomposition and functional decomposition categpand the latter cover sequential
errors, message problems, protocol problems and othetgongb The first group is more
related to the theoretical development/planning of thgm as to the actual programming.
If the data is laid out wrong or if the functionality has beescdmposed incorrectly, no
debugging can correct the problem. Thus, the second groupios the actual errors that can
be corrected in the program text (i.e., which do not requirevésion of the actual parallel
algorithm).

the API Usage category was intentionally left out of the twitegories listed above. We
did this for a number of reasons. First of all, one can argagtttte problems of using the API
will disappear as the programmer gets more familiar withni@ssage passing interface, and
thus are not a real threat to programming development. Oatttez hand, one can argue that
they constitute errors that can be fixed in the code, but theyld be included in the second
category. Often, an incorrect use of a message passing AFdecaaught and corrected by
inspecting content of messages, so for now we chose to |aeveategory out.

7.2. Program Development

A little more than 25% of errors are attributed to problenmsoagated with data or functional
decomposition. This indicates that there is a genuine neetbdl and/or techniques in this
areato help the programmer reduce the number of errors asthypreduce the development
time.

This is a challenging problem to solve. One way of reducimgrsrof this type is to use
development environments that support certain parallt#epes; however, it is not always
possible to fit an algorithm to a known pattern.

Since we are focusing on the debugging issue we will leawegioblem as a research
topic for the future.

7.3. Program Debugging

The remaining 75% of errors (including APl Usage) are asgediwith actual programming
errors, that is, they require the programmer to actuallyigebe code to correct the error that
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causes the problem. The number of debugging tools in existiem parallel message passing
programs have been unable to fully embrace a general detmggghnique for such pro-
grams; in general existing debuggers can be divided intacategories: i) N-version debug-
gers, which are extensions of sequential debuggers wherdabugging process is attached
to each process in the parallel system. ii) Debugging enuiients, which are specialized
environments that support debugging by the use of breakgaimd macro stepping.

Some of the problem with N-version debuggers is the enorramaunt of information
that is displayed to the programmer. This often renders #eeai this technique useless
because of information overload.

The problem with both N-version debuggers and the enviransis that their primary
focus is on the sequential code. Naturally, all errors lesakho the code, but there is no sup-
port for higher levels of debugging, this includes errotatexl to messages or the protocol.
Thus, the programmer is left to perform this debugging ttoaig interface that is not meant
for it. This makes debugging a very tedious and challengasg.t

The results of the error-reporting page shows that apprataiyn 15% of errors are se-
guential errors, so the perfect debugging tool of courset sugport debugging of the se-
quential code, but also, as almost 26% of the errors are coadevith messages or proto-
cols, they must be capable of operating at higher levelsitichide messages, their content,
and the overall communication protocol of the program.

These observations led us to formulate a new debugging mielibgies developed
around this break-down of the programming domain. We belgéesuccessful tool must sup-
port debugging at the three different levels. At the seqaklavel it should be easy for the
programmer to deploy a sequential debugger/tool or debggegichnique related to sequen-
tial code without getting information overloading as witie tN-version debugging technique.
Similarly it should be easy to deploy tools specifically desid to locate and correct errors
at the remaining two levels. We refer to this new techniqulalilevel debugging. In the
following section we briefly describe the idea behind meltdl debugging.

8. Multilevel Debugging

In this section we briefly describe the multilevel debuggmethodology. We developed this

technique as a potential solution to the shortcomings ofettisting debugging tools and

techniques. We based the multilevel debugging methodotwgthe decomposition of the

PCAM model as described earlier; this resulted in a bott@gnapproach rather than the

conventional top-down approach, which had proved frustlescause of problems such as
information overloading. Some of the basic ideas behindilauél debugging are:

e The information about messages and their content, as waif@snation about the
protocol should be extracted from the running program aredi wghen debugging
errors at these higher levels.

e Support for mapping the manifestation of the error (theatffieack to the actual code
that caused it should be provided.

e Strong support of sequential debugging of separate presesgishout causing infor-
mation overloading must be provided.

e Automation of debugging tasks should be done when everlgesgixample of this
include deadlock detection and correction.

Some of the general goals for multilevel debugging include

e Computable relations should be computed on request nofolethe user to figure
out.
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e Displayable state should be displayed on request, not defthfe user to draw or
visualize.

e Views for important parts of the program (key players) othan variables should be
available.

e Navigation tools tailored to specific tasks/levels showddtzailable.

We have described a number of tools and techniques from th&lewel debugging
framework in [14,6,15]. A complete reference can be found &)

9. Conclusion

We have presented the results of 2 different surveys, ancethdt of these have shown that
errors fit into 3 distinct categories: Sequential errorsssage errors, and protocol errors. In
addition, the survey showed that debugging by using praiestents is still frequently used,
and extremely time consuming.

We introduced a new debugging technique referred to asleudtidebugging, which de-
composes the debugging task into three categories: segluer@ssage, and protocol. The re-
sults of the questionnaires and error reports seem to suhygodecomposition of the PCAM
model chosen for multilevel debugging; Since multi levebaigging include tools that are
tailored to the levels associated with messages/messatgnt@and the protocol of the sys-
tem, we believe that not only will it be easier to locate esrarthese levels, but also reduce
the time it takes to find and correct the error.

Multilevel debugging was initially developed as a new defing methodology in [16]
and implemented in a text based version for PVM programs.wengersion, also for PVM,
with a graphical user interface (Millipede) was presenteflli’], and an initial version for
MPI (IDLI) has been presented in [18].

10. Future Work

We wish to complete the MPI implementation and deploy it toagpammers and have them
use it and redo the survey to see if the errors were be codréader using these new debug-
ging techniques.

In addition, as the surveys have shown, 25% of errors arei@ted with decomposition.
It is clear that tools to assist the correct decompositiotedd and functionality are needed.

Also supporting new tools through the use of recorded data the program execution
remains an interesting area of research. We strongly leetleat a message passing library
like MP1 must incorporate debugging support directly in libeary or through a system like
Millipede or IDLI. The first step to making debugging ‘easiirto facilitate the extraction
of necessary information about messages and the protacoltire message passing system
itself.
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