
Communicating Process Architectures 2006
Peter Welch, Jon Kerridge, and Fred Barnes (Eds.)
IOS Press, 2006
c© 2006 The authors. All rights reserved.

363

Classification of Programming Errors in
Parallel Message Passing Systems

Jan B. PEDERSEN

University of Nevada, 4505 Maryland Parkway,
Las Vegas, Nevada, 89154, USA

Tel.: +1 702 895 2557; Fax: +1 702 895 2639
matt@cs.unlv.edu

Abstract. In this paper we investigate two major topics; firstly, through a survey given
to graduate students in a parallel message passing programming class, we categorize
the errors they made (and the ways they fixed the bugs) into a number of categories.
Secondly, we analyze these answers and provide some insightinto how software could
be built to aid the development, deployment, and debugging of parallel message pass-
ing systems. We draw parallels to similar studies done for sequential programming,
and finally show how the idea of multilevel debugging relatesto the results from the
survey.

Keywords. Parallel programming errors, Debugging, Multilevel debugging, Parallel
programming

Introduction

“If debugging is the process of removing bugs, then programming must be the process of
putting them in”; This well known quote from Dijkstra was probably said in jest, but seems
to hold some amount of truth.

A number of papers have been written about debugging, both for sequential and paral-
lel programming, but many of the debugging systems they describe are not being used by
the average programmer. Numerous reasons for this are given, and they include restrictive
interfaces, information overload, and wrong level of granularity. They also fail to take into
account the types of the errors that occur in parallel message passing programs by primary
focusing on well known sequential errors. In other words, the same level of granularity is
used for all error types, which we believe is a big mistake. The first step to a solution to this
problem is to obtain a better understanding of the type of errors that programmers encounter.

To better understand this problem, a class of graduate students at the University of
Nevada, Las Vegas, answered a questionnaire about their experiences with programming par-
allel message passing programs. We also asked them to reportevery single runtime-error they
encountered throughout the semester. Along with each report they submitted information
about the cause of the error, how the error was found, and how long it took to find.

In this paper we present the analysis of the error reports andthe questionnaire along with
a number of suggestions for how development environments and in particular debuggers can
be developed around these error types. In addition, we arguehow multilevel debugging can
be a useful new debugging methodology for parallel message passing programs.

Thus we propose, as tool developers, that we need to understand the types of errors that
our clients (the programmers) make. If we do not understand these errors we cannot provide
tools and techniques that will carry a big impact.



364 J.B. Pedersen / Classification of Programming Errors in Parallel Message Passing Systems

1. Related Work

1.1. The Parallel Programming Domain

Parallel programming involves a set of components that musteach be considered when de-
veloping a parallel system. This set, which we regard as the parallel programming domain,
includes, among others, the following aspects of the code: sequential code, interprocess com-
munication, synchronization, and processor utilization.Understanding the issues involved
with the components of this domain makes understanding the source and manifestation of
errors easier. This understanding is useful for determining the approach needed to efficiently
debug parallel programs. In addition, it helps determine where to focus the debugging effort,
depending on which component of the domain the programmer looks for errors in.

In [1] a four stage model for constructing a parallel program, referred to as PCAM,
representing the parallel programming domain, is suggested. The four components are:

1. Partitioning. The computation to be performed and the data which it operates on are
decomposed into small tasks.

2. Communication. The communication required to coordinate task execution isdeter-
mined, and the appropriate communication structures and algorithms are defined.

3. Agglomeration. The task and communication structures defined in the first two
stages of a design are evaluated with respect to performancerequirements and imple-
mentation costs.

4. Mapping. Each task is assigned to a processor in a manner that attemptsto satisfy the
competing goals of maximizing processor utilization and minimizing communication
costs.

The two last components, agglomeration and mapping, are mostly concerned with per-
formance issues which, while important, are outside the scope of this paper.

For the first two components, partitioning and communication, we propose the following
additional breakdown:

1. Algorithmic changes. Many parallel programs begin life as a sequential program.
If parallel algorithms are based on, or derived from, existing algorithms and/or pro-
grams, then a transformation from the sequential to the parallel domain must occur.
The transformation of a sequential program into a parallel program typically consists
of inserting message passing calls into the code and changing the existing data lay-
out; for example, shrinking the size of arrays as data is distributed over a number
of processes. However, if the sequential algorithm is not suitable for parallel imple-
mentation, a new algorithm must be developed. For example, the pipe-and-roll matrix
multiplication algorithm [2] does not have a sequential counterpart.

2. Data decomposition.When a program is re-implemented, the data is distributed ac-
cording to the algorithm being implemented. Whether it is the transformation of a
sequential program or an implementation of a parallel algorithm from scratch, data
decomposition is a nontrivial task that cannot be ignored when writing parallel pro-
grams, as not only correctness, but efficiency also greatly depends on it.

3. Data exchange.As parallel programs consist of a number of concurrently executing
processes, the need to explicitly exchange data inevitablyarises. This problem does
not exist in the sequential world of programming where all the data is available in
the process running the sequential program. However, in parallel programs, the need
for data exchange is present. On a shared memory machine, thedata can be read
directly from memory by any process. There is still the problem of synchronized
access to shared data to consider, but no sending and receiving of data is needed.



J.B. Pedersen / Classification of Programming Errors in Parallel Message Passing Systems 365

When working with a cluster of processors, each having a separate memory, message
passing becomes necessary.
When message passing systems like MPI [3] and PVM [4] are used, the programmer
is responsible for a number of different tasks: specifying the correct IDs of the in-
volved processes, packing messages into buffers, using thecorrect functions to pack
the data depending on the type, and assigning tags to the message. In part, the diffi-
culty of using a message passing library like PVM and MPI is the low level of the
interface of the message passing system.

4. Protocol specification.The protocol for a parallel system is defined as the content,
order, and overall structure of the message passing betweencommunicating pro-
cesses. Along with the data exchange, the communication protocol of the program is
a new concept that has been introduced by parallelizing the algorithm.

Figure 1. The sequential versus the parallel programming domain

Figure 1 shows a stylized representation of a sequential anda parallel program. As
shown, a sequential program is depicted as a single box, representing the sequential code of
the program. The parallel program is represented as a numberof boxes, each consisting of
three nested boxes. The innermost of these boxes representsthe sequential program that each
process in the parallel program executes. The sequential code of the parallel program can
either be an adaption of the existing sequential program, ora completely rewritten piece of
code. The middle box represents the messages being sent and received in the system (the data
exchange), and the outer box represents the protocol that the communicating processes must
adhere to.

1.2. The Debugging Process

A well known approach to debugging was proposed by Araki, Furukawa and Cheng [5]. They
describe debugging as an iterative process of developing hypotheses and verifying or refuting
them. They proposed the following four step process:

1. Initial hypothesis set.The programmer creates a hypothesis about the errors in the
program, including the locations in the program where errors may occur, as well as a
hypothesis about the cause, behaviour, and modifications needed to correct them.

2. Hypothesis set modification.As the debugging task progresses, the hypothesis
changes through the generation of new hypotheses, refinement, and the authentication
of existing ones.

3. Hypothesis selection.Hypotheses are selected according to certain strategies, such
as narrowing the search space and the significance of the error.



366 J.B. Pedersen / Classification of Programming Errors in Parallel Message Passing Systems

4. Hypothesis verification.The hypothesis is verified or discarded using one or more
of the four different techniques: static analysis; dynamicanalysis (executing the pro-
gram); semi-dynamic analysis (hand simulation and symbolic execution) and pro-
gram modification.

If the errors have not been fixed after step four, the process is repeated from step two. In
the above model, step four, hypothesis verification, is the focus of our work. Step one can in
some situations be automated to a certain degree; examples of such automation include the
deadlock detection and correction presented in [6].

1.3. The Why, How and What of Errors

M. Eisenstadt describes in [7] a 3-dimensional space in which sequential errors are placed
according to certain criteria. This classification shows some interesting results, which we
briefly summarize. 51 programmers were asked to participatein a study in which program-
ming errors are placed into a 3-dimensional space. The 3 dimensions are:

1. Why is the error difficult to find?
2. How is the error found?
3. What is the root cause of the error?

For dimension 1 29.4% fell in the categoryCause/effect chasm. What makes the errors
hard to find is the fact that the symptom of the error is far removed in space and time from
the root cause. The second most frequent answer wasTools inapplicable or hampered, which
covers the so called ’Heisen bugs’ [8]. It is notable that over 50% of the cases are caused
by these two categories. The first category, the cause/effect chasm is greatly amplified in the
parallel programming domain, and the second category is, aswe have already pointed out,
one of the problems we are researching.

Dimension 2, concerned with how an error was found; the most frequent answer was
Gathering data(53% of answers fell in this category). This category coversthe use of print
statements, debuggers, break points etc. The second most frequent answer wasInspeculation,
which covers hand simulation and thinking about the code. 25.5% of answers fell in this
category.

An interesting, but not surprising, result is that data gathering (e.g., print statements)
and hand simulation account for almost 78% of the techniquesreported in locating errors
(in Eisenstadt’s study). This result corroborates the result of Pancake [9]: up to 90% of all
sequential debugging is done using print statements.

While the use of print statements is straightforward when working with sequential pro-
grams, their use in parallel programs is often more complicated. Often, processes run on re-
mote processors, which makes redirecting output to the console difficult. Even when output
can be redirected to the console, all processes are writing to the same window, thus mak-
ing the interpretation of the output a challenging task. This is an example of the information
overload theory mentioned earlier. Furthermore, the orderof the output (i.e., the debugging
information from the concurrently executing processes) isnot the same for every run, as the
processes execute asynchronously and only synchronize through message passing. A possi-
ble solution is to have each process write its output to a diskfile. However, this introduces the
problem of non-flushed file buffers; if a process crashes, thebuffer might not be flushed, thus
missing output written by the program. Of course this can be solved by inserting calls to flush
the I/O buffers, but if these are missing, the programmer ends up spending time on debugging
the code he added for debugging purposes! In the worst case this can lead the programmer to
believe that the process crashed somewhere between the lastprint statement that appears in
the file, and the first one that does not. A lot of time can then bewasted looking for an error
in a place where no error can be found.



J.B. Pedersen / Classification of Programming Errors in Parallel Message Passing Systems 367

The third dimension, the root cause of the error, contains 9 different categories; the most
noteworthy is the most frequent one,Memory, which covers errors such as overwriting a re-
served portion of the memory causing the system to crash, andarray subscripts out of bounds.
25.5% of answers fell on this category. The second most frequent root cause was faulty hard-
ware (with 17.7%) and in third and fourth place, with 13.7% and 11.8% respectively, came
faulty design logic (Algorithmic design/implementation problems) and initialization, which
covers wrong types, redefinition of the meaning of system keywords, or incorrectly initial-
ization of a variable.

Nearly 50% of the errors are caused by the first two categories. This also perfectly agrees
with previous studies where tools and runtime systems are described as a source of errors [9].
The classification used in dimension 3 is a mixture of deep plan analysis [10,11] and phe-
nomenological analysis [12]. Deep plan analysis states that many bugs can be accounted for
by analyzing the high level abstract plans underlying specific programs, and by specifying
both the possible fates that a plan component may undergo (i.e., missing or misplaced). An al-
ternative phenomenological taxonomy can be found in [12] where the root causes are divided
into nine categories.

Although all errors essentially trace back to a piece of sequential code that executed on
a processor somewhere in the parallel system, we should still consider the errors that occur
at conceptually higher levels of the parallel programming domain. By ignoring the higher
levels and attempting to use tools from a lower level we oftenachieve information overload
or other problems. Even though a protocol error is caused by sequential code somewhere
in the system, such errors are easier found if the level of granularity is that of the protocol.
Naturally, it is vital that the tool at this level can map the error back to the sequential code as
the correction will have to be made here. (This is one of the main design goals of multilevel
debugging)

If we accept the decomposition of the parallel programming domain as we stated it
above, as well as the overall debugging technique of hypothesis development and verification,
we still need to gather information about the error types like Eisenstadt did for sequential
errors. This is the study presented in the following sections.

2. The Framework

The main goal of this research is to clarify a number of subjects related to parallel program-
ming and debugging of parallel programs. First of all, we wish to obtain some insight into
the types of errors the programmers encounter, and secondlyobtain data about the techniques
they used to locate and correct them. We believe that this information serves as a good basis
for how programming and debugging tools for parallel (message passing) programs should
be developed. It is important to understand the programmingdomain (in this situation, the
parallel programming domain with message passing) in orderto make qualified decisions
about how to correct the errors.

The subject of error types are useful for a tool developer in anumber of ways. First and
foremost, if a large percentage of errors are of a certain type, it is important to tailor the tools
to assist the user in locating and correcting this type of errors rather than a different type
that might not occur as frequently. Secondly, it gives the tool developer an idea of where the
errors are located, that is, are most errors in the sequential code, are they related to the data
decomposition, the functional decomposition or could theybe relate to the use of the message
passing API. Such information is invaluable to developers of programming environments as
well. It pinpoints the area where the tool has the greatest chance of having an impact on the
development cycle.

One of the main reasons for this research is a result by CherriPancake [13] which states



368 J.B. Pedersen / Classification of Programming Errors in Parallel Message Passing Systems

that tools for parallel programming/debugging are often only used by their developer. She
claims that this is caused by the fact that the tool developerand the tool user might have
different foci on what they want/need from a tool.

3. The Error Reports

The programmers were asked to submit a small web questionnaire about all the run-time
errors they encountered throughout the semester. These were submitted though a simple web
interface, and contained just three questions:

• Describe the bug.
• How did you find/fix it?
• How long did it take?

We attempt to mimic the study by Eisenstadt as closely as possibly by asking how the
error was found and what caused it. There questions are closeto dimensions 2 and 3 of
Eisenstadt’s questionnaire.

3.1. The Programs

In this section we briefly describe the six different programs the programmers wrote through-
out the semester. The following list (in no particular order) gives a brief description of the
programs

• Equation Solver— Using one master andn slave processes to solve a upper triangu-
lar system of equations.

• Mandelbrot — Using one master andn slaves in a work farm model to compute a
Mandelbrot set.

• Matrix Multiplication — Implement the Pipe-and-Roll [2] matrix multiplication al-
gorithm.

• Partial Sum — Implement a partial sum algorithm that runs in timeO(log n).
• Pipeline Computation — Using functional decomposition, implement a multistage

pipeline with dispersers and collectors that allow for multiple instances of some stages
of the computation to achieve a good load balance.

• Differential Equation Solver — Solve a differential equation using a discrete
method.

Depending on the type of the error, we categorize the“Describe the bug”question into
seven different categories. We chose seven different categories based on the two first cate-
gories in the PCAM model [1], namely partitioning and communication. The partitioning is
further subdivided into data decomposition and functionaldecomposition, and the communi-
cation is divided into API usage as well as the three major levels of the parallel programming
domain: sequential, message, and protocol. Finally a category for errors (other) that do not
fit any other category was added. In more detail, the seven categories we chose are:

• Data Decomposition— The root of the bug had to do with the decomposition of the
data set from the sequential to the parallel version of the program.

• Functional Decomposition— The root of the bug was the decomposition of the
functionality when implementing the parallel version of the program.

• API Usage— This type of error is associated with the use of the MPI API calls.
Typical errors here include passing data of the wrong type ormisunderstanding the
way the MPI functions work.

• Sequential Error — This type of error is the type we know from sequential programs.
This includes using= instead of== in tests etc.



J.B. Pedersen / Classification of Programming Errors in Parallel Message Passing Systems 369

• Message Problem— This type covers sending/receiving the wrong data, that is, it is
concerned with the content of the messages, not the entire protocol of the system.

• Protocol Problem — This error type is concerned with stray/missing messages that
violate the overall communication protocol of the parallelsystem.

• Other — Bugs that do not fit any of the above categories are reported as ‘other’. This
include wrong permissions on programs to be spawned, faultyparallel IO etc.

We believe that this breakdown will reveal a lot of information about where the bugs
are located and where focus should be placed in the development and debugging process. It
should be clear that the first 3 items are issues that could be aided in the development process
where as the next three should have strong debugging support. This partitioning of course
does not rule out development support for message and protocol problems or debugging
support for data of functional partitioning.

The base for all these programs was either a sequential program (Equation Solver, Man-
delbrot, Differential Equation Solver) or a abstract parallel algorithm. The program were to
be implemented in C using the MPI [3] message passing interface.

4. The Questionnaire

The second part of the Survey was a questionnaire given at theend of the semester. The
objectives of this questionnaire were to discover out what the programmers thought was the
hardest topic, to learn about their general debugging habits, and to obtain a picture of the type
of errors they perceive as being the most frequently encountered. Furthermore, we asked for
a wish list with respect to the functionality of developmentand debugging tools. The survey
contained the following 6 questions:

1. Please mark the level of difficulty for each of the following points (1=easy, 5=hard):

• Data decomposition
• Function decomposition
• Communication Calls
• Debugging the code

2. What do you think is the hardest part of developing a parallel program?
3. List the 3 types of errors you encountered the most.
4. What was your main approach to debugging.
5. What sort of programming support would you find useful (notdebugging).
6. What sort of debugging support would you find useful?

The answers to these questions should give an indication of what the programmer per-
ceives to be hard, and when compared to the actual error reports, it will show if their percep-
tion of parallel message passing programming is correct. Inaddition, it will be revealed if the
errors they think they get most frequently are indeed the errors they reported.

5. Result of Error Reporting

Table 1 summarizes the results of the online error reportingsurvey and figure 2 shows a
graphical representation of the result.

As can be seen, 16.77%+8.39% = 25.16% of errors fall in the decomposition categories,
and 14.84%+10.32%+24.52% = 49.68% fall into one of the threeparts of the decomposition
of the PCAM model (all non-decomposition errors should fallinto either of these categories!
Here we do not count the API usage category). It is notable that almost one quarter of the
errors are protocol related. This means that serious support is needed at this level. Approxi-



370 J.B. Pedersen / Classification of Programming Errors in Parallel Message Passing Systems

Figure 2. The results of the error reports



J.B. Pedersen / Classification of Programming Errors in Parallel Message Passing Systems 371

Data Functional API Sequential Message Protocol
Decomp. Decomp. Usage Error Problem Problem Other

Equation 2 0 1 0 1 3 4
Solver(n1 = 8) 20.00% 0.00% 12.50% 0.00% 12.50% 37.50% 12.50%

Mandelbrot 10 7 11 5 5 7 4
(n2 = 49) 20.41% 14.29% 22.45% 10.20% 10.20% 14.20% 8.16%

Matrix 9 3 6 2 3 10 0
Mult.(n3 = 33) 27.27% 9.09% 18.18% 6.06% 9.09% 30.30% 0.00%

Partial 2 2 3 7 3 8 1
Sum (n4 = 26) 7.69% 7.69% 11.54% 26.92% 11.54% 30.77% 3.85%

Pipeline 0 1 1 1 0 1 0
Comp.(n5 = 4) 0.00% 25.00% 25.00% 25.00% 0.00% 25.00% 0.00%

Differential 3 0 9 8 4 9 2
Eq. (n6 = 35) 8.57% 0.00% 25.71% 22.86% 11.43% 25.71% 5.71

Total 26 13 31 23 16 38 8
(n = 155) 16.77% 8.39% 20.00% 14.84% 10.32% 24.52% 5.16%

Table 1. Results of the online error reporting survey

mately 15% of the errors are sequential, and if counting the API usage errors we reach a total
of almost 45% of errors that a directly linked to faulty sequential code. This strongly suggests
that support for sequential debugging is extremely important; Of course such support should
not suffer from the problem current tools do (e.g., information overloading and granularity
mismatch).

As a side note, we believe that it would be reasonable to assume that the 20% of the errors
that fell in API Usage category will be reduced as the programmer becomes more familiar
with the message passing API. We are certain that many API usage errors could be reduced
through the use of a development environment that can aid theprogrammer in choosing the
right values/types for the arguments.

5.1. Debugging Time and Print Statements

The third question on the error reporting page asked the programmers to give an estimate of
the time it took to locate and correct the bug. The following table shows the result of this
question along with the count of how many times the bug was located using regular print
statements inserted in the code at strategical places.

Program Average Time Print Statements # Answers

Equation Solver 43 minutes 2 (25.00%) 8

Mandelbrot 45 minutes 22 (44.90%) 49

Matrix Multiplication 47 minutes 14 (42.42%) 33

Partial Sum 63 minutes 19 (73.09%) 26

Pipeline Computation 28 minutes 0 (00.00%) 4

Differential Equation 61 minutes 16 (45.71%) 35

Total 52 73 (47.10%) 155

Table 2. Average debugging time and the use of print statements

The error reports show a staggering 52 minute average for each of the 155 bugs there
were reported. This is a lot higher than we suspected. This isalso a good indication that it
really is difficult to locate errors and correct them when dealing with a number of processes
executing concurrently and communicating asynchronously, especially when not using any



372 J.B. Pedersen / Classification of Programming Errors in Parallel Message Passing Systems

parallel debugging tools. For comparison, the average timeit took to correct the 23 sequential
errors reported was 37 minutes per error.

Table 2 shows that for certain problems (like the partial sumproblem), the debugging
task was accomplished by using print statements in 73.09% ofthe time. The average use of
print statements for debugging was 47.10%. For sequential programs it was stated in [13]
that 90% of programmers still used print statements as theirprimary debugging tool. The
use of print statements as a primary debugging tool for parallel message passing programs
can adversely impact the time the debugging takes. Not only can it be challenging to get the
output re-routed to the console, but with a number of processes all using the same console, the
output will be interspersed, and the interpretation of the output becomes more challenging.

6. Results of the Questionnaire

The first question of the end-of-semester questionnaire asked the students to rate the level
of difficulty on a scale from 1 (easy) to 5 (hard) for 4 different topics. The results of this
question can be seen in table 3.

Data Functional Communication
Decomposition Decomposition Calls Debugging

2.92 3.35 2.31 4.04

Table 3. Average level of difficulty for the topics in question 1 (out of 5 possible)

As expected, debugging proved to be the most difficult task associated with writing par-
allel message passing programs. This again emphasizes the need for techniques and tools for
debugging parallel message passing programs.

The second question on the survey asked what part of developing a parallel program was
regarded the hardest. The answers covered all 4 of the topicsfrom table 3 with approximately
25% answering ‘debugging’. To quote one of the answers: “Debugging, and debugging, and
sometimes debugging.”

The third question asked for a list of the three kinds of errors encountered most often.
The answers that occurred the most frequent were: Processesdie prematurely, incorrect data
transferred, mismatch between sender and receiver, sequential errors, and incorrect API us-
age. The second most frequent answers (to question 3) include deadlock, process rank prob-
lems, and message tag problems.

For this question the answers fall into 3 clear categories: errors in the sequential code,
errors associated with message content, and finally errors in the overall communication pro-
tocol. We will return to this division later and show why thisis an important grouping, and
how it has been used to develop a new debugging methodology.

The fourth question asked which technique was more frequently used for debugging.
Most questionnaires had at least 2 different answers, but a staggering 100% of the ques-
tionnaires contained “print statements” as a primary or secondary debugging tool. This of
course does not mean that all errors were located by the use ofprint statements, and reported
in the previous section, although not 100% of all errors werecaught and corrected using
print statements, a large percentage was. The second most frequent answer for debugging ap-
proaches was various types of manual code inspection or manual code execution. Both print
statements, code inspection and hand simulation are covered by Eisenstadt’s two categories
“Inspeculation” and “Gather Data”, which for sequential programs accounted for 25.5% and
53% respectively. That is, 78.5% of all errors in sequentialprograms were found using tech-
niques in either of these two groups. According to the error report surveys for the parallel
programs, 100% of how the error was found fall into one of these categories.



J.B. Pedersen / Classification of Programming Errors in Parallel Message Passing Systems 373

The last two questions asked what kind of programming and debugging support the pro-
grammer would like. Two answers stood out: Integrated programming/development environ-
ments and debugging tools specifically tailored to message passing programs, and not just a
sequential debugger attached to each process.

7. Conclusions from the Survey

The overall result of the end-of-semester questionnaire was that most programmers still de-
bug like they do when writing sequential programs, which unfortunately is primarily by the
use of print statements. Furthermore, the errors seemed to fall into one of 3 main categories:
Sequential errors, message errors, and protocol errors. There was an overall agreement that
(better) IDEs and specialized debugging tools were the mostuseful programming/debugging
support that a programmer could ask for.

7.1. The Error Reports

According to table 1, the error-type most often reported was’Protocol Problem’. Surprisingly,
the ’API Usage’ takes second place, followed by ’Data Decomposition’, ’Sequential Errors’
and finally ’Message Problem’, and ’Functional Decomposition’.

The 7 error categories can be grouped into two groups: i) Pre-programming/ planning
problem, and ii) Actual programming errors. The former covers problems that fall in the
data decomposition and functional decomposition categories, and the latter cover sequential
errors, message problems, protocol problems and other problems. The first group is more
related to the theoretical development/planning of the program as to the actual programming.
If the data is laid out wrong or if the functionality has been decomposed incorrectly, no
debugging can correct the problem. Thus, the second group contains the actual errors that can
be corrected in the program text (i.e., which do not require arevision of the actual parallel
algorithm).

the API Usage category was intentionally left out of the two categories listed above. We
did this for a number of reasons. First of all, one can argue that the problems of using the API
will disappear as the programmer gets more familiar with themessage passing interface, and
thus are not a real threat to programming development. On theother hand, one can argue that
they constitute errors that can be fixed in the code, but they should be included in the second
category. Often, an incorrect use of a message passing API can be caught and corrected by
inspecting content of messages, so for now we chose to leave this category out.

7.2. Program Development

A little more than 25% of errors are attributed to problems associated with data or functional
decomposition. This indicates that there is a genuine need for tool and/or techniques in this
area to help the programmer reduce the number of errors and possibly reduce the development
time.

This is a challenging problem to solve. One way of reducing errors of this type is to use
development environments that support certain parallel patterns; however, it is not always
possible to fit an algorithm to a known pattern.

Since we are focusing on the debugging issue we will leave this problem as a research
topic for the future.

7.3. Program Debugging

The remaining 75% of errors (including API Usage) are associated with actual programming
errors, that is, they require the programmer to actually debug the code to correct the error that



374 J.B. Pedersen / Classification of Programming Errors in Parallel Message Passing Systems

causes the problem. The number of debugging tools in existence for parallel message passing
programs have been unable to fully embrace a general debugging technique for such pro-
grams; in general existing debuggers can be divided into twocategories: i) N-version debug-
gers, which are extensions of sequential debuggers where one debugging process is attached
to each process in the parallel system. ii) Debugging environments, which are specialized
environments that support debugging by the use of break points and macro stepping.

Some of the problem with N-version debuggers is the enormousamount of information
that is displayed to the programmer. This often renders the use of this technique useless
because of information overload.

The problem with both N-version debuggers and the environments is that their primary
focus is on the sequential code. Naturally, all errors lead back to the code, but there is no sup-
port for higher levels of debugging, this includes errors related to messages or the protocol.
Thus, the programmer is left to perform this debugging though an interface that is not meant
for it. This makes debugging a very tedious and challenging task.

The results of the error-reporting page shows that approximately 15% of errors are se-
quential errors, so the perfect debugging tool of course must support debugging of the se-
quential code, but also, as almost 26% of the errors are concerned with messages or proto-
cols, they must be capable of operating at higher levels thatinclude messages, their content,
and the overall communication protocol of the program.

These observations led us to formulate a new debugging methodologies developed
around this break-down of the programming domain. We believe a successful tool must sup-
port debugging at the three different levels. At the sequential level it should be easy for the
programmer to deploy a sequential debugger/tool or debugging technique related to sequen-
tial code without getting information overloading as with the N-version debugging technique.
Similarly it should be easy to deploy tools specifically designed to locate and correct errors
at the remaining two levels. We refer to this new technique asMultilevel debugging. In the
following section we briefly describe the idea behind multilevel debugging.

8. Multilevel Debugging

In this section we briefly describe the multilevel debuggingmethodology. We developed this
technique as a potential solution to the shortcomings of theexisting debugging tools and
techniques. We based the multilevel debugging methodologyon the decomposition of the
PCAM model as described earlier; this resulted in a bottom-up approach rather than the
conventional top-down approach, which had proved fruitless because of problems such as
information overloading. Some of the basic ideas behind multilevel debugging are:

• The information about messages and their content, as well asinformation about the
protocol should be extracted from the running program and used when debugging
errors at these higher levels.

• Support for mapping the manifestation of the error (the effect) back to the actual code
that caused it should be provided.

• Strong support of sequential debugging of separate processes without causing infor-
mation overloading must be provided.

• Automation of debugging tasks should be done when ever possible. Example of this
include deadlock detection and correction.

Some of the general goals for multilevel debugging include

• Computable relations should be computed on request not leftfor the user to figure
out.



J.B. Pedersen / Classification of Programming Errors in Parallel Message Passing Systems 375

• Displayable state should be displayed on request, not left for the user to draw or
visualize.

• Views for important parts of the program (key players) otherthan variables should be
available.

• Navigation tools tailored to specific tasks/levels should be available.

We have described a number of tools and techniques from the multilevel debugging
framework in [14,6,15]. A complete reference can be found in[16]

9. Conclusion

We have presented the results of 2 different surveys, and theresult of these have shown that
errors fit into 3 distinct categories: Sequential errors, message errors, and protocol errors. In
addition, the survey showed that debugging by using print statements is still frequently used,
and extremely time consuming.

We introduced a new debugging technique referred to as multilevel debugging, which de-
composes the debugging task into three categories: sequential, message, and protocol. The re-
sults of the questionnaires and error reports seem to support the decomposition of the PCAM
model chosen for multilevel debugging; Since multi level debugging include tools that are
tailored to the levels associated with messages/message content and the protocol of the sys-
tem, we believe that not only will it be easier to locate errors at these levels, but also reduce
the time it takes to find and correct the error.

Multilevel debugging was initially developed as a new debugging methodology in [16]
and implemented in a text based version for PVM programs. A newer version, also for PVM,
with a graphical user interface (Millipede) was presented in [17], and an initial version for
MPI (IDLI) has been presented in [18].

10. Future Work

We wish to complete the MPI implementation and deploy it to programmers and have them
use it and redo the survey to see if the errors were be corrected faster using these new debug-
ging techniques.

In addition, as the surveys have shown, 25% of errors are associated with decomposition.
It is clear that tools to assist the correct decomposition ofdata and functionality are needed.

Also supporting new tools through the use of recorded data from the program execution
remains an interesting area of research. We strongly believe that a message passing library
like MPI must incorporate debugging support directly in thelibrary or through a system like
Millipede or IDLI. The first step to making debugging ‘easier’ is to facilitate the extraction
of necessary information about messages and the protocol from the message passing system
itself.

References

[1] I. Foster. Designing and Building Parallel Programs: Concepts and tools for parallel software engineer-
ing. Addison Wesley, 1995.

[2] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving problems on concurrent
processors. General techniques and regular problems, volume 1. Prentice Hall International, 1988.

[3] J. Dongarra. MPI: A Message Passing Interface Standard.The International Journal of Supercomputers
and High Performance Computing, 8:165–184, 1994.

[4] A. Geist et al. PVM: Parallel Virtual Machine. A User’s Guide and Tutorial for Networked Parallel
Computing. Prentice Hall International, 1994.



376 J.B. Pedersen / Classification of Programming Errors in Parallel Message Passing Systems

[5] K. Araki, Z. Furukawa, and J. Cheng. A General Framework for Debugging.IEEE Software, pages 14–20,
May 1991.

[6] J. B. Pedersen and A. Wagner. Correcting Errors in Message Passing Systems. In F. Mueller, editor,High-
Level Parallel Programming Models and Supportive Environments, 6th international workshop, HIPS
2001 San Francisco, CA, USA, volume 2026 ofLecture Notes in Computer Science, pages 122–137.
Springer Verlag, April 2001.

[7] M. Eisenstadt. My hairiest bug war stories. InThe Debugging Scandal and What to Do About It -
Communication of the ACM. ACM Press, April 1997.

[8] J. Gray. Why do Computers Stop and What Can be Done About it? Proceedings of 5th Symposium on
Reliability in Distributed Software and Database Systems, pages 3–12, January 1986.

[9] C. M. Pancake. What Users Need in Parallel Tool Support: Survey Results and Analysis. Technical Report
CSTR 94-80-3, Oregon State University, June 1994.

[10] W. L. Johnston. An Effective Bug Classification Scheme Must Take the Programmer into Account.Pro-
ceedings of the workshop of High-level debugging. Palo Alto, California, 1983.

[11] J. C. Spohrer, E. Soloway, and E. Pope. A Goal/Plan Analysis of Buggy Pascal Programs.Human-
computer Interaction, 1(2):163–207, 1985.

[12] D. E. Knuth. The Errors of TEX. Software - Practise and Experience, 19(7):607–685, July 1989.
[13] C. M. Pancake. Why Is There Such a Mis-Match between UserNeed and Parallel Tool Production?

Keynote address, 1993 Workshop on Parallel Computing Systems: A Dialog between Users and Develop-
ers, April 1993.

[14] J. B. Pedersen and A. Wagner. Sequential Debugging of Parallel Programs. InProceedings of the interna-
tional conference on communications in computing, CIC’2000. CSREA Press, June 2000.

[15] J. B. Pedersen and A. Wagner. Protocol Verification in Millipede. InCommunicating Process Architectures
2001. IOS Press, September 2001.

[16] Jan Bækgaard Pedersen.MultiLevel Debugging of Parallel Message Passing Programs. PhD thesis,
University of British Columbia, 2003.

[17] Erik H. Tribou. Millipede: A Graphical Tool for Debugging Distributed Systems with a Multilevel Ap-
proach. Master’s thesis, University of Nevada, Las Vegas, August 2005.

[18] Hoimonti Basu. Interactive message debugger for parallel message passing programs using lam-mpi.
Master’s thesis, University of Nevada, Las Vegas, December2005.


