
Communicating Process Architectures 2005
Jan Broenink, Herman Roebbers, Johan Sunter, Peter Welch, and David Wood (Eds.)
IOS Press, 2005

203

Verification of JCSP Programs

Vladimir KLEBANOV, a Philipp RÜMMER,b,1 Steffen SCHLAGERc and
Peter H. SCHMITTc

aUniversity of Koblenz-Landau, Institute for Computer Science,
D-56070 Koblenz, Germany

b Chalmers University of Technology, Dept. of Computer Science and Engineering,
SE-41296 Gothenburg, Sweden

c Universität Karlsruhe, Institute for Theoretical Computer Science,
D-76128 Karlsruhe, Germany

Abstract. We describe the first proof system for concurrent programs based on Com-
municating Sequential Processes for Java (JCSP). The system extends a complete cal-
culus for the JavaCard Dynamic Logic with support for JCSP, which is modeled in
terms of the CSP process algebra. Together with a novel efficient calculus for CSP, a
rule system is obtained that enables JCSP programs to be executed symbolically and
to be checked against temporal properties. The proof systemhas been implemented
within the KeY tool and is publicly available.

Keywords. Program verification, concurrency, Java, CSP, JCSP

1. Introduction

Hoare’s CSP (Communicating Sequential Processes) [10,16,18] is a language for modeling
and verifying concurrent systems. CSP has a precise and compositional semantics. On the
other hand, the semantics of concurrency in Java [8] (threads) is only given in natural lan-
guage. Synchronization is based on monitors and data transfer is primarily performed through
shared memory; it has turned out that engineering complex programs using these concepts
directly is very difficult and error-prone. In addition, verification of such programs is ex-
tremely difficult and existing approaches do not scale up well. The JCSP approach [13,20]
tries to overcome the difficulties inherent to Java threads.It defines a Java library that offers
functions corresponding to the operators of CSP. Using solely JCSP library functions for con-
currency and communication (i.e., no explicit creation of threads and no communication via
shared memory) allows to verify the (concurrent) behavior of the Java program on the CSP
level instead of dealing with monitors on Java level. Since the use of JCSP only makes sense
with a strict discipline not to resort directly to Java concurrency features, this should not be a
severe restriction.

The paper is organized as follows. In Sect. 2 we give an overview of the architecture
of our verification calculus which is presented in detail in Sect. 4–6. In Sect. 3 we present
a JCSP implementation which evaluates polynomials and serves as a running example. The
verification of some properties of the running example is described in Sect. 7. Finally, in
Sect. 8 we relate our verification system to existing approaches and draw conclusions in
Sect. 9.

1Correspondence to: Philipp Rümmer, Dept. of Computer Science and Engineering, Chalmers University
of Technology, 412-96 Gothenburg, Sweden. Tel.: +46 (0)31 772 1028; Fax: +46 (0)31 165655; E-mail:
philipp@cs.chalmers.se.

204 V. Klebanov, et al. / Verification of JCSP Programs

JavaCard calculus (1) CSP model of JCSP (2)

CSP calculus (3)

Calculus for modal logic correctness assertions (4)

Figure 1. Architecture of the verification calculus

2. Architecture of Verification Calculus

Our calculus allows to derive truth of temporal correctnessassertions of the kindS : φ, where
S is a process term andφ a formula of some modal logic. The intended semantics is thatthe
process described byShas the propertyφ or, in more technical terms,Sdescribes the Kripke
structureφ is evaluated in. Our approach is not limited to a particular modal logic. E.g., in
the implementation we use an extended version of HML enriched with a least-fixed point
operator, which allows to express the liveness-property weproved for the running example
presented in Sect. 3. However, in order to explain our approach in this paper we restrict
ourselves to plain Hennessy-Milner-Logic (HML) [9] because of its simplicity.

An important part of our proof system is the calculus for the program logic JavaCard Dy-
namic Logic (JavaCardDL) that is developed in the KeY project [1]. JavaCard [19,5] roughly
corresponds to the Java programming language omitting threads and is mainly used for pro-
gramming smartcards.1 The KeY tool is a system for deductive verification of JavaCard pro-
grams, respectively of Java programs without threads.

Fig. 1 shows the architecture of the verification system, which consists of four compo-
nents. These correspond to the four stages of the main verification loop:

1. The first stage symbolically executes JavaCard statements until a JCSP library call is
reached. This is performed by the standard KeY calculus [1].
Due to our assumptions that allow only explicit inter-process communication, there
is no interference between sequential process code. The sequential calculus from the
KeY tool can thus be taken without modification. From a CSP point of view pieces of
sequential Java code can be seen as processes that produce only internal events.

2. The second part—operating in parallel with (1)—replacesthe JCSP library calls within
the program by their CSP models (see Sect. 4).

3. Stage 3 is a rewriting system, which transforms the process term into a normal form
that allows to easily deduce the first steps of the process (see Sect. 5).

4. Finally, in stage 4, temporal correctness assertions areevaluated with respect to the
possible initial behaviors of the process term (see Sect. 6).

As an important aspect concerning interactive proving, a translation of the considered JCSP
programas a wholeto a different formalism does never take place. Instead, each of the
components works as “lazy” as possible, and all layers play together in an interleaved manner.

3. Verification Example

In order to illustrate the programs that can be handled by ourverification system we start
with describing a simple application, an implementation ofHorner’s rule [12] in the JCSP
framework. The program only makes use of some of the basic JCSP classes; other function-
ality like processing of integer streams, which is also provided by JCSP, is re-implemented
to obtain a self-contained system.

1JavaCard lacks some more features of Java, e.g. floating point numbers and support for graphical user-
interfaces, but also offers support for transactions, which is not available in Java.

V. Klebanov, et al. / Verification of JCSP Programs 205

import jcsp.lang.*;

abstract class BinGate
implements CSProcess {

protected ChannelInputInt input0, input1;
protected ChannelOutputInt output;
public BinGate

(ChannelInputInt input0,
ChannelInputInt input1,
ChannelOutputInt output) {

this.input0 = input0;
this.input1 = input1;
this.output = output;

}
}

class Adder extends BinGate {
public Adder

(ChannelInputInt input0,
ChannelInputInt input1,
ChannelOutputInt output) {

super (input0, input1, output);
}
public void run () {

while (true)
output.write (input0.read () +

input1.read ());
}

}

class Multiplier extends BinGate {
public Multiplier

(ChannelInputInt input0,
ChannelInputInt input1,
ChannelOutputInt output) {

super (input0, input1, output);
}
public void run () {

while (true)
output.write (input0.read () *

input1.read ());
}

}

class Prefix implements CSProcess {
private int value, num;
private ChannelInputInt input;
private ChannelOutputInt output;
public Prefix

(int value,
int num,
ChannelInputInt input,
ChannelOutputInt output) {

this.value = value;
this.num = num;
this.input = input;
this.output = output;

}
public void run () {

while (num-- != 0)
output.write (value);

while (true)
output.write (input.read ());

}
}

class Propagator implements CSProcess {
private int delay, num;
private ChannelInputInt input;
private ChannelOutputInt output;
public Propagator

(int delay,
int num,
ChannelInputInt input,
ChannelOutputInt output) {

this.delay = delay;
this.num = num;
this.input = input;
this.output = output;

}
public void run () {

while (delay-- != 0)
output.write (input.read ());

while (num-- != 0)
CSProcessRaiseEventInt(input.read());

}
}

class Repeat implements CSProcess {
private int[] values;
private ChannelOutputInt output;
public Repeat

(int[] values,
ChannelOutputInt output) {

this.values = values;
this.output = output;

}
public void run () {

int i = 0;
while (true) {

output.write (values[i]);
i = (i + 1) % values.length;

}
}

}

public class PolyEval
implements CSProcess {

private int[] values;
private int degree, num;
private ChannelInputInt coeff;
public PolyEval

(int[] values,
int degree,
int num,
ChannelInputInt coeff) {

this.values = values;
this.num = num;
this.degree = degree;
this.coeff = coeff;

}
public void run () {

One2OneChannelInt[] c =
One2OneChannelInt.create (5);

new Parallel (new CSProcess[]
{ new Repeat (values, c[0]),
new Prefix (0, num, c[4], c[1]),
new Adder (c[1], coeff, c[2]),
new Propagator(degree*num, num,

c[2], c[3]),
new Multiplier(c[0], c[3], c[4]) })

.run ();
}

}

Figure 2. The source code of the verified system for evaluating polynomials (JCSP library classes, in-
terfaces, and method calls are in bold). Apart from the special call CSProcessRaiseEventInt, all
classes can directly be compiled using the JCSP library [20]and a recent version of Java. The state-
mentCSProcessRaiseEventInt(v) makes the symbolic JavaCard interpreter implemented in KeYraise
an observable CSP eventjcspIntEvent(v), but does not have any further effects. For actually executing the
network, one can for instance replace the statement withSystem.out.println(v).

206 V. Klebanov, et al. / Verification of JCSP Programs

The evaluation of polynomials is carried out by a network of 5
gates performing basic operations on streams of integers, which are
connected using synchronous JCSP channels. The code of the com-
plete system is given in Fig. 2 and introduces the following classes:
Adder, Multiplier: Processes that compute point-wise sums and
products of integer streams. In contrast to similar classesthat are pro-
vided by JCSP, pairs of input values are read sequentially and not in parallel, which makes
the code a lot shorter and does not affect the functionality of the network in the present set-
ting. Prefix: A process that first outputs a fixed integer valuenum times, and afterwards
copies its input stream to the output.Propagator: A process that copies the firstdelay
input values to its output, and that for the subsequentnum input valuesvi raises an observable
eventjcspIntEvent(vi). We use such “logging” events to make the result of the computation
visible to the formulaφ of a correctness assertionS : φ. Repeat: A process that creates
a periodical stream of integers by repeatedly writing the contents of an array to its output.
PolyEval: The complete network that evaluates a number of polynomialsin parallel. The
computation result is made observable by an instance ofPropagator.

In principle, the cyclic network can be used to evaluate an arbitrary number of polyno-
mialspi(x) = ci,nxn + · · ·+ ci,0 (for i = 1, . . . , k) of the same degreen in parallel. Therefore,
the input vector̄x lists the positions(x1, . . . , xk) that are examined, and the network is fed the
coefficients of the polynomials through the streamcoeff= (c1,n, c2,n, . . . , c1,n−1, c2,n−1, . . .).
The gatesPrefix andPropagator have to be set up with the correct numberk and de-
green of the polynomials.

For the purpose of this paper, however, we restrict the capacity of the network by choos-
ing its channels to be zero-buffered. As each of the nodes is only able to store one intermedi-
ate result at a time, set up like this the system is bound to lock up as soon as more than three
polynomials are evaluated at the same time. This can be observed both by actually executing
the Java program and by symbolically simulating the networkusing our system. Symbolic
execution with up to three polynomials is described in Sect.7.

3.1. Verified Property of the System

When evaluating polynomials(p1, . . . , pk) at points(x1, . . . , xk), the network is expected
to produce, after a finite number of (hidden) execution steps, a sequence of distinguished
eventsjcspIntEvent(p1(x1)), . . . , jcspIntEvent(pk(xk)). In terms of temporal logic, this is cap-
tured by the requirement that on every computation path eventually this sequence occurs and
is only preceded or interleaved with unobservable steps. The temporal formula describing this
behavior is subsequently denoted witheventually(p1(x1), . . . , pk(xk)) and can for instance be
expressed in the modalµ-calculus [4].2 Verification of this particular kind of properties is for
a fixed number of polynomials of fixed degree possible withoutinductive proof arguments;
for handling polynomials of unbounded degree, which lead toan unbounded runtime of the
network, induction would be necessary. Since we have not yetinvestigated the usage of in-
duction techniques (as in [6]) in combination with our verification system, we stick to the
simpler scenario and only consider quadratic polynomials in this document.

To set up the verification problem, the coefficients of the polynomials are stored in a
buffered JCSP channel, and the network is created with the correct parameters. The resulting
program is judged by the temporal formula, which for evaluation of two polynomials in
parallel leads to the following proof obligation:

2At this point HML is not expressive enough, because the number of computation steps is unknown. Here we
have enriched HML with a least fixed-point operator borrowedfrom modalµ-calculus. This extension does not
require induction in the calculus.

V. Klebanov, et al. / Verification of JCSP Programs 207

T(jcsp.lang.One2OneChannelInt coeff =
new jcsp.lang.One2OneChannelInt (new jcsp.util.ints.BufferInt (10));

coeff.write(c12); coeff.write(c22);
coeff.write(c11); coeff.write(c21);
coeff.write(c10); coeff.write(c20);
new PolyEval (new int[] { x1, x2 }, 2, 2, coeff).run ();)

: eventually(c12 · x12 + c11 · x1+ c10, c22 · x22 + c21 · x2+ c20)

(1)

4. CSP Model of JCSP

Process algebras like CSP allow processes to be assembled using algebraic connectives, for
instance using interleaving composition||| (we assume familiarity with the CSP notation).
JCSP follows this concept roughly, but offers communication means (particularly channels)
that only remotely correspond to the operators of CSP. For investigating the behavior of
JCSP programs we need a more accurate modeling of JCSP semantics, which we achieve
by a (non-trivial) translation of JCSP primitives into CSP.This approach follows ideas from
[13], though we are not aiming towards a complete replication of multi-threaded Java but
concentrate on JCSP.

The usage of its own interaction features is not strictly enforced by JCSP—for practical
reasons—and programs can be written in an “unclean” manner and circumvent JCSP by using
shared memory or similar native Java functionality. Since we believe that such programs are
not in line with the principles of JCSP, we regard them as ill-shaped. The following models of
JCSP operations are simplified insofar as they do not predictthe correct behavior of JCSP and
Java for ill-shaped programs. Using such a simplified semantics for verification is beneficial
because it shortens proofs, but in practice it has to be complemented with checks that prohibit
the treatment of ill-shaped programs right from the start. Though we have not yet investigated
how to realize such tests, it seems possible to reach a sufficient precision by employing static
analysis or type systems to this end (in a completely automated manner).

Our principal idea for modeling JCSP programs is to construct a CSP process term in
which sequential Java code can turn up as subterms (wrapped in an operatorT(·)). JCSP
components (such as channels) used to set up the network determine the way in which the se-
quential Java parts are connected. To illustrate this, the process term representing the scenario
of two sequential JCSP processes (implemented as Java programsα, β) that communicate
through a JCSP channel is:

((
idc : CHAN

)
|[idc.Σ]|

(
T(α) ||| T(β)

))

\ idc.Σ (2)

CHAN is a process modeling the JCSP channel that interfaces with the Java processesT(α),
T(β) through messages of the alphabetΣ. To distinguish different channels, messages are
tagged with an identifieridc.

4.1. JCSP Processes with Disjoint Memory and their Interfaces

The basis for assembling JCSP systems is to give termsT(α) that wrap Java programs seman-
tics as processes. Therefore, we assume that such a process can only interact with its environ-
ment through the use of JCSP operations; this immediately rules out shared-memory com-
munication, or any kind of communication that is not modeledexplicitly through observable
events raised byT(α).

For defining the behavior ofT(α), we equip Java with an operational semantics in which
each execution step can 1. transformα into a continuationα′, 2. change the memory state of
the processT(α), or 3. makeT(α) engage in an eventa that is observable by the rest of the
system (the three possible outcomes do not exclude each other). Designing transition rules
for symbolically executing Java code based on this semantics, we were able to start with

208 V. Klebanov, et al. / Verification of JCSP Programs

the operational semantics of sequential Java that is implemented in the KeY system, which
essentially means that we only had to add rules for item 3. Concerning 1 and 2, the behavior
of a program follows [19,8].

In JavaCardDL, memory contents are represented during the symbolic execution of a
program using so-calledupdates, which are lists of assignments to variables, attributes and
arrays. Terms and formulas can be preceded with updates in order to construct the memory
contents that are in effect. With updates, for instance, thetransition rule for side-effect free
assignments is

T({x=e; ...}) {x := e}T({...})

The KeY system covers the complete JavaCard language and large parts of Java in terms of
such transition rules.

Observable events are raised by a processT(α) only when JCSP operations (like channel
accessesc.write(...)) are executed. The protocol that is followed for communication
through a channel is described in Sect. 4.3; a simpler operation is the logging command that
is used in Sect. 3 to make results visible. Such operations are handled with additional rules
that insert CSP connectives as necessary:

T({CSProcessRaiseEventInt(v); ...}) jcspIntEvent(v) → T({...})

4.2. Class Parallel

The most basic way of assembling processes in JCSP is the class Parallel for parallel
composition. Modeling this feature in CSP is rather simple—assuming disjoint memory for
processes—and boils down to inserting the interleaving operator|||. The magic operation that
has to be trapped isParallel.run, because this is the place where new processes are
actually spawned. For an objectparallel that is set up with children processesp1, . . . ,
pn, the effect of therun-method can be modeled in CSP as follows:

T({parallel.run(); ...})
(
T({p1.run();}) ||| · · · ||| T({pn.run();})

)
; T({...})

Sequential composition; is used to make the parent process continue its execution af-
ter termination of the children. Because memory contents are stored in updates in front of
termsT(α), each of the processes that are created will inherit the memory of the parent
process, but will consecutively operate on a copy of that memory: write access of the pro-
gramspi are not visible to other processes.

4.3. Channels

We model the different kinds of channels that are provided bythe JCSP library—which differ
in the way data is buffered and have different access arbitration—following ideas from [13].
As already shown in Eq. (2), the behavior of a channel is simulated by an explicit routing
processCHAN that is attached to a Java process as a slave. As a starting point, we adopted
the CSP model from [13] of a zero-buffered and synchronous channel (Fig. 3):

LEFT = write? msg→ transmit! msg→ ack→ LEFT

RIGHT = ready→ transmit? msg→ read! msg→ RIGHT

ONE2ONECHANNEL =
(
LEFT |[transmit.Σ]| RIGHT

)
\ transmit.Σ (3)

V. Klebanov, et al. / Verification of JCSP Programs 209

Figure 3. Model of a zero-buffered channel

Our implementation contains further channel
models, for instance an extended version of the
model shown here that also supports the JCSP alter-
nation operator. Channels with bounded buffering
(as used in the example Fig. 2) can be handled by
the system as well. However, a complete set of CSP
characterizations for the JCSP channels, together
with a systematic verification that the models faithfully represent the actual JCSP library is
still to be developed.

The JCSP operations for creating and accessing channels areagain realized by trans-
lating them to CSP connectives. Channels are created by allocating a new channel iden-
tifier idc (which in our implementation is just the reference to the created object of
classOne2OneChannel) and by spawning the appropriate routing process:

T({c=new One2OneChannel(); ...})
((

idc : ONE2ONECHANNEL
)
|[idc.Σ]|

(
{c := idc}T({...})

))

\ idc.Σ

The Java process can then interact with the channel according to a certain protocol, which for
the zero-buffered channel looks as follows.

T({c.write(o);...}) idc.write ! msgo → idc.ack→ T({...})

T({o=c.read();...}) idc.ready→ idc.read? msgo → {o := . . .}T({...})

Because of the disjoint-memory assumption it is necessary to encode the complete in-
formation that messages contain as some termmsgo, which we have so far implemented for
integers (in combination with the JCSP channels for integers that for instance are used in
Fig. 2). Treating arbitrary objects is possible through manipulations of updates and will be
added to the proof system in a later version.

5. CSP calculus

The gist of evaluating HML-assertions for processes is thatcertain events can or have to be
fired in a given state. It is thus crucial to obtain, for the process term at hand, the summary of
events that it can fire in the next step and the corresponding process continuations. This goal
is usually achieved by rewriting the process term into a certain normal form, from which this
information can be syntactically gleaned.

When working with a naive total-order semantics, a typical exploration (rewriting) of a
process term (here the interleaving of two processes) lookslike this:

a → P ||| b → Q a → (P ||| b → Q) 2 b → (a → P ||| Q)

The subtermsP andQ are duplicated, and in general the term size increases exponentially.
On the other hand, Petri nets have been used in the past to giveprocesses a partial-

order semantics (also called step semantics) [3]. The net approach avoids a total ordering
of independent events, which helps containing the state explosion. The representation of a
transition system as a net graph is also usually more compactthan a tree. Following this
tradition, we combine Petri nets and conventional process terms into one formalism (we call
it netCSP), which allows succinct reasoning. We model CSP events as net transitions, and
the evolution of the net marking corresponds to the derivation of adjacent processes that are
reached when a process performs activated execution steps

210 V. Klebanov, et al. / Verification of JCSP Programs

netCSP terms are built-up incrementally from the conventional CSP process terms by the
rewriting system outlined in the following. The incremental, or “lazy”, manner of exploration
allows to have Java programs inside processes, since finite nets are not Turing-complete. It
is the first (to our knowledge) rewriting system for efficiently creating combined process
representations from conventional ones, and for exploringtheir behavior.

5.1. Monotonic Petri nets

E M D
Figure 4. Life cycle of a
place marking

Petri nets (see [15] for an introduction) are a formal and graph-
ically appealing model long used for modeling non-sequential pro-
cesses. To model CSP process behavior in a faithful and efficient
way we introduce a slightly modified version of Petri nets, which
we callmonotonic Petri nets. Every place in such a net is in one of the three following states:
empty (E), marked (M), or dead (D). A transitiont of a monotonic Petri net is calledenabled
for a markingM (a mapping from places to states), if all its input placesin are marked and
all its output placesout are empty:

M(in(t)) ⊆ {M} ∧ M(out(t)) ⊆ {E}

An enabled transitiont canfire leading to a new marking, which for a placep is

Mnew(p) :=







D if p ∈ in(t)

M if p ∈ out(t)

M(p) otherwise

Thus, a marking of a place can only evolve in monotonic progression as depicted in Fig-
ure 4. This allows far-reaching estimations on the behaviorof the net (e.g. places depending
on dead places are blocked forever). Another immediate and favorable consequence of the
above net semantics is the fact that every non-isolated transition can fire at most once, just
as any particular CSP event can only be raised once. Finally,since monotonic nets are easily
translated to standard 1-safe Petri nets, all common analysis techniques are still available.

5.2. netCSP: Combining Nets and Process Terms

The combination of conventional process terms and Petri nets is described algebraically by
enriching the set of usual CSP operators with the following four:

iP Token consumption: this term attaches a CSP processP to the placei of
the net. The execution ofP is now causally dependent oni. If i is marked
with E thenP is currently blocked.P is not blocked ifi is marked with M.
Then execution ofP consumes the token ini. If i is marked with D thenP
is blocked forever (and can be removed). In lieu of a single placei a set of
places can turn up. In this case a token is consumed from everyplace.

iao The transition operator expresses that a CSP eventa is raised by the term,
whilst a causal dependency token is consumed from placei and placed in
placeo. Again, sets of places can play the role ofi ando.

p[v] : P The causal state operator sets the marking of the placep in P to valuev
(which is one of E, M, or D).

P |[L[X]R]| Q This consruct is a “bookkeeping” version of the standard parallelism opera-
tor P |[X]| R, see Section 5.3.4.

V. Klebanov, et al. / Verification of JCSP Programs 211

The new operators are initially introduced by the rewritingsystem, which transforms conven-
tional CSP terms into the combined representation. This rewriting system is described in the
following section.

5.3. Rewriting System For Exploring Process Behavior

5.3.1. The Desired Normal Form

The rewriting system presented in this section transforms aCSP or a netCSP term into the
following normal form (together with an implied markingM):

i1a1
o1 ||| · · · ||| inan

on ||| R (NF)

where ikak
ok are enabled transitions, and the remainderR is blocked w.r.t.M, i.e., cannot

raise an event at the current stage. The latter condition canbe checked by a simple syntactic
criterion onM due to the benign properties of monotonic nets described above.

The rewriting system achieves the normal form (NF) by pulling transitions out of the
scope of the leading operator and moving them towards the root of the term. Since terms are
finite, this procedure is guaranteed to terminate.

Example 1 Rewriting the channel routing processONE2ONECHANNELthat is defined in
Sect. 4.3, Eq. (3) to normal form yields the following term (p andq are initially empty):

C = ready{p} ||| write? msg{q} |||
(
{p}(transmit! msg→ · · ·) |[transmit.Σ]| {q}(transmit? msg→ · · ·)

)
\ transmit.Σ

︸ ︷︷ ︸
R (currently blocked)

In graphical representation:ready
p

R
q

write? msg

The first steps of the processC are thus eitherreadyor write? msg.

5.3.2. Translating Events (Prefix Operator)

a P

Figure 5. CSP events
as net transitions

Events are modeled as transitions of the Petri net. Firing ofa transi-
tion corresponds naturally to the process’ engagement in anevent. This
transformation is captured by the following rule:

a → P p[E] : (a{p} ||| {p}P), p new inP

In practice, the rewriting strategy would, sensibly, startapplying this rule at the leftmost
possible position in a term.

5.3.3. Translating the Choice Operator

P • Q

Figure 6. Nondetermi-
nistic choice

The choice operator also lends itself to a natural representation
in the Petri net process framework. This is achieved by the following
rule:

P 2 Q p[M] : ({p}P ||| {p}Q), p new inP andQ

212 V. Klebanov, et al. / Verification of JCSP Programs

5.3.4. Translating the Parallelism Operator

The behavior of the parallelism operatorP |[X]| Rvaries with the synchronization setX from
total synchronization of two processes (P ‖ Q) to interleaving (P ||| Q). Interleaving has a
special place within this scale as it introduces no dependencies between its operands. It is
treated separately in the next section.

Here, in contrast, we assume that the synchronization setX is not empty. For events
included inX we identify “matching” transitions in both operands and “merge” them outside
of the scope of the parallelism operator. Since removing transitions out of the scope loses
vital information, it is necessary to do some additional bookkeeping. This is achieved with
two lists of already worked-off transitions (“buffers”)L andR, which are part of the extended
operator|[L[X]R]|. In the beginning, our rewriting system replaces the parallelism operator by
this variant with the buffers initially empty:

P |[X]| Q P |[∅[X]∅]| Q

The main rewriting step then records every (synchronized) worked-off transition from an
operand in the corresponding buffer:

P |[L[X]R]|
(

iao ||| Q
)







iao |||
(

P |[L[X]R]| Q
)

if a 6∈ X

U |||
(

P |[L[X]R′]| Q
)

if a ∈ X

whereR′ := R] {iao} andU is an interleaving of transitions, which arises from merging iao

with all transitions of the same name in bufferL:

U := |||
il aol ∈ L

i ∪ il ao∪ol

The stopprocess can stand in for an emptyQ, and a symmetrical rule can be given for the
left operand.

Example 2 We continue Example 1 and complement termC with a processready→ Q that
accesses the channel for reading. By repeatedly applying the rule for handling parallelism,
pending events are added to the buffers of the parallelism operator, and it is deduced that the
whole system can engage in eventreadyas its first step. The buffer contents are underlined.

C |[Σ]|
(
ready→ Q

)
 · · · r[E] :

(

C |[Σ]|
(

ready{r} ||| {r}Q
))

 · · · r[E] :
(

ready{p,r} |||
(
R |[ready{p}, write? msg{q}[Σ]ready{r}]| {r}Q

))

In the following net diagram, buffered transitions are denoted with dashed boxes:

write? msg
q R

ready
p

ready
r

Q

ready

p
R

q
write? msg

ready

r
Q

ready

V. Klebanov, et al. / Verification of JCSP Programs 213

P
P ||| Q

Q

Figure 7. Interleaving of processes is easy

5.3.5. Translating Interleaving

The interleaving composition of two processes (A ||| B) builds a “base case” of the rewriting
system. It has a very natural Petri net representation, due to the concurrency inherent to Petri
nets. This wayA ||| B can be translated with the nets forA andB simply written side by side.
Care should be taken though while connecting to other processes. In this case the interface
places have to be duplicated, as well as the connecting transitions. This is described with the
rule shown in Fig. 7. Due to lack of space we refrain from formally stating the rule and refer
to [17] where a straightforward but lengthy formulation is given.

5.3.6. Further CSP Operators

The CSP operators for labeling, hiding, and message passing(e.g.,a? x → P) are also treated
by the system, but omitted here for space reasons.

5.3.7. Correctness of the Rewriting System

We have shown the correctness of our rewriting system, by first developing a coalgebra-based
denotational semantics of the process algebra at hand (based on Roscoe’s SOS [16]). Then
we have proved that our rewriting system preserves the meaning of process terms relative to
this semantics. This result is documented in [17].

6. Evaluation of Temporal Correctness Assertions

In this section we consider generalized correctness assertions of the formS : M : φ whereS
is a netCSP-term,M its initial marking, andφ is a formula of some modal logic. Here we use
HML for simplicity reasons, but more expressive logics liketemporal logic orµ-calculus can
be handled as well.

The syntax of HML is defined by the grammar

ForHML ::= true | ¬ ForHML | ForHML ∧ ForHML | 〈Event〉ForHML

whereEventranges over a set of events. The meaning of the Boolean connectives is as usual;
formula 〈a〉φ holdsiff the concerned process, by engaging in an eventa, reaches a state, in
whichφ holds.

Tab. 1 shows some HML correctness assertions and their truthvalues. Two of the cor-
rectness assertions evaluate to ff. The reason is that in both cases placeo is already marked
and, as a consequence, eventa cannot be fired (since firinga requires placeo to be empty).

6.1. Evaluation of netCSP Terms in Normal Form

The rules of the calculus presented in Sect. 5 transform a netCSP term into the normal
form (NF) and a corresponding markingM (implied):

i1a1
o1 ||| · · · ||| inan

on ||| R, andR is blocked w.r.t.M

that is an efficient syntactical representation of the possible first events the process may fire.
Now calculus rules for evaluating HML correctness assertions can be applied. We use a

214 V. Klebanov, et al. / Verification of JCSP Programs

Gentzen-style sequent calculus. Sequents are of the formΓ ` ∆ whereΓ and∆ are multi-
sets of correctness assertions. The semantics of a sequent is that the conjunction of the cor-
rectness assertions on the left of the sequent symbol` implies the disjunction of the asser-
tions on the right.

The semantics of a sequent calculus rule is that if the premisses (i.e., the sequents above
the horizontal line) can be derived in the calculus then the conclusion (i.e., the sequent below
the line) can be derived as well. Note, that in practice sequent rules are applied from bottom to
top. The following rule allows to evaluate HML correctness assertions. Applied from bottom
to top, it produces a number of new correctness assertions about the continuations of the
process that have to be examined subsequently.

Γ `
∨

k=1,...,n
(ik,ok)∈En(M)

ak
.
= b ∧

(
i1a1

o1 ||| · · · ||| inan
on ||| R

)

:
(

M + (ik, ok)
)

: Φ, ∆

Γ `
(

i1a1
o1 ||| · · · ||| inan

on ||| R
)

: M : 〈b〉Φ, ∆

(||| R)

The rule considers all transitionsak which are enabled, i.e., input places are marked and
output places are empty ((ik, ok) ∈ En(M)). The expressionM + (ik, ok) denotes the new
marking after transitionak has fired.

As an example we derive the HML correctness assertion

{i1}a ||| {i2}a : (M, M) : 〈a〉〈a〉true

expressing that there is a possibility for the process{i1}a ||| {i2}a with initial marking(M, M)
to fire two consecutive eventsa. MarkingsM are here represented as pairs(M(i1), M(i2))
since the process term only contains the placesi1 and i2 (we assumei1 6= i2). A proof us-
ing rule (||| R) contains redundancy since the only difference between the newly generated
correctness assertions is their marking. Both, process term and HML-formula stay the same.
Thus, an obvious improvement is to consider correctness assertions with sets of markings.
Then the example from above can be derived more efficiently:

∗

` {i1}a ||| {i2}a : {(D, D)} : true
(true R)

` {i1}a ||| {i2}a : {(D, M), (M, D)} : 〈a〉true
(||| R)

` {i1}a ||| {i2}a : (M, M) : 〈a〉〈a〉true
(||| R)

7. Verifying the Example

After loading proof goal (1) into the KeY prover its verification proceeds without further
user interaction. Automated application of rules is in KeY controlled by so-calledstrategies,

Table 1. Examples of HML correctness assertions

netCSP termS initial markingM(o) HML formula φ truth value

a
{o}

E 〈a〉true tt

M 〈a〉true ff

a
{o}

|||
{o}

b E 〈a〉〈b〉true tt

M 〈a〉〈b〉true ff

M 〈b〉true tt

V. Klebanov, et al. / Verification of JCSP Programs 215

Figure 8. The KeY prover after loading the verification example

Table 2. Number of rule applications and invocations of JCSP primitives for evaluation of polynomials

Polynomials: 1 2 3

Rule applications in total 23551 40647 57047

One2OneChannelInt.read 19 34 49

One2OneChannelInt.write 17 32 47

new ZeroBufferInt 5 5 5

new BufferInt 1 1 1

Parallel.run 1 1 1

which in each proof situation select a particular rule that is supposed to be applied next.
For the example we are using a strategy that is implemented asdescribed in Sect. 6, which
eventually reduces (1) to the tautologytrue, proving that the stated property holds.

7.1. Shape of the Proof

During execution of the polynomial evaluation program essentially two phases can be iden-
tified: In a first part, the network is set up, i.e., JCSP processes are spawned and channels are
created. The symbolic execution thereof needs about 7000 applications of rules and results in
a CSP process term that contains 6 JCSP processes—the gates that make up the network as
well as the network itself—and 6 further subterms modeling the JCSP channels according to
the concept from Sect. 4. On the JavaCard level, this corresponds to 22 objects being created,
of which 2 are arrays and the remaining 20 mostly belong to (the internal implementation) of
channels.

The second phase covers the execution of the initialized network; the number of rule
applications necessary in this part depends on how many polynomials are evaluated in par-
allel (see Tab. 2). Further processes are not spawned in thispart of the proof, which means
that the shape of the CSP term is mostly preserved. Consequently, the proof gives a good
presentation of the step-wise execution of the network—similarly to what can be achieved
with a debugger—that is moreover completely symbolic. The second phase ends with a se-
quence of eventsjcspIntEvent(p1(x1)), . . . , jcspIntEvent(pk(xk)) raised by an instance of
classPropagator and this completes the whole proof.

Tab. 2 gives an overview about the JCSP primitives that are invoked during the progres-
sion of the network. Thewrite primitive is called less often thanread, as some of the
gates are already waiting for their next input (in vain) whenthe proof is closed.

The verification for one polynomial takes about 30min on a common desktop computer
(Pentium4, 2.6GHz), and is mostly determined by the currently limited performance of KeY

216 V. Klebanov, et al. / Verification of JCSP Programs

when dealing with very large terms like the netCSP process term during symbolic execution.
More generally, the required time depends on each of the fourcomponents of the verification
system of Sect. 2. For mostly deterministic programs, symbolic execution (parts (1), (2), (3))
will be the dominating factor, which scales essentially linear in the code length, whereas for
indeterministic programs the exploration of the state space (part (4)) becomes more costly.
We currently only have a naive implementation of the techniques described in Sect. 6, which
makes the verification time climb to about 5h when treating two or three polynomials simul-
taneously in our example.

8. Related Work

To our knowledge, this paper describes the first verificationsystem for Java programs in
combination with the JCSP library.

An approach that has already been investigated, in contrast, is the automatic generation
of JCSP programs from verified “pure” CSP implementations, as for instance [14]. For JCSP
systems that happen to be created this way it can be expected that verification is much simpler
and can be handled more efficiently, as interpretation of Java code is avoided. We have not
compared performance empirically as we consider the two problems too different.

A further direction is the modeling of native Java concurrency features in CSP as a basis
for verification, which is performed in [13]. Again, this idea differs significantly from the
concept underlying our system.

The EVT system [2] provides a verification environment for Erlang programs based
on the first-orderµ-calculus. Similar to our method is the usage of temporal correctness
assertions in EVT, and we expect that many results derived inthe EVT project—particularly
concerning induction for theµ-calculus and compositional verification—can also be useful
for verifying JCSP programs.

A combination of Petri nets and process algebra is investigated in [3], and the alge-
bra netCSP is designed following this idea to a considerabledegree. Apart from that, the com-
parison of process algebra and Petri nets has a long tradition, see for instance [7]. A trans-
lation of CSP process terms to Petri nets comparable to our calculus for netCSP is outlined
in [11] (but without integrating the two formalism into one language and giving a rewriting
system), where the Petri net representation is used for analysis purposes.

9. Conclusion

We have presented a complete verification approach for concurrent Java or JavaCard pro-
grams written using the JCSP library. The method has been implemented on top of the
KeY system for deductive verification of Java programs and can be applied for ensuring prop-
erties of real-world programs, with the restriction that concurrency in the programs must
be implemented purely using JCSP functionality instead of the corresponding native Java
features (like shared memory).

Our verification system consists of four different layers that are mostly orthogonal to
each other, and that can all be realized or developed furtherindependently. The basis is a cal-
culus for the symbolic execution of sequential Java programs, which in our implementation
is the already existing (complete) symbolic interpreter ofthe KeY prover. This interpreter is
lifted to the concurrent case by embedding sequential Java programs in CSP terms. In order
to make the execution of JCSP primitives possible, we add CSPmodels of JCSP classes and
methods: currently a selection of different JCSP channels,alternation, and the most important
JCSP process combinator (parallelism) are supported.

V. Klebanov, et al. / Verification of JCSP Programs 217

These first two components enable an incremental translation of JCSP programs to CSP
terms. The behavior of such terms (resp. the represented processes) is explored stepwise by a
calculus for CSP, for which we have chosen a rewriting systemthat operates on an extension
of CSP (called netCSP) integrating process algebra with Petri nets. The usage of Petri nets
at this point avoids an early total ordering of execution steps and has in our implementation
found to be by far more efficient than rewriting systems establishing tree-shaped normal
forms of CSP terms.

In a last phase, the behavior of the CSP process is checked against a temporal specifica-
tion. That issue is discussed for the particularly simple logic HML in this paper, which can
be regarded as basis for practically more relevant temporallogics like theµ-calculus.

Apart from the interpreter for sequential Java, we considereach of the components of
the verification system as target of future work: 1. Complement the set of supported JCSP
features and verify that the CSP models are faithful; 2. improve the netCSP calculus by
integrating Petri net reachability analysis, which can be used to simplify process terms; 3. add
complete support for more powerful temporal logics and induction; 4. investigate how our
method can be combined with compositional verification techniques as for instance described
in [6].

Acknowledgement

We thank W. Ahrendt, R. Bubel, W. Mostowski and A. Roth for important feedback on drafts
of the paper. Likewise we are indebted to the anonymous referees for helpful comments.

References

[1] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Martin Giese, Reiner Hähnle,
Wolfram Menzel, Wojciech Mostowski, Andreas Roth, SteffenSchlager, and Peter H. Schmitt. The KeY
tool. Software and System Modeling, 4:32–54, 2005.

[2] T. Arts, G. Chugunov, M. Dam, L. å. Fredlund, D. Gurov, andT. Noll. A tool for verifying software
written in erlang.Int. Journal of Software Tools for Technology Transfer, 4(4):405–420, August 2003.

[3] J.C.M. Baeten and T. Basten. Partial-order process algebra (and its relation to Petri nets). In J. Bergstra,
A. Ponse, and S. Smolka, editors,Handbook of Process Algebra. Elsevier, North-Holland, 2001.

[4] Julian Bradfield and Colin Stirling. Modal logics and mu-calculi: an introduction. In J. Bergstra,
A. Ponse, and S. Smolka, editors,Handbook of Process Algebra. Elsevier, North-Holland, 2001.

[5] Zhiqun Chen.Java Card Technology for Smart Cards: Architecture and Programmer’s Guide. Java
Series. Addison-Wesley, 2000.

[6] M. Dam and D. Gurov. Mu-calculus with explicit points andapproximations.Journal of Logic and
Computation, 12(2):255–269, April 2002. Abstract in Proc. FICS’00.

[7] U. Goltz. On Representing CCS Programs by Finite Petri Nets.Number 290 in Arbeitspapiere der GMD.
Gesellschaft für Mathematik und Datenverarbeitung mbH, Sankt Augustin, 1987.

[8] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.The Java Language Specification. Addison
Wesley, 2nd edition, 2000.

[9] Matthew Hennessy and Robin Milner. On observing nondeterminism and concurrency. InProceedings of
the 7th Colloquium on Automata, Languages and Programming, pages 299–309. Springer-Verlag, 1980.

[10] C. A. R. Hoare.Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs, NJ, 1985. &
0-13-153289-8.

[11] Krishna M. Kavi, Frederick T. Sheldon, and Sherman Reed. Specification and analysis of real-time
systems using CSP and Petri nets.International Journal of Software Engineering and Knowledge
Engineering, 6(2):229–248, 1996.

[12] Donald E. Knuth.The Art of Computer Programming: Seminumerical Algorithms. Addison-Wesley,
1997. Third edition.

[13] P.H.Welch and J.M.R.Martin. A CSP Model for Java Multithreading. In P. Nixon and I. Ritchie, editors,
Software Engineering for Parallel and Distributed Systems, pages 114–122. ICSE 2000, IEEE Computer
Society Press, June 2000.

218 V. Klebanov, et al. / Verification of JCSP Programs

[14] V. Raju, L. Rong, and G. S. Stiles. Automatic Conversionof CSP to CTJ, JCSP, and CCSP. In Jan F.
Broenink and Gerald H. Hilderink, editors,Communicating Process Architectures 2003, pages 63–81,
2003.

[15] Wolfgang Reisig.Petri nets: an introduction. Springer-Verlag New York, Inc., 1985.
[16] A. W. Roscoe.The theory and practice of concurrency. Prentice-Hall, 1998.
[17] Philipp Rümmer. Interactive verification of JCSP programs. Technical Report 2005–01, Department of

Computer Science and Engineering, Chalmers University of Technology, Göteborg, Sweden, 2005.
Available at:http://www.cs.chalmers.se/~philipp/publications/jcsp-tr.ps.gz.

[18] Steve Schneider.Concurrent and Real-Time Systems: The CSP Approach. John Wiley & Sons Ltd., 2000.
[19] Sun Microsystems, Inc., Palo Alto/CA, USA.Java Card 2.2 Platform Specification, September 2002.
[20] P.H. Welch and P.D. Austin.Java Communicating Sequential Processes home page.

http://www.cs.ukc.ac.uk/projects/ofa/jcsp/.

