Communicating Process Architectures 2005 203
Jan Broenink, Herman Roebbers, Johan Sunter, Peter WahchDavid Wood (Eds.)
I0S Press, 2005

Verification of JCSP Programs

Vladimir KLEBANOQV, 2 Philipp RUMMER, P! Steffen SCHLAGER and
Peter H. SCHMITT

aUniversity of Koblenz-Landau, Institute for Computer &cee
D-56070 Koblenz, Germany
bChalmers University of Technology, Dept. of Computer S@iemd Engineering,
SE-41296 Gothenburg, Sweden
¢Universitat Karlsruhe, Institute for Theoretical Compugzience,
D-76128 Karlsruhe, Germany

Abstract. We describe the first proof system for concurrent prograrsethan Com-
municating Sequential Processes for Java (JCSP). Tharsgstends a complete cal-
culus for the JavaCard Dynamic Logic with support for JCSRictvis modeled in
terms of the CSP process algebra. Together with a novelefficalculus for CSP, a
rule system is obtained that enables JCSP programs to baetegesymbolically and
to be checked against temporal properties. The proof systenbeen implemented
within the KeY tool and is publicly available.

Keywords. Program verification, concurrency, Java, CSP, JCSP

1. Introduction

Hoare’s CSP (Communicating Sequential Processes) [IB]L&, a language for modeling
and verifying concurrent systems. CSP has a precise andastigmal semantics. On the
other hand, the semantics of concurrency in Java [8] (tls)eiadonly given in natural lan-
guage. Synchronization is based on monitors and data ésgirimarily performed through
shared memory; it has turned out that engineering complegrams using these concepts
directly is very difficult and error-prone. In addition, Vféezation of such programs is ex-
tremely difficult and existing approaches do not scale ug.Wéle JCSP approach [13,20]
tries to overcome the difficulties inherent to Java thretidiefines a Java library that offers
functions corresponding to the operators of CSP. Usindys&SP library functions for con-
currency and communication (i.e., no explicit creationfo€tids and no communication via
shared memory) allows to verify the (concurrent) behavidhe Java program on the CSP
level instead of dealing with monitors on Java level. Sitneeuse of JCSP only makes sense
with a strict discipline not to resort directly to Java comency features, this should not be a
severe restriction.

The paper is organized as follows. In Sect. 2 we give an ogenraf the architecture
of our verification calculus which is presented in detail BcS 4—-6. In Sect. 3 we present
a JCSP implementation which evaluates polynomials anceses a running example. The
verification of some properties of the running example iscdbed in Sect. 7. Finally, in
Sect. 8 we relate our verification system to existing apgresaand draw conclusions in
Sect. 9.

!Correspondence to: Philipp Riimmer, Dept. of Computer Sei@nd Engineering, Chalmers University
of Technology, 412-96 Gothenburg, Sweden. Tel.: +46 (0)81028; Fax: +46 (0)31 165655; E-mail:
philipp@s. chal ners. se.

204 V. Klebanov, et al. / Verification of JCSP Programs

JavaCard calculus (1)| CSP model of JCSP (2)
CSP calculus (3)
Calculus for modal logic correctness assertions (4)

Figure 1. Architecture of the verification calculus
2. Architecture of Verification Calculus

Our calculus allows to derive truth of temporal correctreessertions of the kin8: ¢, where
Sis a process term angla formula of some modal logic. The intended semantics istheat
process described [&has the property or, in more technical term§describes the Kripke
structureg is evaluated in. Our approach is not limited to a particuladal logic. E.g., in
the implementation we use an extended version of HML endacligh a least-fixed point
operator, which allows to express the liveness-propertypmeed for the running example
presented in Sect. 3. However, in order to explain our ambroa this paper we restrict
ourselves to plain Hennessy-Milner-Logic (HML) [9] becaud its simplicity.

An important part of our proof system is the calculus for thegpam logic JavaCard Dy-
namic Logic (JavaCardDL) that is developed in the KeY projgr JavaCard [19,5] roughly
corresponds to the Java programming language omittingdisrand is mainly used for pro-
gramming smartcardsThe KeY tool is a system for deductive verification of JavaiJano-
grams, respectively of Java programs without threads.

Fig. 1 shows the architecture of the verification systemcwizionsists of four compo-
nents. These correspond to the four stages of the main agigincloop:

1. The first stage symbolically executes JavaCard statenuerit a JCSP library call is
reached. This is performed by the standard KeY calculus [1].
Due to our assumptions that allow only explicit inter-pre&&€ommunication, there
is no interference between sequential process code. Theség calculus from the
KeY tool can thus be taken without modification. From a CSHpoi view pieces of
sequential Java code can be seen as processes that protjuiceeonal events.

2. The second part—operating in parallel with (1)—replabesICSP library calls within
the program by their CSP models (see Sect. 4).

3. Stage 3 is a rewriting system, which transforms the pt&sn into a normal form
that allows to easily deduce the first steps of the processSeet. 5).

4. Finally, in stage 4, temporal correctness assertiongakiated with respect to the
possible initial behaviors of the process term (see Sect. 6)

As an important aspect concerning interactive provingaadiation of the considered JCSP
programas a wholeto a different formalism does never take place. Insteadh edche
components works as “lazy” as possible, and all layers piggther in an interleaved manner.

3. Verification Example

In order to illustrate the programs that can be handled byvetification system we start

with describing a simple application, an implementatiorHoirner’s rule [12] in the JCSP

framework. The program only makes use of some of the basi® IGSses; other function-
ality like processing of integer streams, which is also pted by JCSP, is re-implemented
to obtain a self-contained system.

1JavaCard lacks some more features of Java, e.g. floating pombers and support for graphical user-
interfaces, but also offers support for transactions, twigmot available in Java.

V. Klebanov, et al. / Verification of JCSP Programs 205

i mport jcsp.lang.*;

abstract class BinGate
i npl enents CSProcess {
protected Channel I nputlnt inputO, inputl;
prot ect ed Channel Qut putlnt output;
public BinGate
(Channel I nputlnt inputO,
Channel I nputlnt inputl,
Channel Qut put | nt output) {

this.inputO0 = inputO;
this.inputl = inputl,;
t hi s. out put = out put;

}
}

cl ass Adder extends BinGate {
publ i c Adder
(Channel I nputlnt inputO,
Channel I nputlnt inputl,
Channel Qut put I nt output) {
super (inputO, inputl, output);
}
public void run () {
while (true)
output.wite (inputO.read () +
inputl.read ());

class Multiplier extends BinGate {
public Multiplier
(Channel I nputlnt inputO,
Channel I nputlnt inputl,
Channel Qut put I nt output) {
super (inputO, inputl, output);
}
public void run () {
while (true)
output.wite (inputO.read () *
inputl.read ());

}

}

class Prefix inplenents CSProcess {
private int val ue, num

private Channel | nputlnt input;
private Channel Qut putlnt output;
public Prefix
(int val ue,
int num
Channel I nputlnt input,
Channel Qut put | nt output) {

this.value = value;
this.num = num
this.input = input;
t hi s. out put = out put;

}
public void run () {
while (num- !'=0)
output.wite (val
while (true)
output.wite (input.read ());
}

}

ue);

cl ass Propagator inplements CSProcess {
private int del ay, num
private Channel | nputlnt input;
private Channel Qut putlnt output;
publ i c Propagat or
(int del ay,

i nt num

Channel | nput I nt i nput,

Channel Qut put I nt out put) {

this.delay = delay;
this. num = num
this.input = input;
thi s. out put = output;
}
public void run () {
while (delay-- '=0)
output.wite (input.read ());
while (num- !=0)
CSPr ocessRai seEvent I nt (i nput.read());
}
}
cl ass Repeat inplenents CSProcess {
private int[] val ues;
private Channel Qut putlnt output;
publ i ¢ Repeat
(int[] val ues,
Channel Qut put I nt out put) {
this.val ues = val ues;
this.output = output;
public void run () {
int i =0;
while (true) {
output.wite (values[i]);
i =(i +1) %values.length;
}
}
}

public class Pol yEval
i mpl enments CSProcess {
private int[] val ues;
private int degree, num
private Channel | nputlnt coeff;
publ i c Pol yEval

(int[] val ues,
int degr ee,
int num

Channel | nputlnt coeff) {

this.val ues = val ues;
this. num = num
this. degree = degree;
this.coeff = coeff;

}
public void run () {

One2OneChannel Int[] ¢ =
One2OneChannel I nt.create (5);
new Parallel (new CSProcess[]
{ new Repeat (val ues, ¢[0]),
new Prefix (0, num c[4], c[1]),

new Adder (c[1], coeff, c[2]),
new Propagat or (degree*num num
cl2], c[3]),
new Mul tiplier(c[O], c[3], c[4]) })
.run ();

}

Figure 2. The source code of the verified system for evaluating polyiatsm(JCSP library classes, in-
terfaces, and method calls are in bold). Apart from the spemill CSPr ocessRai seEvent | nt, all

classes can directly be compiled using the JCSP library @] a recent version of Java. The state-

mentCSPr ocessRai seEvent | nt (v) makes the symbolic JavaCard interpreter implemented inrgesé
an observable CSP evejaspintEvenfv), but does not have any further effects. For actually exagutie
network, one can for instance replace the statementSyiit em out . printl n(v).

206 V. Klebanov, et al. / Verification of JCSP Programs

The evaluation of polynomials is carried out by a network of 5¢!1
gates performing basic operations on streams of integdrghvare
connected using synchronous JCSP channels. The code obrtine ¢
plete system is given in Fig. 2 and introduces the followitagses: |
Adder , Mul ti pl i er: Processes that compute point-wise sums and
products of integer streams. In contrast to similar clatisasare pro- <%
vided by JCSP, pairs of input values are read sequentiatlynatin parallel, which makes
the code a lot shorter and does not affect the functionafith@® network in the present set-
ting. Prefi x: A process that first outputs a fixed integer vatluentimes, and afterwards
copies its input stream to the outpu®r opagat or : A process that copies the firdel ay
input values to its output, and that for the subsequeminput valuesy; raises an observable
eventjcspintEventv;). We use such “logging” events to make the result of the coatjmuit
visible to the formulap of a correctness asserti@: ¢. Repeat : A process that creates
a periodical stream of integers by repeatedly writing thieteots of an array to its output.
Pol yEval : The complete network that evaluates a number of polynonmiglarallel. The
computation result is made observable by an instané® opagat or .

In principle, the cyclic network can be used to evaluate &itrary number of polyno-

mialspi(X) = ¢ X"+ -- -+ Cip (fori = 1,...,K) of the same degraein parallel. Therefore,
the input vectok lists the positionsx, . . ., X¢) that are examined, and the network is fed the
coefficients of the polynomials through the streeoeff= (¢, Cop, ..., Cin_1,Con1, - - .)-

The gates’r ef i x andPr opagat or have to be set up with the correct numhkend de-
green of the polynomials.

For the purpose of this paper, however, we restrict the ¢gpafcthe network by choos-
ing its channels to be zero-buffered. As each of the nodaslysable to store one intermedi-
ate result at a time, set up like this the system is bound toupcas soon as more than three
polynomials are evaluated at the same time. This can be#ssboth by actually executing
the Java program and by symbolically simulating the netwmikg our system. Symbolic
execution with up to three polynomials is described in Séct.

3.1. Verified Property of the System

When evaluating polynomial, ..., px) at points(xi,...,X), the network is expected
to produce, after a finite number of (hidden) execution stapsequence of distinguished
eventgcspintEventp; (X)), . . .,jcspintEventpk(x)). In terms of temporal logic, this is cap-
tured by the requirement that on every computation pathteeadiy this sequence occurs and
is only preceded or interleaved with unobservable stepstdinporal formula describing this
behavior is subsequently denoted watrentuallyp; (x;), . . ., p«(X)) and can for instance be
expressed in the modatcalculus [4]? Verification of this particular kind of properties is for
a fixed number of polynomials of fixed degree possible withndtictive proof arguments;
for handling polynomials of unbounded degree, which leadntanbounded runtime of the
network, induction would be necessary. Since we have nanhyestigated the usage of in-
duction techniques (as in [6]) in combination with our veation system, we stick to the
simpler scenario and only consider quadratic polynomiathis document.

To set up the verification problem, the coefficients of theypomials are stored in a
buffered JCSP channel, and the network is created with threci@arameters. The resulting
program is judged by the temporal formula, which for evabrabf two polynomials in
parallel leads to the following proof obligation:

2At this point HML is not expressive enough, because the numbemputation steps is unknown. Here we
have enriched HML with a least fixed-point operator borrofvech modalu-calculus. This extension does not
require induction in the calculus.

V. Klebanov, et al. / Verification of JCSP Programs 207

T(j csp. | ang. One2OneChannel I nt coeff =

new j csp. | ang. One20neChannel Int (new jcsp.util.ints.Bufferint (10));
coeff.wite(cl2); coeff.wite(c22);
coeff.wite(cll); coeff.wite(c2l); (1)
coeff.wite(cl0); coeff.wite(c20);
new Pol yEval (newint[] { x1, x2 }, 2, 2, coeff).run ();)

eventuallyc12 - x1* + ¢11-x1 +¢10, c22-x2*+¢21-x2 +¢20)

4. CSP Model of JCSP

Process algebras like CSP allow processes to be assembigdalgebraic connectives, for
instance using interleaving compositifin(we assume familiarity with the CSP notation).
JCSP follows this concept roughly, but offers communicatiseans (particularly channels)
that only remotely correspond to the operators of CSP. Ragsingating the behavior of
JCSP programs we need a more accurate modeling of JCSP smmaiich we achieve
by a (non-trivial) translation of JCSP primitives into C3MRis approach follows ideas from
[13], though we are not aiming towards a complete replicatd multi-threaded Java but
concentrate on JCSP.

The usage of its own interaction features is not stricthoerdd by JCSP—for practical
reasons—and programs can be written in an “unclean” mamasciecumvent JCSP by using
shared memory or similar native Java functionality. Sinegbslieve that such programs are
not in line with the principles of JCSP, we regard them ashiped. The following models of
JCSP operations are simplified insofar as they do not prédiatorrect behavior of JCSP and
Java for ill-shaped programs. Using such a simplified selcg&fur verification is beneficial
because it shortens proofs, but in practice it has to be cammgrhted with checks that prohibit
the treatment of ill-shaped programs right from the stadrbdgh we have not yet investigated
how to realize such tests, it seems possible to reach a suffigiecision by employing static
analysis or type systems to this end (in a completely autednaianner).

Our principal idea for modeling JCSP programs is to cons@®uCSP process term in
which sequential Java code can turn up as subterms (wrappad operatoiT (-)). JCSP
components (such as channels) used to set up the networkndet¢he way in which the se-
quential Java parts are connected. To illustrate this, ibeggs term representing the scenario
of two sequential JCSP processes (implemented as Javapregr 7) that communicate
through a JCSP channel is:

((ide - CHAN) [[ide3]| (T(0) [T(5))) \ ide.> 2)

CHAN: s a process modeling the JCSP channel that interfaces vétbava process@ga),
T(() through messages of the alphabetTo distinguish different channels, messages are
tagged with an identifieid..

4.1. JCSP Processes with Disjoint Memory and their Intexéac

The basis for assembling JCSP systems is to give t&mpsthat wrap Java programs seman-
tics as processes. Therefore, we assume that such a pracesdyinteract with its environ-
ment through the use of JCSP operations; this immediatéd mut shared-memory com-
munication, or any kind of communication that is not modedgglicitly through observable
events raised by («).

For defining the behavior &f(«), we equip Java with an operational semantics in which
each execution step can 1. transfamrmto a continuationy’, 2. change the memory state of
the procesd («), or 3. makeT («) engage in an evertthat is observable by the rest of the
system (the three possible outcomes do not exclude each.difesigning transition rules
for symbolically executing Java code based on this sengntie were able to start with

208 V. Klebanov, et al. / Verification of JCSP Programs

the operational semantics of sequential Java that is imgaésd in the KeY system, which
essentially means that we only had to add rules for item 3c@umring 1 and 2, the behavior
of a program follows [19,8].

In JavaCardDL, memory contents are represented duringytihédaic execution of a
program using so-calledpdateswhich are lists of assignments to variables, attributes an
arrays. Terms and formulas can be preceded with updatesl@n tw construct the memory
contents that are in effect. With updates, for instancetrdmgsition rule for side-effect free

assignments is
T({x=e; ...}) ~ {x:=e}T{...})

The KeY system covers the complete JavaCard language ayeddarts of Java in terms of
such transition rules.

Observable events are raised by a prodésg only when JCSP operations (like channel
accesses. wite(...)) are executed. The protocol that is followed for commumndcat
through a channel is described in Sect. 4.3; a simpler dperetthe logging command that
is used in Sect. 3 to make results visible. Such operatiansandled with additional rules
that insert CSP connectives as necessary:

T({CSProcessRai seEventInt(v); ...}) ~ jcspintEventv) — T({...})
4.2. Class Parallel

The most basic way of assembling processes in JCSP is treRdasl | el for parallel
composition. Modeling this feature in CSP is rather simpéssuming disjoint memory for
processes—and boils down to inserting the interleavingaipg||. The magic operation that
has to be trapped iBar al | el . run, because this is the place where new processes are
actually spawned. For an objegear al | el that is set up with children processes, ...,

pn, the effect of the un-method can be modeled in CSP as follows:

T({parallel.run(); ...}) ~
(T{pL.run(); H - T{pn.run(); H): T -)

Sequential composition is used to make the parent process continue its execution af-
ter termination of the children. Because memory conterdgsstored in updates in front of
termsT(«), each of the processes that are created will inherit the mewfothe parent
process, but will consecutively operate on a copy of that orgmwrite access of the pro-
gramspi are not visible to other processes.

4.3. Channels

We model the different kinds of channels that are providethbyJCSP library—which differ
in the way data is buffered and have different access atibitra-following ideas from [13].
As already shown in Eg. (2), the behavior of a channel is satedl by an explicit routing
proces<CHANthat is attached to a Java process as a slave. As a startinig Wweiadopted
the CSP model from [13] of a zero-buffered and synchronoasweél (Fig. 3):

LEFT = write? msg— transmit! msg— ack— LEFT
RIGHT = ready— transmit? msg— read! msg— RIGHT

ONE20ONECHANNEL = (LEFT [[transmitX] RIGHT) \ transmit® (3)

V. Klebanov, et al. / Verification of JCSP Programs 209

Our implementation contains further channel

models, for instance an extended version of the="l T el [readmsg
model shown here that also supports the JCSP altey- LEFT transmit.msg RIGHT
nation operator. Channels with bounded bufferin

(as used in the example Fig. 2) can be handled b ONE20ONECHANNEL

the system as well. However, a complete set of CSEyyre 3. Model of a zero-buffered channel
characterizations for the JCSP channels, together

with a systematic verification that the models faithfullpresent the actual JCSP library is
still to be developed.

The JCSP operations for creating and accessing channetgyane realized by trans-
lating them to CSP connectives. Channels are created bgatilhg a new channel iden-
tifier id; (which in our implementation is just the reference to theatrd object of
classOne2OneChannel) and by spawning the appropriate routing process:

T({c=new One2neChannel (); ...}) ~
((ide : ONE2ONECHANNE) [[ide. = | ({c = ide}T({. . . }))) \ ide.®

The Java process can then interact with the channel acga@ancertain protocol, which for
the zero-buffered channel looks as follows.

T({c.wite(o);...}) ~ idc.writelmsg — idc.ack— T({...})
T({o=c.read();...}) ~» idc.ready— idc.read?msg — {o:=...}JT({...})

Because of the disjoint-memory assumption it is necessaentode the complete in-
formation that messages contain as some tasyg, which we have so far implemented for
integers (in combination with the JCSP channels for integieat for instance are used in
Fig. 2). Treating arbitrary objects is possible through ipalations of updates and will be
added to the proof system in a later version.

5. CSP calculus

The gist of evaluating HML-assertions for processes is ¢kdiin events can or have to be
fired in a given state. It is thus crucial to obtain, for theqass term at hand, the summary of
events that it can fire in the next step and the correspondogeps continuations. This goal
is usually achieved by rewriting the process term into aatertormal form, from which this
information can be syntactically gleaned.

When working with a naive total-order semantics, a typicglleration (rewriting) of a
process term (here the interleaving of two processes) likéshis:

a—Pl[lb-Q ~ a—(Pllb-QUOb—(@a—P|lQ

The subterm® andQ are duplicated, and in general the term size increases erfialty.

On the other hand, Petri nets have been used in the past tgpgicesses a partial-
order semantics (also called step semantics) [3]. The m@baph avoids a total ordering
of independent events, which helps containing the statosixm. The representation of a
transition system as a net graph is also usually more conpanta tree. Following this
tradition, we combine Petri nets and conventional procassd into one formalism (we call
it netCSP), which allows succinct reasoning. We model CS#tsvas net transitions, and
the evolution of the net marking corresponds to the deowvatif adjacent processes that are
reached when a process performs activated execution steps

210 V. Klebanov, et al. / Verification of JCSP Programs

netCSP terms are built-up incrementally from the converti€SP process terms by the
rewriting system outlined in the following. The incremdnta “lazy”, manner of exploration
allows to have Java programs inside processes, since fetiseane not Turing-complete. It
is the first (to our knowledge) rewriting system for efficigntreating combined process
representations from conventional ones, and for expldheg behavior.

5.1. Monotonic Petri nets

Petri nets (see [15] for an introduction) are a formal anqbgfa
ically appealing model long used for modeling non-seqa¢ptio- - ,
L . . _Figure 4. Life cycle of a
cesses. To model CSP process behavior in a faithful and&rfflcblace marking
way we introduce a slightly modified version of Petri netsjalh
we callmonotonic Petri net€Every place in such a net is in one of the three followingestat
empty (E), marked (M), or dead (D). A transitibnf a monotonic Petri net is callezhabled

for a markingM (a mapping from places to states), if all its input plaseare marked and
all its output placesut are empty:

M(in(t)) € {M} A M(out(t)) C {E}
An enabled transitiohcanfire leading to a new marking, which for a plapés

D if pein(t)
Mnew(p) = M if pe out(t)
M(p) otherwise

Thus, a marking of a place can only evolve in monotonic pregjom as depicted in Fig-

ure 4. This allows far-reaching estimations on the behayitine net (e.g. places depending
on dead places are blocked forever). Another immediate avaldble consequence of the
above net semantics is the fact that every non-isolateditram can fire at most once, just
as any particular CSP event can only be raised once. Fisallge monotonic nets are easily
translated to standard 1-safe Petri nets, all common araahniques are still available.

5.2. netCSP: Combining Nets and Process Terms

The combination of conventional process terms and Petsi isedescribed algebraically by
enriching the set of usual CSP operators with the followowy f

'P Token consumption: this term attaches a CSP proPessthe place of
the net. The execution @ is now causally dependent onlf i is marked
with E thenP is currently blockedP is not blocked ifi is marked with M.
Then execution oP consumes the token inlf i is marked with D therP
is blocked forever (and can be removed). In lieu of a singke@l a set of
places can turn up. In this case a token is consumed from plexyg.

'a The transition operator expresses that a CSP evéentaised by the term,
whilst a causal dependency token is consumed from placel placed in
placeo. Again, sets of places can play the rola ahdo.

plv] : P The causal state operator sets the marking of the glaceP to valuev
(which is one of E, M, or D).

P|L[X]R| Q This consruct is a “bookkeeping” version of the standardlpelism opera-
tor P || X]| R, see Section 5.3.4.

V. Klebanov, et al. / Verification of JCSP Programs 211

The new operators are initially introduced by the rewritagygtem, which transforms conven-
tional CSP terms into the combined representation. Thisitieg system is described in the
following section.

5.3. Rewriting System For Exploring Process Behavior

5.3.1. The Desired Normal Form

The rewriting system presented in this section transforr@SR or a netCSP term into the
following normal form (together with an implied markimd):

e | e | R (NF)

where'ka, % are enabled transitions, and the remaindéas blocked w.r.t.M, i.e., cannot
raise an event at the current stage. The latter conditiotbearecked by a simple syntactic
criterion onM due to the benign properties of monotonic nets describedeabo

The rewriting system achieves the normal form (NF) by pglliransitions out of the
scope of the leading operator and moving them towards theofdbe term. Since terms are
finite, this procedure is guaranteed to terminate.

Example 1 Rewriting the channel routing proce€NE2ONECHANNEILthat is defined in
Sect. 4.3, Eq. (3) to normal form yields the following temafidq are initially empty):
C = ready™ || write? msg® ||

({p} (transmit' msg— - - -) |[transmitX]| {9 (transmit? msg— -++)) \ transmitX

(.

R (currer;trly blocked)

In graphical representationready ——() @ (O=— write ? msg
Y q

The first steps of the proce€sare thus eithereadyor write 7 msg

5.3.2. Translating Events (Prefix Operator)

Events are modeled as transitions of the Petri net. Firiregtidnsi-
at—()— . .)
@ tion corresponds naturally to the process’ engagement @vant. This

Figure 5. CSP events transformation is captured by the following rule:
as net transitions

a—P ~ pE:@®]| ®™p),pnewinP

In practice, the rewriting strategy would, sensibly, s&pplying this rule at the leftmost
possible position in a term.

5.3.3. Translating the Choice Operator

The choice operator also lends itself to a natural repraient
®<—@—>@ in the Petri net process framework. This is achieved by theviing

Figure 6. Nondetermi- rule:

nistic choice

POQ ~ pM]: (P ™Q), pnewinPandQ

212 V. Klebanov, et al. / Verification of JCSP Programs

5.3.4. Translating the Parallelism Operator

The behavior of the parallelism opera®i{ X || R varies with the synchronization ¥tfrom
total synchronization of two processd? | Q) to interleaving P || Q). Interleaving has a
special place within this scale as it introduces no depetidsrbetween its operands. It is
treated separately in the next section.

Here, in contrast, we assume that the synchronizatiorXgstnot empty. For events
included inX we identify “matching” transitions in both operands and fge them outside
of the scope of the parallelism operator. Since removingsiteons out of the scope loses
vital information, it is necessary to do some additional daeping. This is achieved with
two lists of already worked-off transitions (“bufferd”)andR, which are part of the extended
operator[L[X]R]. In the beginning, our rewriting system replaces the paliath operator by
this variant with the buffers initially empty:

PIIX]Q ~ PI0X]0]Q

The main rewriting step then records every (synchronizeobked-off transition from an
operand in the corresponding buffer:

a® || (PILIXR]Q) ifagX

PILMRY ('a°l1Q) ~ § | (PILXRIQ) ifacx

whereR := RW {iao} andU is an interleaving of transitions, which arises from megdaf
with all transitions of the same name in bufter

U — . H| iUi|aoUo|
"a% e L

The stopprocess can stand in for an em@y and a symmetrical rule can be given for the
left operand.

Example 2 We continue Example 1 and complement te&€rwith a processeady— Q that
accesses the channel for reading. By repeatedly applysgule for handling parallelism,
pending events are added to the buffers of the parallelissradgr, and it is deduced that the
whole system can engage in evesadyas its first step. The buffer contents are underlined.

C|[2] (ready— Q) ~» -+ ~ Tr[E]: (C (2] (ready™ || {r}Q))

s e e T[E] (ready{p’r} Il (R ready™, write ? msg® [=]ready"! | {r}Q)>

In the following net diagram, buffered transitions are dedowith dashed boxes:

write ? msg %Q\ [ready .
- - [
1 AR O RO write7msg,
ready 4 ~ |ready| P q

:
a0 | rea

V. Klebanov, et al. / Verification of JCSP Programs 213

ot -

Figure 7. Interleaving of processes is easy

5.3.5. Translating Interleaving

The interleaving composition of two processAg||(B) builds a “base case” of the rewriting
system. It has a very natural Petri net representation,athetconcurrency inherent to Petri
nets. This waA || B can be translated with the nets #dandB simply written side by side.
Care should be taken though while connecting to other psesedn this case the interface
places have to be duplicated, as well as the connectingticarss This is described with the
rule shown in Fig. 7. Due to lack of space we refrain from fdfynstating the rule and refer
to [17] where a straightforward but lengthy formulation igem.

5.3.6. Further CSP Operators

The CSP operators for labeling, hiding, and message pa@&smg ? X — P) are also treated
by the system, but omitted here for space reasons.

5.3.7. Correctness of the Rewriting System

We have shown the correctness of our rewriting system, kydingeloping a coalgebra-based
denotational semantics of the process algebra at handd(lo&sBoscoe’s SOS [16]). Then
we have proved that our rewriting system preserves the mgariiprocess terms relative to
this semantics. This result is documented in [17].

6. Evaluation of Temporal Correctness Assertions

In this section we consider generalized correctness assedf the formS: M : ¢ whereS
is a netCSP-ternM its initial marking, andp is a formula of some modal logic. Here we use
HML for simplicity reasons, but more expressive logics likeporal logic op-calculus can
be handled as well.

The syntax of HML is defined by the grammar

Forpme = true| - Foram | Foryme A FOrame | <EV€nj§F0rHM|_

whereEventranges over a set of events. The meaning of the Boolean ciive®eis as usual;
formula (a)¢ holdsiff the concerned process, by engaging in an eaergaches a state, in
which ¢ holds.

Tab. 1 shows some HML correctness assertions and theirvalties. Two of the cor-
rectness assertions evaluate to ff. The reason is that mdases place is already marked
and, as a consequence, evactannot be fired (since firingrequires place to be empty).

6.1. Evaluation of netCSP Terms in Normal Form

The rules of the calculus presented in Sect. 5 transform @Sfetterm into the normal
form (NF) and a corresponding markiivy (implied):

g % ||--- || "a,™ || R, andRis blocked w.r.tM

that is an efficient syntactical representation of the gmsdirst events the process may fire.
Now calculus rules for evaluating HML correctness assestioan be applied. We use a

214 V. Klebanov, et al. / Verification of JCSP Programs

Gentzen-style sequent calculus. Sequents are of thelform A wherel’ and A are multi-
sets of correctness assertions. The semantics of a segubat the conjunction of the cor-
rectness assertions on the left of the sequent symbdaiplies the disjunction of the asser-
tions on the right.

The semantics of a sequent calculus rule is that if the peagif.e., the sequents above
the horizontal line) can be derived in the calculus then trelusion (i.e., the sequent below
the line) can be derived as well. Note, that in practice seyuges are applied from bottom to
top. The following rule allows to evaluate HML correctnessextions. Applied from bottom
to top, it produces a number of new correctness assertions détve continuations of the
process that have to be examined subsequently.

P\ a=ba("a® |- "a IR) : (M+(i00) : @, A
K=1,...,
(ikvok)leEnr(]M)
_ _ (IIR)
P e (fa® [l] e I R) M (b, A

The rule considers all transitioiag which are enabled, i.e., input places are marked and
output places are emptyig, o) € En(M)). The expressioM + (ix, 0k) denotes the new
marking after transitiomy has fired.

As an example we derive the HML correctness assertion

{1l g I {iz}g . (M, M) : (a)(a)true

expressing that there is a possibility for the proc&da || 2}a with initial marking (M, M)

to fire two consecutive events MarkingsM are here represented as pdiké(i;), M(iz))
since the process term only contains the plagemdi, (we assume; # iy). A proof us-
ing rule (|| R) contains redundancy since the only difference betweem#éwly generated
correctness assertions is their marking. Both, processdad HML-formula stay the same.
Thus, an obvious improvement is to consider correctnesstasss with sets of markings.
Then the example from above can be derived more efficiently:

*

L fiidg I {iz} g . {(D,D)} : true

- Uda || (2ta : {(D,M), (M, D)} : (a)true
L fiidg I {i2}g . (M, M) : (a)(a)true

(trueR

7. Verifying the Example

After loading proof goal (1) into the KeY prover its verificat proceeds without further
user interaction. Automated application of rules is in Kentrolled by so-calledtrategies

Table 1. Examples of HML correctness assertions

netCSP tern$ initial markingM(0) HML formula¢ truth value
{0} E

a ajtrue tt

ajtrue ff

al™ Il oy Ytrue tt
)

(
a)(b)true ff
bytrue tt

=EIm|Z

V. Klebanov, et al. / Verification of JCSP Programs 215

= Ki KeY -- Prover = 8 A
File Yiew Proof Options Tools Help

Autoresume -
> CSP E strategy | £, Run SIMPLIFY | | | Goal Back [Z] Hide closed subtrees

User Constraint |
Proof Goals | |

Proof] =f’{}

3 Proof Tree 8 C start(true).

: {start}
R FEN CoAL —

{|rCurrent Goal R polyEval-nonlock

=0

josp. lang. One20neChannelInt coeff =new josp.lang.OnezOnechannelInt (new josp.util.dnts BufferInt C1003;
coeff.write (coeffial;

coeff.write (coeffzhl;

coeff write (coefflal;

coeff.write (coefflhl;

coeff.write (coeffla);

coeff write (coeffihl;

new PolyEval © new 1ntll { wala, valb 3, 2. 2,

coeff).run O;

: 1300
| ¢ ewentually Ilcons Caddlint Gl Jint (vala, addlintdwl Jintdvala, addlintdd, coetf2al), coefflal), coeffla), Ilcons

BN

2l D |
K$3> Integrated Deductive Software Design: Ready

Figure 8. The KeY prover after loading the verification example

Table 2. Number of rule applications and invocations of JCSP priregifor evaluation of polynomials

Polynomials: 1 2 3
Rule applications in total 23551 40647 57047
One20neChannel I nt. read 19 34 49
One2OneChannel Int.wite 17 32 47
new Zer oBuf f er | nt 5 5 5
new Bufferlnt 1 1 1
Parall el . run 1 1 1

which in each proof situation select a particular rule tlsasupposed to be applied next.
For the example we are using a strategy that is implementdéssibed in Sect. 6, which
eventually reduces (1) to the tautologye, proving that the stated property holds.

7.1. Shape of the Proof

During execution of the polynomial evaluation program esisly two phases can be iden-
tified: In a first part, the network is set up, i.e., JCSP preessre spawned and channels are
created. The symbolic execution thereof needs about 7Q@izafpons of rules and results in
a CSP process term that contains 6 JCSP processes—thehgdtesmke up the network as
well as the network itself—and 6 further subterms modelimggICSP channels according to
the concept from Sect. 4. On the JavaCard level, this carrelsgpto 22 objects being created,
of which 2 are arrays and the remaining 20 mostly belong ®iftternal implementation) of
channels.

The second phase covers the execution of the initializegarkt the number of rule
applications necessary in this part depends on how manypuolials are evaluated in par-
allel (see Tab. 2). Further processes are not spawned ipahi®f the proof, which means
that the shape of the CSP term is mostly preserved. Consiyube proof gives a good
presentation of the step-wise execution of the network-#ariy to what can be achieved
with a debugger—that is moreover completely symbolic. Té@ad phase ends with a se-
quence of eventgspIntEventp; (X)), ..., jcspIntEventpk(x)) raised by an instance of
classPr opagat or and this completes the whole proof.

Tab. 2 gives an overview about the JCSP primitives that asekied during the progres-
sion of the network. Thew i t e primitive is called less often thanead, as some of the
gates are already waiting for their next input (in vain) wiies proof is closed.

The verification for one polynomial takes about 30min on a mm desktop computer
(Pentium4, 2.6GHz), and is mostly determined by the culyeimtited performance of KeY

216 V. Klebanov, et al. / Verification of JCSP Programs

when dealing with very large terms like the netCSP process tiring symbolic execution.
More generally, the required time depends on each of thecmmponents of the verification
system of Sect. 2. For mostly deterministic programs, syimlegecution (parts (1), (2), (3))
will be the dominating factor, which scales essentiallgéinin the code length, whereas for
indeterministic programs the exploration of the state sfgaart (4)) becomes more costly.
We currently only have a naive implementation of the techeggdescribed in Sect. 6, which
makes the verification time climb to about 5h when treating twthree polynomials simul-
taneously in our example.

8. Related Work

To our knowledge, this paper describes the first verificaigstem for Java programs in
combination with the JCSP library.

An approach that has already been investigated, in contsabie automatic generation
of JCSP programs from verified “pure” CSP implementatioagpainstance [14]. For JCSP
systems that happen to be created this way it can be expéetiacetification is much simpler
and can be handled more efficiently, as interpretation oh dade is avoided. We have not
compared performance empirically as we consider the twblenos too different.

A further direction is the modeling of native Java concucsefeatures in CSP as a basis
for verification, which is performed in [13]. Again, this idealiffers significantly from the
concept underlying our system.

The EVT system [2] provides a verification environment fotaBg programs based
on the first-ordens-calculus. Similar to our method is the usage of temporatembness
assertions in EVT, and we expect that many results derivétkieV T project—particularly
concerning induction for th@-calculus and compositional verification—can also be usefu
for verifying JCSP programs.

A combination of Petri nets and process algebra is invastigan [3], and the alge-
bra netCSP is designed following this idea to a consideddaeee. Apart from that, the com-
parison of process algebra and Petri nets has a long tnadgee for instance [7]. A trans-
lation of CSP process terms to Petri nets comparable to dcumloa for netCSP is outlined
in [11] (but without integrating the two formalism into oreniguage and giving a rewriting
system), where the Petri net representation is used foysiegdurposes.

9. Conclusion

We have presented a complete verification approach for emmulava or JavaCard pro-
grams written using the JCSP library. The method has beetemgnted on top of the
KeY system for deductive verification of Java programs amdosaapplied for ensuring prop-
erties of real-world programs, with the restriction thahcorrency in the programs must
be implemented purely using JCSP functionality insteachefdorresponding native Java
features (like shared memory).

Our verification system consists of four different layeratthre mostly orthogonal to
each other, and that can all be realized or developed furidependently. The basis is a cal-
culus for the symbolic execution of sequential Java progtammich in our implementation
is the already existing (complete) symbolic interpretethaf KeY prover. This interpreter is
lifted to the concurrent case by embedding sequential Jangrgams in CSP terms. In order
to make the execution of JCSP primitives possible, we add@8&drels of JCSP classes and
methods: currently a selection of different JCSP chana#txnation, and the most important
JCSP process combinator (parallelism) are supported.

V. Klebanov, et al. / Verification of JCSP Programs 217

These first two components enable an incremental translaftidCSP programs to CSP
terms. The behavior of such terms (resp. the representedgses) is explored stepwise by a
calculus for CSP, for which we have chosen a rewriting sysherhoperates on an extension
of CSP (called netCSP) integrating process algebra with Rets. The usage of Petri nets
at this point avoids an early total ordering of executiopstand has in our implementation
found to be by far more efficient than rewriting systems dithimg tree-shaped normal
forms of CSP terms.

In a last phase, the behavior of the CSP process is checkatsbtgaemporal specifica-
tion. That issue is discussed for the particularly simpggddIML in this paper, which can
be regarded as basis for practically more relevant tempagads like theu-calculus.

Apart from the interpreter for sequential Java, we conse#ah of the components of
the verification system as target of future work: 1. Complentee set of supported JCSP
features and verify that the CSP models are faithful; 2. owerthe netCSP calculus by
integrating Petri net reachability analysis, which can §edto simplify process terms; 3. add
complete support for more powerful temporal logics and atidu; 4. investigate how our
method can be combined with compositional verification mégphes as for instance described
in [6].

Acknowledgement

We thank W. Ahrendt, R. Bubel, W. Mostowski and A. Roth for immgant feedback on drafts
of the paper. Likewise we are indebted to the anonymousaeseior helpful comments.

References

[1] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Ridizubel, Martin Giese, Reiner Hahnle,
Wolfram Menzel, Wojciech Mostowski, Andreas Roth, Stef@ahlager, and Peter H. Schmitt. The KeY
tool. Software and System Modeling32-54, 2005.

[2] T. Arts, G. Chugunov, M. Dam, L. &. Fredlund, D. Gurov, anhdNoll. A tool for verifying software
written in erlang.Int. Journal of Software Tools for Technology Trans##):405-420, August 2003.

[3] J.C.M. Baeten and T. Basten. Partial-order procesdadg@nd its relation to Petri nets). In J. Bergstra,
A. Ponse, and S. Smolka, editorandbook of Process Algehrilsevier, North-Holland, 2001.

[4] Julian Bradfield and Colin Stirling. Modal logics and neafculi: an introduction. In J. Bergstra,

A. Ponse, and S. Smolka, editorsandbook of Process Algehrilsevier, North-Holland, 2001.

[5] Zhiqun Chen.Java Card Technology for Smart Cards: Architecture and Paiogmer’s Guide Java
Series. Addison-Wesley, 2000.

[6] M. Dam and D. Gurov. Mu-calculus with explicit points aagproximationsJournal of Logic and
Computation12(2):255-269, April 2002. Abstract in Proc. FICS'00.

[7] U. Goltz. On Representing CCS Programs by Finite Petri N&tsmber 290 in Arbeitspapiere der GMD.
Gesellschaft fur Mathematik und Datenverarbeitung mbkBAugustin, 1987.

[8] James Gosling, Bill Joy, Guy Steele, and Gilad Brachae Java Language Specificatiohddison
Wesley, 2nd edition, 2000.

[9] Matthew Hennessy and Robin Milner. On observing nonaheiteism and concurrency. IRroceedings of
the 7th Colloquium on Automata, Languages and Programpmages 299-309. Springer-Verlag, 1980.

[10] C. A. R. Hoare.Communicating Sequential ProcessBsentice-Hall, Englewood Cliffs, NJ, 1985. &
0-13-153289-8.

[11] Krishna M. Kavi, Frederick T. Sheldon, and Sherman Re&&ukcification and analysis of real-time
systems using CSP and Petri ndtgernational Journal of Software Engineering and Knovged
Engineering 6(2):229-248, 1996.

[12] Donald E. Knuth.The Art of Computer Programming: Seminumerical Algorithdddison-Wesley,
1997. Third edition.

[13] P.H.Welch and J.M.R.Martin. A CSP Model for Java Mitgading. In P. Nixon and I. Ritchie, editors,
Software Engineering for Parallel and Distributed Systepagjes 114-122. ICSE 2000, IEEE Computer
Society Press, June 2000.

218 V. Klebanov, et al. / Verification of JCSP Programs

[14] V. Raju, L. Rong, and G. S. Stiles. Automatic Conversiéi€SP to CTJ, JCSP, and CCSP. InJan F.
Broenink and Gerald H. Hilderink, editorSommunicating Process Architectures 20p8ges 63-81,
2003.

[15] Wolfgang Reisig.Petri nets: an introductionSpringer-Verlag New York, Inc., 1985.

[16] A. W. Roscoe.The theory and practice of concurrendyrentice-Hall, 1998.

[17] Philipp Rummer. Interactive verification of JCSP pragys. Technical Report 2005-01, Department of
Computer Science and Engineering, Chalmers Universityeohiiology, Géteborg, Sweden, 2005.
Available at:ht t p: / / ww. cs. chal ners. se/ ~phi | i pp/ publications/jcsp-tr.ps.gz.

[18] Steve SchneideConcurrent and Real-Time Systems: The CSP Appra#aim Wiley & Sons Ltd., 2000.

[19] Sun Microsystems, Inc., Palo Alto/CA, USAava Card 2.2 Platform SpecificatipBeptember 2002.

[20] P.H. Welch and P.D. Austinlava Communicating Sequential Processes home.page
http://ww. cs. ukc. ac. uk/ proj ects/ofaljcsp/.

