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Abstract. What if the CSP observer were lazy? This paper considerotiegquences
of altering the behavior of the CSP observer. Specificallyatimplications would
this new behavior have on CSP’s traces? Laziness turns dngt fouseful metaphor.
We show how laziness permits transforming CSP into a modéiuef concurrency
(i.e., non-interleaved trace semantics). Furthermogentiion of a lazy observer sup-
ports tenets of view-centric reasoning (VCR): parallelrgsdi.e., true concurrency),
multiple observers (i.e., different views), and the paisjitof imperfect observation.
We know from the study of programming languages that lazingesot necessarily
a negative quality; it provides the possibility of greatgpession and power in the
programs we write. Similarly, within the context of the Unifg Theories of Program-
ming, a model of true concurrency — VCR — becomes possibledognijiting (even
encouraging) the CSP observer to be lazy.
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Introduction

This paper presents and explores the interrelationshipwf ileas: Unifying Theories of
Programming (UTP), true concurrency, CSP, and lazy obgsenvdJTP is a body of work,
conceived of and initiated by Hoare and He [1], whose goakiasone of the grand chal-
lenges of computer science. True concurrency refers to atatipnal models that provide
abstractions for reasoning directly about simultaneitgamputation. CSP, originally devel-
oped by Hoare [2] and more recently by Roscoe [3], modelswwoancy via multiple Com-
municating Sequential Processes. However, CSP abstregytiaie concurrency through the
nondeterministic sequential interleaving of simultarsdpwbserved events by an Olympian
observer. Finally, lazy observation refers to altering le@avior of the CSP observer in a
manner to be described later in this section. The resultatydbserver is support for view-
centric reasoning (VCR) within CSP, and a place for VCR vatliTP.

Scientific theories serve many purposes, including thetald describe, simulate, and
reason about problems of interest, and to make predictibms.same purposes and goals
exist within computer science; within a relatively shortipd of time, many computational
abstractions have emerged to address the specificatiotermeptation, and verification of
systems. The Unifying Theories of Programming (UTP) [1Mides a framework that more
closely aligns computer science with other, more tradgiatientific disciplines. Specifi-
cally, UTP represents a grand challenge for computer seidmat is found in other mature
scientific disciplines — that of achieving a unification of ltjle, seemingly disparate theo-
ries.

The notion of reasoning about a computation being equivdteneasoning about its
trace of observable events is central to the elegance — ditgl-ubf CSP. CSP further exists
as a theory within UTP. The metaphor of an observer recorduants, one after another,
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in a notebook supports CSP’s approach of observation-b@ssdning. True concurrency
Is abstracted away, we are told, because the observer ncostl remultaneously occurring

events in some sequential order. The argument follows thttd end, any such sequential
interleaving is as good as any other. But there exist ocnasichen reasoning about true
concurrency is either necessary or desirable (cf. Sectjoit 4hould be noted that CSP,

despite not being a model of true concurrency, has been @t@ously successful approach
for designing and reasoning about properties of concuggstems.

The final interrelated idea presented in this paper is wieaatlihor has come to charac-
terize adazy observationand refers to altering the assumed behavior of the CSP\arser
The traditional CSP observer is perfect, and laziness weaéin to be a departure from
perfection, rather than a route toward true concurrencyexfgain why this is not the case,
consider first that CSP allows that the observer may witnessi&neously occurring events
during a computation. Next, recognize that when forced tusetially interleave simulta-
neous events, the observer must decide the order of intergeeSuch decision takes work,
and thus presents an opportunity for laziness: it is easiezdord the events as witnessed,
occurring in parallel, than to choose which event to recafdie another. Furthermore, lazi-
ness provides a plausible explanation for imperfect olagenv. the observer being too lazy
to record every event. Lazy observation, and the poterdrahdditional, possiblymperfect
observers, makes view-centric reasoning (VCR) within C&8$5ible.

The major contribution of this paper addresses one of theymamaining challenges
identified by Hoare and He, that of including a theoryrak concurrencyvithin the unifying
theories of programming. CSP is already described as ayttié@rogramming within UTP;
by incorporating laziness into the CSP observer's behawerpresent VCR, a variant of
CSP that supports true concurrency, within UTP.

1. Background

Some background beyond a basic familiarity with CSP is megltio frame this paper’s con-
tributions within the unifying theories of programmingrs$ti we give a brief overview of

VCR and provide some motivation for true concurrency. Nexd,discuss the unifying the-
ories of programming; first broadly, then one part more djpatly. The scope of UTP is

vast and much work remains. The goal of the broad discussitmintroduce the uninitiated
reader to some of the motivations for UTP. The more specificudision is intended to help
focus the reader on the particular area within UTP this papdeavors to build upon.

1.1. Origins of View-Centric Reasoning

View-centric reasoning was originally developed by thenautas a meta-model for models
of concurrency, in the form of a parameterized operatioeadlantics [4]. The idea was to
identify parameters whose specification would, in différ@mmbinations, collectively serve
to instantiate VCR for reasoning about seemingly diversegoency paradigms. To identify
such parameters requires distilling the essence of caseyrfrom its many possible forms.
What would be the right abstractions to achieve the goal @&reegal model of concurrency?
Fortunately, CSP soon provided the author with a tremenbead start. While attempt-
ing to develop a taxonomy of concurrency paradigms, witketigs that ranged from sequen-
tial (as a degenerate form of parallelism) to shared memoegsage passing, and generative
communication (i.e., the Linda model), the author discedeCSP. What resonated was the
idea of observation-based reasoning, and Hoare’s coatetttat reasoning about the trace
of a computation’s observable events is equivalent to réagabout the computation itself.
Traces and the metaphor of an observer recording eventsyscthur provided the ini-
tial inspiration for VCR. The idea of accounting for viewstodices arose due to simulta-
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neously reading a book containing Einstein’s essays omivigya[5]! After reading about
relativity, the observer’'s behavior of interleaving sitameous events in some arbitrary or-
der wasn’t very satisfying (though CSP’s success in modelancurrency is undeniable!). It
seemed reasonable (i.e., possible in the real world) thlére could be one observer, there
could be more; and due to the consequences of relativity,riteey not all record events in
the same sequence. VCR sought to account for multiple dessltservers and their corre-
sponding views. It was from this history that VCR'’s para#eént traces emerged. Past work
to develop a denotational semantics for VCR can be found ittSet al. [6,7].

One of VCR'’s goals was to permit reasoning about properfipsiallel and distributed
computing that require knowledge of true concurrency. Wheould such examples be
found? One example involving the Linda predicate operatien previously known to be
ambiguous in the case of failure — is discussed in Sneitlal. [8], and in the appendix of
this paper. The perceived ambiguity of failed Linda pretisaesulted from reasoning about
their meaning based on interleaved trace semantics. Anek@nple that proves easier to
describe with true concurrency than interleaving is thePAR design pattern, previously
presented in Smith[7], and also discussed briefly in the aghigef this paper.

1.2. Unifying Theories of Programming

Hoare and He'&Jnifying Theories of Programmind] is a seminal body of work in theoret-
ical computer science. The interested reader is encoutagsddy UTP. The purpose of this
section is to cover enough concepts and terminology of UTRipport our later discussions
of true concurrency in Section 3. Section 1.2.1 introducegepts and terminology relevant
to theories of programming, and Section 1.2.2 considerpdhtgcular class of programming
theories known as reactive processes.

1.2.1. The Science of Computer Programming

The authors of UTP characterize the science of computergnuming as a new branch of
science. They introduce new language capable of descrdbisgrvable phenomena, and a
formal basis for devising, conducting, and learning frorpexxments in this realm. Since the
scope of UTP includes trying to relate disparate computatimodels, the approach involves
distilling existing models down to their essence, to féaié comparison. In other words UTP
advocates an approach akin to finding the common denomiwaem dealing with fractions.
In the case of theories of programming, the common basioimparison includes alphabets,
signatures, laws, and normal forms. Let us elaborate boeflgach of these abstractions.

Since the science of programming is a science, it is a realraxjperimentation where
observations can be made. These observations are obssevabls; to name these events we
use an alphabet. Elements of an alphabet are the primitit® @ihcomposition; for a given
theory of programming (or programming language), the ridesomposition are known its
signature. A normal form is a highly restricted subset of egrogramming language’s sig-
nature that has the special property of being able to imphénie rules of that language’s
complete signature. Intuitively, one could think of conapd that translate high-level lan-
guages to a common low-level language; such a low-leveldlagg (machine instructions) is
a normal form. It should be noted that for a given languageynmarmal forms are possible,
and in practice, one normal form may be preferable to analbeending on the task at hand.

For a theory of programming to be useful, it must be capabferofiulating statements
that may be either true or false for a given program. Suclestaints are called predicates.
Laws are statements involving programs and predicates adusot all predicates are true,
not all laws are true for all predicates. For a given law, praigs that are true are called
healthy in which case the law is calledhealthiness conditiarin Section 3 we will discuss
healthiness conditions for CSP and VCR.
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1.2.2. Reactive Processes and Environment

One class of programming theories presented in UTP are #weis ofreactiveprocesses.
The notion of environment is elucidated early in this préagon, as environment is essential
to theories of reactive processes, examples of which iecC@8P and its derivative models.
Essentially, the environment is the medium within whichgasses compute. Equivalently,
the environment is the medium within which processes maydsemwed. The behavior of
a sequential process may be sufficiently described by matirsgrvations only of its in-
put/output behavior. In contrast, the behavior of a reactixocess may require additional
intermediate observations.

Regarding these observations, Hoare and He borrow ingigntihodern quantum phys-
ics. Namely, they view the act of observation to be an intevsadetween a process and one
or more observers in the environment. Furthermore, thes roleobservers in the environ-
ment may be (and often are) played by the processes thermmsAlv®ne would expect, an
interaction between such processes often affects the loelwdthe processes involved.

A process, in its role as observer, may sequentially reduoedriteractions in which it
participates. Recall participation includes the act olobation. Naturally, in an environment
of multiple reactive processes, simultaneous interastioay be observed. CSP recording
conventions require simultaneous events to be recordeahie sequence, including random.
Hoare and He thus definetice as the sequence of interactions recorded up to some given
moment in time.

2. Related Work

Lawrence has developed two significant CSP extensions, ¢§Rind HCSP [10]. CSPP
presents an acceptance semantics for CSP based on behBMi&B extends CSPP with,
among other abstractions, true concurrency. True conueyre HCSP is represented with
bags, similar in spirit to VCR’s parallel events: both ahstions may be recorded in a com-
putation’s trace as an alternative to sequential intenhgavn addition, HCSP’s denotational
semantics also provide for the explicit specification ofg@sses participating in truly con-
current events; VCR merely supports the recording of su@npmena in the trace, should
such true concurrency happen to be observed during congut&inally, while the HCSP
extensions include true concurrency, the goals of CSPP @&gPHiffer from those stated for
VCR in this paper. CSPP and HCSP were developed to addresbalienges of hardware
and software codesign; no reference to UTP appears.

Sherif and He [11,12] develop a timed model @ircus, which extends the CSP model
given in UTP with a definition of timed traces, andepandselation over two timed traces
to determine subsequence relationships. In this modeddtimaces are sequences of observa-
tion elements (tuples), each element representing oneumheSimultaneous events are the
result of processes synchronizing both on a set of everdghartime unit those events occur.
This model appears to support true concurrency, but irtiagdg, defines parallel composi-
tion in terms of UTP’s merge parallel composition, which deterministically interleaves
disjoint events. This work was mentioned by one of this papmmonymous referees, and
warrants further study. It appears these timed traces maybkar to VCR’s views, though it
is still not clear to the author whether the timed model@ancus supports multiple, possibly
imperfect views.

3. VCR: CSP with True Concurrency

This section contains the substance of this paper; ouribatibn to the Unifying Theories
of Programming. VCR is a model of true concurrency, and aereston of CSP. To date, CSP
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Table 1. What is observable in the CSP theory of programming

Abstraction Symbol  Meaning

stable state ok boolean indicating whether process has started
ok’ boolean indicating whether process has terminated
waiting state  wait boolean which distinguishes a processguiescent

states from its terminated states
when true process is initially quiescent

wait’ when true all other dashed variables are intermediate
observationsfinal observationsotherwise

trace tr sequence of actions that takes place before a process
is started

! sequence of all actions recorded so far

tr

refusal set ref the set of events initially refused by a process
ref’ the set of events refused by a process in its final state

has been drawn within the unifying theories of programming, not VCR. Furthermore,
this author is not aware of any other model of true concugrdeay., petri nets) that has
been drawn into UTP, making this paper’s contribution gigant. In Section 3.1 we present
and describe the healthiness conditions for CSP processatentified within UTP. Next, in
Section 3.2, we discuss the differences between tradltio8& traces and VCR-compliant
CSP traces. Finally, in Section 3.3 we consider the diffeesrbetween CSP traces and VCR
traces, and what impact these differences have on the mesthconditions of CSP, as we
wish to preserve CSP’s healthiness conditions for VCR.

3.1. Healthiness Conditions for CSP

We briefly describe the meaning of the healthiness conditionCSP processes given in Ta-
ble 2. The alphabet symbols used to express the CSP heakluoeditions are introduced in
Table 1, A more complete treatment of CSP healthiness donditan be found in UTP [1].

Since CSP processes are a special case of reactive prodedde£ contains healthiness
conditions for both reactive processes (R1-R3) and CSP1SSHP5). Condition R1 merely
states that the current value of a process’s trace must b&tansen of the trace’s initial
value. This may be a little confusing until one considers #hv@active process may not be the
only process within the computation being observed. FobagssP, the difference between
the current value oP’s trace,tr’, and that trace’s initial valuer, represents the sequence of
events thaP has engaged in since it began execution. This is essentibly R2 states, by
specifying that the behavior &f after any initial trace is no different than the behavioPof
after the empty trace.

The healthiness condition R3 is a little more complicated not terribly so. R3 is meant
to support sequential composition. If we wish to compBsadQ sequentially, we wouldn’t
expect to observe events frahbeforeP reaches its final state. Therefore, R3 states that if a
processP is asked to start while its predecessor is in an intermediate, the state of tHe
remains unchanged.

All reactive processes satisfy healthiness conditionsHR81-€SP processes satisfy R1—
R3, but in addition, must also satisfy CSP1 and CSP2. CamditCSP3—-CSP5 (and others
not included in UTP) facilitate the proving of CSP laws th&Rl and CSP2 alone do not
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Table 2. Healthiness conditions for Reactive processes and CSP

Process Type Law Predicate for programP
Reactive R1 P=P A (tr <tr)

R2 P(tr, tr') = P({),tr" — tr)

R3 P= H{tr,ref,waz‘t} qQwait > P

wherell =4 —ok A (tr <tr') V
ok A (tr' =tr) A+ A (wait’ = wait)

CSP R1- R3
CSP1 P=-0k A (tr<tr') VP
CSP2 P=P; ((ok = ok') A (tr' =tr) A+ A(ref =ref))
CSP3 P=SKIP; P
CSP4 P=P; SKIP
CSP5 P=P|| SKIP

support. Examples of laws include properties of compasjtexternal choice, and interleav-
ing. Again, for a more complete treatment of how these hewdis conditions may be used
to prove such laws, see UTP [1].

At a high level, CSP1 states that we cannot predict the behafia process before
it begins executing. CSP2 states that it is possible to sei@llg compose any proces3
with another proces®, even ifQ hides everything about its execution and does so for an
indeterminate amount of time, so long as it eventually teatés. Such a proce&yis an
idempotent of sequential composition.

While CSP3-CSP5 do not play a specific role in the remaind#tiepaper, a few more
comments may help the intuition of readers less familiahwlTP. Healthiness conditions
CSP3-CSP5 further describe process composition within &&8Pdepend upon refusal sets
of processes. Proces&( [P is employed in the statements of CSP3—-CSP5; retall P
refuses to engage in any observable event, but terminatesdimtely. Moreover, a proceBs
satisfies CSP3 if its behavior is independent of the initéiie of its refusal set. For example,

a — Pis CSP3; similarlya — SKIPis CSP4. The meaning behind CSP5 is less obvious; it
is the equivalent of the CSP axiom that states refusal setsudrset-closed. In other words,
a process that is deadlocked refuses the events offered byutronment; it wouldstill be
deadlocked in an environment offering fewer events.

3.2. The Shape of the Trace

From CSP to VCR, the only real change is one of bookkeeping;wih the end, changes
the shape of the traces. Since reasoning about a computatianes to reasoning about its
trace, and the trace is the basis for CSP’s process calatlisghe trace about which we
focus. Furthermore, it is easy to confuse the desire for aifsgegtion of true concurrency
with the ability to observe truly concurrent events duringoanputation, and preserve this
information in the trace.

Within UTP, traces of reactive processes range over segsdnam alphabef of ob-
servable events, which may be expressed via the KleenereldsuThen, to compare traces,
UTP uses the standard relatioasto test equality, and< to represent the prefix property.
In addition, there is a quotient operater operator defined over traces. For example, let
tr tr’ € A*, wheretr = abcde andtr’ = abcde f g. Then the following statements are true:

e tr = tr since equality is reflexive
e tr < tr’ sincetr is a prefix oftr’, and
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e tr' —tr = fg, sincetr’ andtr have common prefixbede.

The UTP representation of traces as words over an alphaleé¢gant. In striving to
augment the unifying theories with a theory of true conauwyewe must change the shape of
the trace sufficiently to represent the parallel events oRykut not so much that we lose the
ability to define the equality=£) and prefix €) relations, or the quotient{) operator. Ideally,
the new definition of a trace will not lose much elegance. Wgrbwith a new definition of
trace, one that supports view-centric reasoning.

Definition 1 (trace) A trace,tr, is a comma-delimited sequence of sequences over alphabet
A, where, ¢ A. Formally:tr € , (A" ,)*

The comma () delimiter provides the ability to index and parse indivatisubsequences, or
words from ¢r. Under this definition, traces begin and end with a commagthpty trace —
represented by a single comma — is a somewhat special cases thile beginning and ending
comma are one and the same.

We pause briefly to discuss view-centric reasoning in liglhis new definition of trace.
Each word intr represents a multiset of observable eveptrdllel eventan VCR termi-
nology). In other words, each word could be rewritten as arynpitation of its letters, since
multisets are not ordered. This notation preserves VCRig\ato distinguish a computa-
tion’s history from its corresponding views. Since we caifl parse the multisets from a
trace, we can consider all possible ROPRarfdomly Ordered Parallel Event®r each mul-
tiset, and all possible views of a trace. A ROPE of a word igpdyrany permutation of any
subset of that word (the subsets reflect the possibility gferrfect observation). So, just as
words are the building blocks for traces, ROPEs are the imgjlolocks for views. For a more
comprehensive treatment of VCR, see Smith, et al. [8].

Given this new definition of trace, it remains to define eqyafirefix, and quotient. To
help, we first define notions of trace length and word indexitlg begin with length. Notice
that the empty trace contains one comma, and all tracesrhaha-word sequences contain
two commas, etc. In general, traces contain one more comametiie number of words in
their sequence. Thus the length of a trace reduces to cguthEnnumber of commas, then
subtracting one. In UTP notation | E means "the subsequence ®bmitting elements
outsideE, and#s means "the length o§.” Composing these two notations, we define the
length of a trace.

Definition 2 (length of trace) The length of a tracetr, denoted| ¢r |, is the number of
comma-delimited words itr. Formally: | tr |= #(tr | {,}) — 1

Next, we define word indexing within a trace — the ability téereto thei’* word of a
trace. In the following definition, the subword functionuets the subsequence of symbols
exclusivelybetween the specified indices (thatusthoutthe surrounding commas).

Definition 3 (i-th word of trace) Given nonempty tracé-, let ¢r[i] denote the i-th word of
tr, where n=| tr | and1 < i < n; and let ¢ denote the index of the i-th commatin where
Co < G < C,. Formally,tr(i] = subword(tr,c¢_1,C)

In the preceding definitior;_; andc; refer, respectively, to the commas just before and
just afterw; in tr. We may now easily define the notions of equality, prefix, amokignt over
the new definition of traces. In the following definition oftejity, the permutations function
returns the set of all permutations of the given word.

Definition 4 (trace equality) Given two tracesyr andtr’, tr = tr’ iff
1.|tr|=|tr'"|,and
2.Vi,1 <i <|tr |, 3w € permutations(tr'[i]) s.t. w= tr[i].
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This definition states that two traces are equal if they agesttime length, and for each
corresponding pair of words from the two traces, one wordtineigqual to some permutation
of the other.

Next, we define the prefix relation for traces, which follovudtly from the preceding
definition of equality.

Definition 5 (trace prefix) Given two traces;r andtr’, tr < tr' iff
1.|tr |=mand| ¢t |= nand m< n; and
2.Vi,1 <i<m,3w e permutations(tr'[i]) s.t. w= tr]i].

This definition states that, given two traces, the first tia@eprefix of the second if the
second trace is at least as long as the first, and for eactspomnding pair of words, up to the
number of words in the first trace, one word must be equal teegmenmutation of the other.

Finally, with the preceding definition of prefix, we can defthe quotient of two traces.
In the following definition of quotient, the tail functionttens the subsequence of the given
trace from the given indexnclusive to the end (that is, includesthe leading comma).

Definition 6 (trace quotient) Given two tracesir andtr’, wheretr < ¢/, m=| tr |, and
n=| tr' |; let ¢, denote the index of the m-th commaith) where ¢ < ¢, < ¢,. The quotient
tr’ — tr = tail(tr', c),

Let's consider some examples to further illustrate this wefinition of trace, and its
associated properties. L&t= {a,b,c,d, e f, g}, tr; = ,ab,cd,, tro = ,ba ,cd efg,,and
trs3 = ,ba ,dc, . Then the following statements are true:

[ ) tletT’landtletTg

o try <iry andtTg < try

® tro —try = ,efg, andiry —trs = efg,
® iry —tr; = , andtr; —trs = ,

3.3. Healthiness Conditions for VCR: Laziness Revisited

We can think of healthiness conditions for VCR in at least ays. First, we defined no-
tions of trace equivalence, prefix, quotient for VCR tra@ag] could substitute the new def-
initions within UTP’s existing healthiness conditions RRI3-and CSP1-CSP2. The revised
healthiness conditions for VCR traces hold, by definitio@R/traces are still traces of pro-
cesses that conform to the healthiness conditions of CS¢egses. This is not surprising,
since initially, all we set out to do was change the CSP olessrbehavior, and the shape
of the resulting traces she records. To this point, VCR hasnothed a single law pertaining
to specification, only observation. The result is a newipetured CSP trace that supports
view-centric reasoning. Of course, the justification fasthpproach of preserving healthi-
ness conditions stems from laziness on the part of the olxssdne to procrastinating the
work of interleaving.

There is another way to think of healthiness conditions f@RY however. The key is
to consider the VCR trace an intermediate trace; one thabedransformed (i.e., reduced)
to a standard CSP trace by interleaving the elements of thet eaultisets, or words, as
we defined them. Using our UTP notation, this involves remguwhe commas from the
VCR trace, and replacing each word with some permutatiotseffito simulate the arbitrary
interleaving the CSP observer would have done. Notice the¢ the commas are removed,
the individual words are essentially concatenated togeyielding a single word oveA*.
This is laziness in the same sense as above, stemming fromb#dever’s reluctance to
interleave simultaneous events.

Let's take a moment to compare these two approaches to pieg&ESP healthiness
conditions. In both cases, a lazy observer has put off th& wbinterleaving simultane-
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ous events while recording the trace of a computation. Thegsses being observed are the
same CSP processes whose events a traditional observer ngoatd, and therefore the CSP
healthiness conditions should be preserved. The two apipesao preserving CSP health-
iness have one thing in common, they both rely on a transfitomaln the first case, the
healthiness conditions themselves are transformed wittdedinitions of trace equality, pre-
fix, and quotient. In the second case, the new trace defingiarewed as an intermediate
state, and transformed into the form of a traditional CSPetrén both cases, the laziness is
resolved when we wish to reason about the computation.

Notice that it isnot always possible to go in the other direction; that is, tramsfa
CSP trace into a VCR trace. The context of which events wdszl@aved, as opposed to
sequentially occurring and recorded, is not availables Shggests there may be properties of
VCR traces that cannot be reasoned about with CSP tracezdnthere are such properties,
and the interested reader can find out more information irtt§rei al. [8].

4. Conclusions and Future Work

This paper begins with a simple conjecture: what if the CS§eoker were lazy? From this
simple conjecture we explored the Unifying Theories of Paogming, Communicating Se-
quential Processes, and View-Centric Reasoning. In theegbaf UTP, CSP is a theory of
programming, but not a theory of true concurrency. The C®Rqss algebra allows simul-
taneous events to occur, but the traditional interleavacktidoes not permit one to reason
directly about simultaneity. The metaphor of lazy obseorat— deferring the work of inter-
leaving — provides a bridge from traditional CSP to a CSP sgports view-centric rea-
soning, thanks to a change in bookkeeping. The CSP spefic@mains unchanged, but
our ability to reason about properties that depend on knibydef true concurrency benefits.

Thanks to Hoare and He's elegant yet powerful use of hea&#siconditions to classify
processes as CSP processes (and for other theories of qrogrg), the work to describe a
theory of true concurrency within UTP focused on the CSPthess conditions, rather than
begin from scratch developing a denotational semantic¥€@R. This was a surprisingly
easy way to draw true concurrency into the Unifying TheooieBrogramming.

More work remains with respect to true concurrency, UTP,@8&. There are probably
more healthiness conditions that need to be defined to refleperties one can reason about
in VCR that one cannot in CSP. Furthermore, there are many r@&kels: Traces, Stable
Failures, Failures/Divergences, and others. In this papemhave considered the impact of
VCR’s parallel event traces on the process calculus of the @8del given in Hoare and
He's UTP.

In addition, there is the challenge of specification regagdrue concurrency. As men-
tioned earlier in Section 3.2, the focus of this paper has lbb@eeobservation rather than spec-
ification of true concurrency. VCR to date has only permittezlpossibility of simultaneous
events in computation, and provided a means to capture tsinaity in its traces when it
occurs. This has proven useful, to be sure. However, thafggadion of true concurrency
would be even more useful (e.g., regarding 1/0-PAR) In addito Lawrence’s HCSP, and
other non-CSP models of true concurrency, providing a thebprogramming within UTP
that permits the specification of true concurrency wouldrtzer important step forward in
support of this grand challenge.

The author is working on algebraic laws for parallel composiand interleaving that
may lead, for example, to a simplified specification for I/@RPand I/O-SEQ. Unlike what
was possible for the work presented in this paper, these a@a/\Will require new theorems
and proofs for VCR processes.
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Appendix: Utility of True Concurrency

In this appendix we give two different examples of the wtibf true concurrency. The first
example concerns Linda predicate operations, which wesevikrto be ambiguous in the
case of failure. The ambiguity, however, was based on r@ag@afout their meaning using
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an interleaving semantics. The second example concerm&xHeAR design pattern, whose
proper use provides guarantees of deadlock freedom. licdlsis, true concurrency permits
more descriptive trace expressions than possible vid@atang. In both cases, the true
concurrency of VCR’s parallel event traces provides a \l@kiabstraction for reasoning
about the problems at hand.

Linda Predicates Ambiguity

The Linda model of concurrency is due to Gelernter [13]. aipdocesses are sequential
processes that interact via a shared associative memownka® Tuple Space (TS). TSisa
container of tuples; a tuple is a sequence of some combimatigalues and/or
value-yielding computations (i.e., Linda processes). gldus either active or passive,
depending on whether all its values have been computede SiBds an associative
memory, tuples armatchednot addressed. Linda is a coordination language congisfin
four basic operations: create a new active tuple (contgiaire or more Linda processes) in
TS, eval (t); place a new passive tuple in T&jt (t); match an existing tuple in TS,

rd(t'); and remove a tuple from TSn(t’). In the case of matching or removing tuples,
only passive tuples are considered; and furthernradét’) andi n(t’) are blocking
operations (in the case where no matching tuple existsaugsexit is not always desirable to
block, non-blocking predicate versionsrad () andi n() were originally proposed by
Gelerntery dp() andi np(), but later removed from the Linda language specificationtdue
the aforementioned ambiguity.

We are now ready to illustrate the ambiguity. Suppose atdheesmoment in time, one
process places a tuple in TS while two other processes attempatch and remove that
tuple, respectively. We represent this scenario notalligree follows:out (t).p1,

rdp(t').p2, andi np(t’).p3. This notation indicates that is about to place a tuplé,in TS
before continuing its behavior as. Similarly, for p2 andp3, which are both about to
attempt to match (where the specified templatevould match tupleé in TS).

Notice the outcome of this interaction point in TS is nond®iaistic, and several
possibilities exist. First, it is possible for both predeaperations to succeed, as well as
fail, since the matching tuple is being placed in TS at theesarstant as the attempts to
match it. It is in some sense both present and not presentsimsiant, rather akin to a
gquantum state of superposition. Next, it is also possitdédhe predicate, but not both,
succeeds in this instant. In this case, consider if it weee tht') that happened to fail. The
failure could be due to the uncertainty properties thatltésam tuplet’s state of
superposition; or it could also be due to the success df ti{g) operation removing it from
TS in the same instant it was placed in TS by ¢he (t) operation, but “before” thed(t')
operation could match it. For such a simply stated scentdu@oe are certainly many
possibilities! Such is the challenge of nondeterminism.

Let’'s focus on one possible outcome. Suppose the Linda tipesavere observable events,
and both predicate operations failed while the matchintgtugas placed in TS. Let a
predicate operation decorated with complement notatidicate a failure to match the
desired tuple. In a VCR trace an observer could thus record:

(..., {out (t),rdp(t)),i np(t)},...)

The CSP observer, witnessing the same outcome, must decatbirary interleaving of
these three observable events. There are six possibleatgrgs, not accounting for
imperfect observation. Not all of the interleavings makesss however. Here are the
possibilities:

1. (..., out (1), rdp(t), i np(t'), ...)
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2. (..., out (t), i np(t), rdp(t’), ...)
3. (..., rdp(t), out (t), i np(t), ...)
4. (..., inp(t), out (t), rdp(t), ...)
5. (..., rdp(t), i np(t'), out (t), ...)
6. (..., inp(t), rdp(t'), out (t), ...)

In particular, the first four interleavings, where the the (t) operation is recorded before
one or both of the failed predicates would be especially eoring. When reasoning about
these traces, there is no context of simultaneity presetvesdnot clear whether the events
in question occurred sequentially, or simultaneously (aack interleaved by the observer).
Only the last two interleavings would make sense in a CSRt\hen reasoning about the
meaning of the failed predicates, it is natural to ask thestjole: "This predicate just failed,
but is there a tuple in TS that matches the predicate’s taeipl&@ut another way, one
should be able to reason about the state of TS at any poing altnace following a Linda
primitive operation. Following a failed predicate, one gliobe able to reason that no
matching tuple exists in TS, but given the possibility oem¢aving — an additional
potential level of nondeterminism — one cannot discern ftbenpossibilities whether a
matching tuple indeed exists!

What just happened? In the presence of interleaving seosattiere are two levels of
nondeterminism that become entangled. The first level istiteome of simultaneous
operations at an interaction point in TS. The second levebofdeterminism is the order of
interleaving, at which point the context of which eventsuweced concurrently is lost.
However, given our scenario and chosen outcome, one camrréasn the given VCR

trace, that after the parallel event in which both Linda prats failed, that matching tuptie
does indeed exist in TS. The meaning in this case of failune i®nger ambiguous, because
the context of the failure occurred within the parallel dyaot at any time after.

I/O-PAR Design Pattern

Additionally, it has been pointed out to the author that supfor true concurrency, while
not requiredfor reasoning about certain design patterns, has the paitemgreatly enhance
the behavioral description of such patterns. I/O-PAR (d@d3EQ) are design patterns
described by Welch, Martin and others in [14,15,16,17]sxample was also discussed in
Smith [7]. The reason these design patterns are appealoeg&isarbitrary topology
networks of I/O-PAR processes are guaranteed to be dedliletdck free, and thus they
are desirable components for building systems (or partgsiéms).

Informally, a proces® is considered I/O-PAR if it operates deterministically aydlically,
such that, once per cycle, it synchronizes in parallel othallevents in its alphabet. For
example, processé&sandQ, given by the following CSP equations, are 1/0-PAR:

P=(a— SKIP ||| b— SKIP): P
Q= (b— SKIP ||| ¢ — SKIP); Q

VCR traces oP andQ are, respectively, all prefixes ofp andtrq:

tro = ({a,b}, {a b}, {a b}, ...)
tro = ({b,c}, {b,c}, {b,c}, ...)

Notice how elegantly these parallel event traces capt@ressence of the behavior of
processe® andQ. If one were to attempt to represent the behavid? ahdQ using
traditional CSP traces, the effort would be more tediousamdbersome.



