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Abstract. What if the CSP observer were lazy? This paper considers the consequences
of altering the behavior of the CSP observer. Specifically, what implications would
this new behavior have on CSP’s traces? Laziness turns out tobe a useful metaphor.
We show how laziness permits transforming CSP into a model oftrue concurrency
(i.e., non-interleaved trace semantics). Furthermore, the notion of a lazy observer sup-
ports tenets of view-centric reasoning (VCR): parallel events (i.e., true concurrency),
multiple observers (i.e., different views), and the possibility of imperfect observation.
We know from the study of programming languages that laziness is not necessarily
a negative quality; it provides the possibility of greater expression and power in the
programs we write. Similarly, within the context of the Unifying Theories of Program-
ming, a model of true concurrency — VCR — becomes possible by permitting (even
encouraging) the CSP observer to be lazy.
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Introduction

This paper presents and explores the interrelationship of four ideas: Unifying Theories of
Programming (UTP), true concurrency, CSP, and lazy observation. UTP is a body of work,
conceived of and initiated by Hoare and He [1], whose goal remains one of the grand chal-
lenges of computer science. True concurrency refers to computational models that provide
abstractions for reasoning directly about simultaneity incomputation. CSP, originally devel-
oped by Hoare [2] and more recently by Roscoe [3], models concurrency via multiple Com-
municating Sequential Processes. However, CSP abstracts away true concurrency through the
nondeterministic sequential interleaving of simultaneously observed events by an Olympian
observer. Finally, lazy observation refers to altering thebehavior of the CSP observer in a
manner to be described later in this section. The result of a lazy observer is support for view-
centric reasoning (VCR) within CSP, and a place for VCR within UTP.

Scientific theories serve many purposes, including the ability to describe, simulate, and
reason about problems of interest, and to make predictions.The same purposes and goals
exist within computer science; within a relatively short period of time, many computational
abstractions have emerged to address the specification, implementation, and verification of
systems. The Unifying Theories of Programming (UTP) [1] provides a framework that more
closely aligns computer science with other, more traditional scientific disciplines. Specifi-
cally, UTP represents a grand challenge for computer science that is found in other mature
scientific disciplines — that of achieving a unification of multiple, seemingly disparate theo-
ries.

The notion of reasoning about a computation being equivalent to reasoning about its
trace of observable events is central to the elegance – and utility – of CSP. CSP further exists
as a theory within UTP. The metaphor of an observer recordingevents, one after another,
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in a notebook supports CSP’s approach of observation-basedreasoning. True concurrency
is abstracted away, we are told, because the observer must record simultaneously occurring
events in some sequential order. The argument follows that in the end, any such sequential
interleaving is as good as any other. But there exist occasions when reasoning about true
concurrency is either necessary or desirable (cf. Section 4). It should be noted that CSP,
despite not being a model of true concurrency, has been a tremendously successful approach
for designing and reasoning about properties of concurrentsystems.

The final interrelated idea presented in this paper is what the author has come to charac-
terize aslazy observation, and refers to altering the assumed behavior of the CSP observer.
The traditional CSP observer is perfect, and laziness wouldseem to be a departure from
perfection, rather than a route toward true concurrency. Toexplain why this is not the case,
consider first that CSP allows that the observer may witness simultaneously occurring events
during a computation. Next, recognize that when forced to sequentially interleave simulta-
neous events, the observer must decide the order of interleaving. Such decision takes work,
and thus presents an opportunity for laziness: it is easier to record the events as witnessed,
occurring in parallel, than to choose which event to record before another. Furthermore, lazi-
ness provides a plausible explanation for imperfect observation: the observer being too lazy
to record every event. Lazy observation, and the potential for additional, possiblyimperfect
observers, makes view-centric reasoning (VCR) within CSP possible.

The major contribution of this paper addresses one of the many remaining challenges
identified by Hoare and He, that of including a theory oftrue concurrencywithin the unifying
theories of programming. CSP is already described as a theory of programming within UTP;
by incorporating laziness into the CSP observer’s behavior, we present VCR, a variant of
CSP that supports true concurrency, within UTP.

1. Background

Some background beyond a basic familiarity with CSP is required to frame this paper’s con-
tributions within the unifying theories of programming. First, we give a brief overview of
VCR and provide some motivation for true concurrency. Next,we discuss the unifying the-
ories of programming; first broadly, then one part more specifically. The scope of UTP is
vast and much work remains. The goal of the broad discussion is to introduce the uninitiated
reader to some of the motivations for UTP. The more specific discussion is intended to help
focus the reader on the particular area within UTP this paperendeavors to build upon.

1.1. Origins of View-Centric Reasoning

View-centric reasoning was originally developed by the author as a meta-model for models
of concurrency, in the form of a parameterized operational semantics [4]. The idea was to
identify parameters whose specification would, in different combinations, collectively serve
to instantiate VCR for reasoning about seemingly diverse concurrency paradigms. To identify
such parameters requires distilling the essence of concurrency from its many possible forms.
What would be the right abstractions to achieve the goal of a general model of concurrency?

Fortunately, CSP soon provided the author with a tremendoushead start. While attempt-
ing to develop a taxonomy of concurrency paradigms, with varieties that ranged from sequen-
tial (as a degenerate form of parallelism) to shared memory,message passing, and generative
communication (i.e., the Linda model), the author discovered CSP. What resonated was the
idea of observation-based reasoning, and Hoare’s contention that reasoning about the trace
of a computation’s observable events is equivalent to reasoning about the computation itself.

Traces and the metaphor of an observer recording events as they occur provided the ini-
tial inspiration for VCR. The idea of accounting for views oftraces arose due to simulta-



M.L. Smith / A Unifying Theory of True Concurrency 179

neously reading a book containing Einstein’s essays on relativity [5]! After reading about
relativity, the observer’s behavior of interleaving simultaneous events in some arbitrary or-
der wasn’t very satisfying (though CSP’s success in modeling concurrency is undeniable!). It
seemed reasonable (i.e., possible in the real world) that ifthere could be one observer, there
could be more; and due to the consequences of relativity, they may not all record events in
the same sequence. VCR sought to account for multiple possible observers and their corre-
sponding views. It was from this history that VCR’s parallelevent traces emerged. Past work
to develop a denotational semantics for VCR can be found in Smith, et al. [6,7].

One of VCR’s goals was to permit reasoning about properties of parallel and distributed
computing that require knowledge of true concurrency. Where would such examples be
found? One example involving the Linda predicate operations — previously known to be
ambiguous in the case of failure — is discussed in Smith,et al. [8], and in the appendix of
this paper. The perceived ambiguity of failed Linda predicates resulted from reasoning about
their meaning based on interleaved trace semantics. Another example that proves easier to
describe with true concurrency than interleaving is the I/O-PAR design pattern, previously
presented in Smith[7], and also discussed briefly in the appendix of this paper.

1.2. Unifying Theories of Programming

Hoare and He’sUnifying Theories of Programming[1] is a seminal body of work in theoret-
ical computer science. The interested reader is encouragedto study UTP. The purpose of this
section is to cover enough concepts and terminology of UTP tosupport our later discussions
of true concurrency in Section 3. Section 1.2.1 introduces concepts and terminology relevant
to theories of programming, and Section 1.2.2 considers theparticular class of programming
theories known as reactive processes.

1.2.1. The Science of Computer Programming

The authors of UTP characterize the science of computer programming as a new branch of
science. They introduce new language capable of describingobservable phenomena, and a
formal basis for devising, conducting, and learning from experiments in this realm. Since the
scope of UTP includes trying to relate disparate computational models, the approach involves
distilling existing models down to their essence, to facilitate comparison. In other words UTP
advocates an approach akin to finding the common denominatorwhen dealing with fractions.
In the case of theories of programming, the common basis for comparison includes alphabets,
signatures, laws, and normal forms. Let us elaborate brieflyon each of these abstractions.

Since the science of programming is a science, it is a realm for experimentation where
observations can be made. These observations are observable events; to name these events we
use an alphabet. Elements of an alphabet are the primitive units of composition; for a given
theory of programming (or programming language), the rulesfor composition are known its
signature. A normal form is a highly restricted subset of some programming language’s sig-
nature that has the special property of being able to implement the rules of that language’s
complete signature. Intuitively, one could think of compilers that translate high-level lan-
guages to a common low-level language; such a low-level language (machine instructions) is
a normal form. It should be noted that for a given language, many normal forms are possible,
and in practice, one normal form may be preferable to anotherdepending on the task at hand.

For a theory of programming to be useful, it must be capable offormulating statements
that may be either true or false for a given program. Such statements are called predicates.
Laws are statements involving programs and predicates. Just as not all predicates are true,
not all laws are true for all predicates. For a given law, predicates that are true are called
healthy, in which case the law is called ahealthiness condition. In Section 3 we will discuss
healthiness conditions for CSP and VCR.
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1.2.2. Reactive Processes and Environment

One class of programming theories presented in UTP are the theories ofreactiveprocesses.
The notion of environment is elucidated early in this presentation, as environment is essential
to theories of reactive processes, examples of which include CSP and its derivative models.
Essentially, the environment is the medium within which processes compute. Equivalently,
the environment is the medium within which processes may be observed. The behavior of
a sequential process may be sufficiently described by makingobservations only of its in-
put/output behavior. In contrast, the behavior of a reactive process may require additional
intermediate observations.

Regarding these observations, Hoare and He borrow insight from modern quantum phys-
ics. Namely, they view the act of observation to be an interaction between a process and one
or more observers in the environment. Furthermore, the roles of observers in the environ-
ment may be (and often are) played by the processes themselves! As one would expect, an
interaction between such processes often affects the behavior of the processes involved.

A process, in its role as observer, may sequentially record the interactions in which it
participates. Recall participation includes the act of observation. Naturally, in an environment
of multiple reactive processes, simultaneous interactions may be observed. CSP recording
conventions require simultaneous events to be recorded in some sequence, including random.
Hoare and He thus define atraceas the sequence of interactions recorded up to some given
moment in time.

2. Related Work

Lawrence has developed two significant CSP extensions, CSPP[9] and HCSP [10]. CSPP
presents an acceptance semantics for CSP based on behaviors; HCSP extends CSPP with,
among other abstractions, true concurrency. True concurrency in HCSP is represented with
bags, similar in spirit to VCR’s parallel events: both abstractions may be recorded in a com-
putation’s trace as an alternative to sequential interleaving. In addition, HCSP’s denotational
semantics also provide for the explicit specification of processes participating in truly con-
current events; VCR merely supports the recording of such phenomena in the trace, should
such true concurrency happen to be observed during computation. Finally, while the HCSP
extensions include true concurrency, the goals of CSPP and HCSP differ from those stated for
VCR in this paper. CSPP and HCSP were developed to address thechallenges of hardware
and software codesign; no reference to UTP appears.

Sherif and He [11,12] develop a timed model forCircus, which extends the CSP model
given in UTP with a definition of timed traces, and anexpandsrelation over two timed traces
to determine subsequence relationships. In this model, timed traces are sequences of observa-
tion elements (tuples), each element representing one timeunit. Simultaneous events are the
result of processes synchronizing both on a set of events, and the time unit those events occur.
This model appears to support true concurrency, but interestingly, defines parallel composi-
tion in terms of UTP’s merge parallel composition, which nondeterministically interleaves
disjoint events. This work was mentioned by one of this paper’s anonymous referees, and
warrants further study. It appears these timed traces may besimilar to VCR’s views, though it
is still not clear to the author whether the timed model forCircus supports multiple, possibly
imperfect views.

3. VCR: CSP with True Concurrency

This section contains the substance of this paper; our contribution to the Unifying Theories
of Programming. VCR is a model of true concurrency, and an extension of CSP. To date, CSP
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Table 1. What is observable in the CSP theory of programming

Abstraction Symbol Meaning

stable state ok boolean indicating whether process has started

ok′ boolean indicating whether process has terminated

waiting state wait boolean which distinguishes a process′s quiescent

states from its terminated states;

when true, process is initially quiescent

wait′ when true, all other dashed variables are intermediate

observations; final observations, otherwise

trace tr sequence of actions that takes place before a process

is started

tr′ sequence of all actions recorded so far

refusal set ref the set of events initially refused by a process

ref
′ the set of events refused by a process in its final state

has been drawn within the unifying theories of programming,but not VCR. Furthermore,
this author is not aware of any other model of true concurrency (e.g., petri nets) that has
been drawn into UTP, making this paper’s contribution significant. In Section 3.1 we present
and describe the healthiness conditions for CSP processes,as identified within UTP. Next, in
Section 3.2, we discuss the differences between traditional CSP traces and VCR-compliant
CSP traces. Finally, in Section 3.3 we consider the differences between CSP traces and VCR
traces, and what impact these differences have on the healthiness conditions of CSP, as we
wish to preserve CSP’s healthiness conditions for VCR.

3.1. Healthiness Conditions for CSP

We briefly describe the meaning of the healthiness conditions for CSP processes given in Ta-
ble 2. The alphabet symbols used to express the CSP healthiness conditions are introduced in
Table 1, A more complete treatment of CSP healthiness conditions can be found in UTP [1].

Since CSP processes are a special case of reactive processes, Table 2 contains healthiness
conditions for both reactive processes (R1–R3) and CSP (CSP1–CSP5). Condition R1 merely
states that the current value of a process’s trace must be an extension of the trace’s initial
value. This may be a little confusing until one considers that a reactive process may not be the
only process within the computation being observed. For a process,P, the difference between
the current value ofP’s trace,tr′, and that trace’s initial value,tr, represents the sequence of
events thatP has engaged in since it began execution. This is essentiallywhat R2 states, by
specifying that the behavior ofP after any initial trace is no different than the behavior ofP
after the empty trace.

The healthiness condition R3 is a little more complicated, but not terribly so. R3 is meant
to support sequential composition. If we wish to composeP andQ sequentially, we wouldn’t
expect to observe events fromQ beforeP reaches its final state. Therefore, R3 states that if a
process,P is asked to start while its predecessor is in an intermediatestate, the state of theP
remains unchanged.

All reactive processes satisfy healthiness conditions R1–R3. CSP processes satisfy R1–
R3, but in addition, must also satisfy CSP1 and CSP2. Conditions CSP3–CSP5 (and others
not included in UTP) facilitate the proving of CSP laws that CSP1 and CSP2 alone do not
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Table 2. Healthiness conditions for Reactive processes and CSP

Process Type Law Predicate for programP

Reactive R1 P = P ∧ (tr ≤ tr′)

R2 P(tr, tr′) = P(〈 〉, tr′ − tr)

R3 P = Π{tr, ref, wait} / wait . P

whereΠ =df ¬ok ∧ (tr ≤ tr′) ∨

ok′ ∧ (tr′ = tr) ∧ · · · ∧ (wait′ = wait)

CSP R1− R3

CSP1 P = ¬ok ∧ (tr ≤ tr′) ∨ P

CSP2 P = P; ((ok ⇒ ok′) ∧ (tr′ = tr) ∧ · · · ∧ (ref ′ = ref))

CSP3 P = SKIP ; P

CSP4 P = P; SKIP

CSP5 P = P ||| SKIP

support. Examples of laws include properties of composition, external choice, and interleav-
ing. Again, for a more complete treatment of how these healthiness conditions may be used
to prove such laws, see UTP [1].

At a high level, CSP1 states that we cannot predict the behavior of a process before
it begins executing. CSP2 states that it is possible to sequentially compose any processP
with another processQ, even ifQ hides everything about its execution and does so for an
indeterminate amount of time, so long as it eventually terminates. Such a processQ is an
idempotent of sequential composition.

While CSP3–CSP5 do not play a specific role in the remainder ofthis paper, a few more
comments may help the intuition of readers less familiar with UTP. Healthiness conditions
CSP3–CSP5 further describe process composition within CSP, and depend upon refusal sets
of processes. ProcessSKIP is employed in the statements of CSP3–CSP5; recallSKIP
refuses to engage in any observable event, but terminates immediately. Moreover, a processP
satisfies CSP3 if its behavior is independent of the initial value of its refusal set. For example,
a → P is CSP3; similarly,a → SKIP is CSP4. The meaning behind CSP5 is less obvious; it
is the equivalent of the CSP axiom that states refusal sets are subset-closed. In other words,
a process that is deadlocked refuses the events offered by its environment; it wouldstill be
deadlocked in an environment offering fewer events.

3.2. The Shape of the Trace

From CSP to VCR, the only real change is one of bookkeeping, which in the end, changes
the shape of the traces. Since reasoning about a computationreduces to reasoning about its
trace, and the trace is the basis for CSP’s process calculus,it is the trace about which we
focus. Furthermore, it is easy to confuse the desire for a specification of true concurrency
with the ability to observe truly concurrent events during acomputation, and preserve this
information in the trace.

Within UTP, traces of reactive processes range over sequences from alphabetA of ob-
servable events, which may be expressed via the Kleene closureA∗. Then, to compare traces,
UTP uses the standard relations= to test equality, and≤ to represent the prefix property.
In addition, there is a quotient operator− operator defined over traces. For example, let
tr, tr′ ∈ A∗, wheretr = abcde andtr′ = abcdefg. Then the following statements are true:

• tr = tr since equality is reflexive,
• tr ≤ tr′ sincetr is a prefix oftr′, and
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• tr′ − tr = fg, sincetr′ andtr have common prefixabcde.

The UTP representation of traces as words over an alphabet iselegant. In striving to
augment the unifying theories with a theory of true concurrency, we must change the shape of
the trace sufficiently to represent the parallel events of VCR, but not so much that we lose the
ability to define the equality (=) and prefix (≤) relations, or the quotient (−) operator. Ideally,
the new definition of a trace will not lose much elegance. We begin with a new definition of
trace, one that supports view-centric reasoning.

Definition 1 (trace) A trace,tr, is a comma-delimited sequence of sequences over alphabet
A, where , /∈ A. Formally:tr ∈ , (A+ ,)∗

The comma (, ) delimiter provides the ability to index and parse individual subsequences, or
words, from tr. Under this definition, traces begin and end with a comma; theempty trace —
represented by a single comma – is a somewhat special case, where the beginning and ending
comma are one and the same.

We pause briefly to discuss view-centric reasoning in light of this new definition of trace.
Each word intr represents a multiset of observable events (parallel eventsin VCR termi-
nology). In other words, each word could be rewritten as any permutation of its letters, since
multisets are not ordered. This notation preserves VCR’s ability to distinguish a computa-
tion’s history from its corresponding views. Since we can still parse the multisets from a
trace, we can consider all possible ROPEs (Randomly Ordered Parallel Events) for each mul-
tiset, and all possible views of a trace. A ROPE of a word is simply any permutation of any
subset of that word (the subsets reflect the possibility of imperfect observation). So, just as
words are the building blocks for traces, ROPEs are the building blocks for views. For a more
comprehensive treatment of VCR, see Smith, et al. [8].

Given this new definition of trace, it remains to define equality, prefix, and quotient. To
help, we first define notions of trace length and word indexing. We begin with length. Notice
that the empty trace contains one comma, and all traces that are one-word sequences contain
two commas, etc. In general, traces contain one more comma than the number of words in
their sequence. Thus the length of a trace reduces to counting the number of commas, then
subtracting one. In UTP notations ↓ E means ”the subsequence ofs omitting elements
outsideE, and#s means ”the length ofs.” Composing these two notations, we define the
length of a trace.

Definition 2 (length of trace) The length of a trace,tr, denoted| tr |, is the number of
comma-delimited words intr. Formally: | tr |= #(tr ↓ {, }) − 1

Next, we define word indexing within a trace — the ability to refer to theith word of a
trace. In the following definition, the subword function returns the subsequence of symbols
exclusivelybetween the specified indices (that is,without the surrounding commas).

Definition 3 (i-th word of trace) Given nonempty tracetr, let tr[i] denote the i-th word of
tr, where n=| tr | and1 ≤ i ≤ n; and let ci denote the index of the i-th comma intr, where
c0 ≤ ci ≤ cn. Formally,tr[i] = subword(tr, ci−1, ci)

In the preceding definition,ci−1 andci refer, respectively, to the commas just before and
just afterwi in tr. We may now easily define the notions of equality, prefix, and quotient over
the new definition of traces. In the following definition of equality, the permutations function
returns the set of all permutations of the given word.

Definition 4 (trace equality) Given two traces,tr andtr′, tr = tr′ iff
1. | tr |=| tr′ | , and
2. ∀ i, 1 ≤ i ≤| tr |, ∃w ∈ permutations(tr′[i]) s.t. w= tr[i].
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This definition states that two traces are equal if they are the same length, and for each
corresponding pair of words from the two traces, one word must be equal to some permutation
of the other.

Next, we define the prefix relation for traces, which follows directly from the preceding
definition of equality.

Definition 5 (trace prefix) Given two traces,tr andtr′, tr ≤ tr′ iff
1. | tr |= m and| tr′ |= n and m≤ n; and
2. ∀ i, 1 ≤ i ≤ m,∃w ∈ permutations(tr′[i]) s.t. w= tr[i].

This definition states that, given two traces, the first traceis a prefix of the second if the
second trace is at least as long as the first, and for each corresponding pair of words, up to the
number of words in the first trace, one word must be equal to some permutation of the other.

Finally, with the preceding definition of prefix, we can definethe quotient of two traces.
In the following definition of quotient, the tail function returns the subsequence of the given
trace from the given index,inclusive, to the end (that is, itincludesthe leading comma).

Definition 6 (trace quotient) Given two traces,tr and tr′, wheretr ≤ tr′, m =| tr |, and
n =| tr′ |; let cm denote the index of the m-th comma intr’, where c0 ≤ cm ≤ cn. The quotient
tr′ − tr = tail(tr′, cn),

Let’s consider some examples to further illustrate this newdefinition of trace, and its
associated properties. LetA = {a, b, c, d, e, f , g}, tr1 = ,ab ,cd , , tr2 = ,ba ,cd ,efg , , and
tr3 = ,ba ,dc , . Then the following statements are true:

• tr1 = tr1 andtr1 = tr3

• tr1 ≤ tr2 andtr3 ≤ tr2

• tr2 − tr1 = ,efg , andtr2 − tr3 = ,efg ,
• tr1 − tr1 = , andtr1 − tr3 = ,

3.3. Healthiness Conditions for VCR: Laziness Revisited

We can think of healthiness conditions for VCR in at least twoways. First, we defined no-
tions of trace equivalence, prefix, quotient for VCR traces;and could substitute the new def-
initions within UTP’s existing healthiness conditions R1–R3 and CSP1–CSP2. The revised
healthiness conditions for VCR traces hold, by definition. VCR traces are still traces of pro-
cesses that conform to the healthiness conditions of CSP processes. This is not surprising,
since initially, all we set out to do was change the CSP observer’s behavior, and the shape
of the resulting traces she records. To this point, VCR hasn’t touched a single law pertaining
to specification, only observation. The result is a newly-structured CSP trace that supports
view-centric reasoning. Of course, the justification for this approach of preserving healthi-
ness conditions stems from laziness on the part of the observer due to procrastinating the
work of interleaving.

There is another way to think of healthiness conditions for VCR, however. The key is
to consider the VCR trace an intermediate trace; one that canbe transformed (i.e., reduced)
to a standard CSP trace by interleaving the elements of the event multisets, or words, as
we defined them. Using our UTP notation, this involves removing the commas from the
VCR trace, and replacing each word with some permutation of itself to simulate the arbitrary
interleaving the CSP observer would have done. Notice that once the commas are removed,
the individual words are essentially concatenated together, yielding a single word overA∗.
This is laziness in the same sense as above, stemming from theobserver’s reluctance to
interleave simultaneous events.

Let’s take a moment to compare these two approaches to preserving CSP healthiness
conditions. In both cases, a lazy observer has put off the work of interleaving simultane-
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ous events while recording the trace of a computation. The processes being observed are the
same CSP processes whose events a traditional observer would record, and therefore the CSP
healthiness conditions should be preserved. The two approaches to preserving CSP health-
iness have one thing in common, they both rely on a transformation. In the first case, the
healthiness conditions themselves are transformed with new definitions of trace equality, pre-
fix, and quotient. In the second case, the new trace definitionis viewed as an intermediate
state, and transformed into the form of a traditional CSP trace. In both cases, the laziness is
resolved when we wish to reason about the computation.

Notice that it isnot always possible to go in the other direction; that is, transform a
CSP trace into a VCR trace. The context of which events were interleaved, as opposed to
sequentially occurring and recorded, is not available. This suggests there may be properties of
VCR traces that cannot be reasoned about with CSP traces. Indeed, there are such properties,
and the interested reader can find out more information in Smith, et al. [8].

4. Conclusions and Future Work

This paper begins with a simple conjecture: what if the CSP observer were lazy? From this
simple conjecture we explored the Unifying Theories of Programming, Communicating Se-
quential Processes, and View-Centric Reasoning. In the context of UTP, CSP is a theory of
programming, but not a theory of true concurrency. The CSP process algebra allows simul-
taneous events to occur, but the traditional interleaved trace does not permit one to reason
directly about simultaneity. The metaphor of lazy observation — deferring the work of inter-
leaving — provides a bridge from traditional CSP to a CSP thatsupports view-centric rea-
soning, thanks to a change in bookkeeping. The CSP specification remains unchanged, but
our ability to reason about properties that depend on knowledge of true concurrency benefits.

Thanks to Hoare and He’s elegant yet powerful use of healthiness conditions to classify
processes as CSP processes (and for other theories of programming), the work to describe a
theory of true concurrency within UTP focused on the CSP healthiness conditions, rather than
begin from scratch developing a denotational semantics forVCR. This was a surprisingly
easy way to draw true concurrency into the Unifying Theoriesof Programming.

More work remains with respect to true concurrency, UTP, andCSP. There are probably
more healthiness conditions that need to be defined to reflectproperties one can reason about
in VCR that one cannot in CSP. Furthermore, there are many CSPmodels: Traces, Stable
Failures, Failures/Divergences, and others. In this paper, we have considered the impact of
VCR’s parallel event traces on the process calculus of the CSP model given in Hoare and
He’s UTP.

In addition, there is the challenge of specification regarding true concurrency. As men-
tioned earlier in Section 3.2, the focus of this paper has been on observation rather than spec-
ification of true concurrency. VCR to date has only permittedthe possibility of simultaneous
events in computation, and provided a means to capture simultaneity in its traces when it
occurs. This has proven useful, to be sure. However, the specification of true concurrency
would be even more useful (e.g., regarding I/O-PAR) In addition to Lawrence’s HCSP, and
other non-CSP models of true concurrency, providing a theory of programming within UTP
that permits the specification of true concurrency would be another important step forward in
support of this grand challenge.

The author is working on algebraic laws for parallel composition and interleaving that
may lead, for example, to a simplified specification for I/O-PAR and I/O-SEQ. Unlike what
was possible for the work presented in this paper, these new laws will require new theorems
and proofs for VCR processes.
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Appendix: Utility of True Concurrency

In this appendix we give two different examples of the utility of true concurrency. The first
example concerns Linda predicate operations, which were known to be ambiguous in the
case of failure. The ambiguity, however, was based on reasoning about their meaning using
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an interleaving semantics. The second example concerns theI/O-PAR design pattern, whose
proper use provides guarantees of deadlock freedom. In thiscase, true concurrency permits
more descriptive trace expressions than possible via interleaving. In both cases, the true
concurrency of VCR’s parallel event traces provides a valuable abstraction for reasoning
about the problems at hand.

Linda Predicates Ambiguity

The Linda model of concurrency is due to Gelernter [13]. Linda processes are sequential
processes that interact via a shared associative memory known as Tuple Space (TS). TS is a
container of tuples; a tuple is a sequence of some combination of values and/or
value-yielding computations (i.e., Linda processes). A tuple is either active or passive,
depending on whether all its values have been computed. Since TS is an associative
memory, tuples arematched, not addressed. Linda is a coordination language consisting of
four basic operations: create a new active tuple (containing one or more Linda processes) in
TS,eval(t); place a new passive tuple in TS,out(t); match an existing tuple in TS,
rd(t′); and remove a tuple from TS,in(t′). In the case of matching or removing tuples,
only passive tuples are considered; and furthermore,rd(t′) andin(t′) are blocking
operations (in the case where no matching tuple exists). Because it is not always desirable to
block, non-blocking predicate versions ofrd() andin() were originally proposed by
Gelernter,rdp() andinp(), but later removed from the Linda language specification dueto
the aforementioned ambiguity.
We are now ready to illustrate the ambiguity. Suppose at the same moment in time, one
process places a tuple in TS while two other processes attempt to match and remove that
tuple, respectively. We represent this scenario notationally, as follows:out(t).p,
rdp(t′).p, andinp(t′).p. This notation indicates thatp is about to place a tuple,t, in TS
before continuing its behavior asp. Similarly, forp andp, which are both about to
attempt to matcht (where the specified templatet′ would match tuplet in TS).
Notice the outcome of this interaction point in TS is nondeterministic, and several
possibilities exist. First, it is possible for both predicate operations to succeed, as well as
fail, since the matching tuple is being placed in TS at the same instant as the attempts to
match it. It is in some sense both present and not present in this instant, rather akin to a
quantum state of superposition. Next, it is also possible that one predicate, but not both,
succeeds in this instant. In this case, consider if it were therd(t′) that happened to fail. The
failure could be due to the uncertainty properties that result from tuplet’s state of
superposition; or it could also be due to the success of thein(t′) operation removing it from
TS in the same instant it was placed in TS by theout(t) operation, but “before” therd(t′)
operation could match it. For such a simply stated scenario,there are certainly many
possibilities! Such is the challenge of nondeterminism.
Let’s focus on one possible outcome. Suppose the Linda operations were observable events,
and both predicate operations failed while the matching tuple t was placed in TS. Let a
predicate operation decorated with complement notation indicate a failure to match the
desired tuple. In a VCR trace an observer could thus record:

〈. . . , {out(t),rdp(t′),inp(t′)}, . . .〉

The CSP observer, witnessing the same outcome, must decide an arbitrary interleaving of
these three observable events. There are six possible interleavings, not accounting for
imperfect observation. Not all of the interleavings make sense, however. Here are the
possibilities:

1. 〈. . . , out(t), rdp(t′), inp(t′), . . .〉
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2. 〈. . . , out(t), inp(t′), rdp(t′), . . .〉

3. 〈. . . , rdp(t′), out(t), inp(t′), . . .〉

4. 〈. . . , inp(t′), out(t), rdp(t′), . . .〉

5. 〈. . . , rdp(t′), inp(t′), out(t), . . .〉

6. 〈. . . , inp(t′), rdp(t′), out(t), . . .〉

In particular, the first four interleavings, where the theout(t) operation is recorded before
one or both of the failed predicates would be especially concerning. When reasoning about
these traces, there is no context of simultaneity preserved. It is not clear whether the events
in question occurred sequentially, or simultaneously (andwere interleaved by the observer).
Only the last two interleavings would make sense in a CSP trace. When reasoning about the
meaning of the failed predicates, it is natural to ask the question: ”This predicate just failed,
but is there a tuple in TS that matches the predicate’s template?” Put another way, one
should be able to reason about the state of TS at any point along a trace following a Linda
primitive operation. Following a failed predicate, one should be able to reason that no
matching tuple exists in TS, but given the possibility of interleaving — an additional
potential level of nondeterminism — one cannot discern fromthe possibilities whether a
matching tuple indeed exists!
What just happened? In the presence of interleaving semantics, there are two levels of
nondeterminism that become entangled. The first level is theoutcome of simultaneous
operations at an interaction point in TS. The second level ofnondeterminism is the order of
interleaving, at which point the context of which events occurred concurrently is lost.
However, given our scenario and chosen outcome, one can reason from the given VCR
trace, that after the parallel event in which both Linda predicates failed, that matching tuplet
does indeed exist in TS. The meaning in this case of failure isno longer ambiguous, because
the context of the failure occurred within the parallel event, not at any time after.

I/O-PAR Design Pattern

Additionally, it has been pointed out to the author that support for true concurrency, while
not requiredfor reasoning about certain design patterns, has the potential to greatly enhance
the behavioral description of such patterns. I/O-PAR (and I/O-SEQ) are design patterns
described by Welch, Martin and others in [14,15,16,17]. This example was also discussed in
Smith [7]. The reason these design patterns are appealing isbecausearbitrary topology
networks of I/O-PAR processes are guaranteed to be deadlock/livelock free, and thus they
are desirable components for building systems (or parts of systems).
Informally, a processP is considered I/O-PAR if it operates deterministically andcyclically,
such that, once per cycle, it synchronizes in parallel on allthe events in its alphabet. For
example, processesP andQ, given by the following CSP equations, are I/O-PAR:

P = (a → SKIP ||| b → SKIP ); P

Q = (b → SKIP ||| c → SKIP ); Q

VCR traces ofP andQ are, respectively, all prefixes oftrP andtrQ:

trP = 〈{a, b}, {a, b}, {a, b}, . . . 〉

trQ = 〈{b, c}, {b, c}, {b, c}, . . . 〉

Notice how elegantly these parallel event traces capture the essence of the behavior of
processesP andQ. If one were to attempt to represent the behavior ofP andQ using
traditional CSP traces, the effort would be more tedious andcumbersome.


