Communicating Process Architectures 2005 155
Jan Broenink, Herman Roebbers, Johan Sunter, Peter Vel ch, and David Wbod (Eds.)
|OS Press, 2005

Improving TCP/IP Multicasting with
M essage Segmentation

Hans Henrik HAPPE and Brian VINTER

Dept. of Mathematics & Computer Science, University of Southern Denmark,
DK-5230 Odense M, Denmark.

{hhh, vinter} @imada.sdu.dk

Abstract. Multicasting is a very important operation in high performe parallel ap-
plications. Making this operation efficient in supercongrathas been a topic of great
concern. Much effort has gone into designing special it@nects to support the op-
eration. Today’s huge deployment of NoWs (Network of Waakisins) has created a
high demand for efficient software-based multicast sohgtid hese systems are often
based on low-cost Ethernet interconnects without diregpstt for group communi-
cation. Basically TCP/IP is the only widely supported metbbfast reliable commu-
nication, though it is possible to improve Ethernet perfance at many levels — i.e.,
by-passing the operating system or using physical brosidgas.ow-level improve-
ments are not likely to be accepted in production envirortsjevhich leaves TCP/IP
as the best overall choice for group communication.

In this paper we describe a TCP/IP based multicasting dalgorihat uses message
segmentation in order to lower the propagation delay. Erparts have shown that
TCP is very inefficient when a node has many active connextidfith this in mind
we have designed the algorithm so that it has a worst-cagagation path length of
O(logn) with a minimum of connections per node. We compare our algorivith
the binomial tree algorithm often used in TCP/IP MPI implenations.

Keywor ds. Multicasting, Now, HPC

1. Introduction

Message multicasting is a highly investigated topic[1}tlpebecause of the importance of
multicasting performance in parallel programming[2]. B} if is found that 9.7% of all calls
to the MPI[4] layer in the NAS[5] benchmark-suite are broagtmperations. In fact the only
operations that are more frequent are the point-to-pomd s&d receive operations.

Most work into multicast algorithms are very analytical axwhsider theoretical perfor-
mance using quite simplified hardware models. Previous Wwaskshown that at the system
level, the optimal topology for broadcast algorithms aréegdifferent from the theoretical
findings|[6].

In this work we move the findings from research in wormholet@dunterconnects[7]
into the software stack. In section 2 we describe the exjsalgorithms for multicasting in
computational clusters. In section 2.1 we introduce thecephof segmenting messages in
the software stack and in section 3 we show how segmentatgrbmused for multicasting.
In this section we also introduce a multicasting tree thdy cequires each process to send
the same amount of data as the size of the multicasted mesddge most. In section 4 the
model is implemented and tested in two Ethernet based custe

156 H.H. Happe and B. Vinter / Improving TCP/IP Multicasting with Message Segmentation

2d+2b 2d+3b 2d+3b 2d+4b 2d+2b 2d+3b 2d+3b

a) b)

Figure 1. Multicast trees. Node expressions is the time at which theeneceives the message and edge
numbers are the step in which communication takes placeinayBmulticast tree. b) Binomial multicast tree.

2. Point-to-Point Multicasting

Multicasting a message by means of point-to-point commaitiin must be done in accor-
dance to some algorithm. Basically this algorithm mustcebléhich destination processes
should aid in spreading the message by forwarding to othstimdgions.

The optimal message path, when multicasting using pohpisiat communication, will
yield a tree where the root is the source process. This iyyaasilized from the fact that all
other processes only need to receive the message once.dn {gjtimal multicast solution
in the logP model[9] has been given. The tree structure ggblution depends very much
on the parameters of the model. In real systems these paanetn be very dynamic and
therefore a more practical approach is used to define a fuitale structure.

In the following we will give a simple analysis of some of thassical tree structures
often used in real systems. This analysis will be based omaias network model where the
time ¢t to send a message from one process to another is defined as:

t=d+b (1)
d = delay (2)

message size 3
"~ maz_bandwidth’ 3)
d is the one-byte latency arbds the time imposed by the maximum point-to-point bandwidth
The letterm will be used to denote the time for the whole multicast and the number of
processes involved (source and destinations).

A simple way to implement multicasting is to have the sounoEess send the message
directly to all destination processes. This will give a riualst time ofm = (n — 1)b + d
which scales very poorly for large messages. For small ngessthis seams to be a good
solution, but the source process will be very busy sendinighvimeans it cannot attend to
other matters (i.e. calculation).

The next logical step is to make a higher tree with a constardiitf as shown in Figure
1.a. Herem < h(d + fb), whereh = |log,n| is the height of the tree. Because the height
of the tree is a logarithmic function, this tree will giv&logn) time complexity. Givend, b
andn it is possible to find the optimal fanout. An advantage of thidticast tree is that the
work of sending is shared among many processes (those widiheshin the tree).

A binomial multicast tree is an optimization of a binary nicasst tree. When a process in
a binary multicast tree is done sending to its children itstders the multicast finished, while
the children are still sending. Instead it could continuedsgg to other processes, which is

H.H. Happe and B. Vinter / Improving TCP/IP Multicasting with Message Segmentation 157

a) b)

Figure2. Segmentation multicast graphs. Edge numbers are the ségtrarsfered along the path. a) Sequen-
tial tree (segmented seqtree). b) Basic idea of the optitgatighm.

the idea behind the binomial tree (Figure 1.b). The strectirthis tree ensures that every
process that has received the message, participates imgénthose processes that have not
received the message. As illustrated in the figure this dvedter results than a plain binary
tree because more processes work in each step. Trees witistacbfanouf > 2 could give
better results for small messages, because the height nbental tree ish = |log, n|. The
uneven work that each process has to do is a disadvantageanhiail multicast trees.

2.1. Message Segmentation

A major problem with point-to-point multicasting is thaetinaximum multicast bandwidth
cannot be more than half the maximum point-to-point bantiwihen there is two or more
destinations. Either the root sends to both destinations@destination forwards to the next.
This is only true when all of a message is received at a destinhefore it is forwarded.
Message segmentation deals with this problem by splittieggages into smaller segments.
Now forwarding can begin when the first segment has beenvestand together with the
right multicast algorithm it is possible to multicast withbandwidth that exceeds half the
maximum point-to-point bandwidth.

The segment sizedictates the delay of relaying a message through a prochesrat-
ically s should be as small as possible in order to minimize this délaythe actual splitting
and forwarding imposes an overhead. These trade-offs Hmsdonsidered when choosing a
proper segment size.

When using message segmentation the classical multieastare far from optimal. The
problem is that some processes send the message more tleam biscsets an upper bound
max_bandwidth/ f.... on the multicast bandwidth, wherg,.. is the maximum fanout in
the multicast tree. In order to achieve multicast bandveidiar the maximum point-to-point
bandwidth, the multicast algorithm has to ensure that thesage size is the upper bound on
how much data each process must transmit.

A sequential tree (a fanout of one) is the obvious choice forudticast structure that
utilizes segmentation (Figure 2.a). This structure erssthrat all processes at most receive
and send messages once. Theoretically the multicast tinf@so$tructure would ben =
(n — 1)(d + bs) + b, whereb, = s/max_bandwidth is the time imposed by the maximum
point-to-point bandwidth when transmitting a segmentsiives a time complexity ad(n)
which might be negligible for large messagés\{ll dominate), but for small messages the
propagation delayn — 1)(d + bs) will dominatem. In the following this algorithm will be
called “segmented seqtree”.

In [8] an optimal solution for multicasting a number of segnsein the logP model is
presented. The basic idea of this solution is that the squramess scatters the segments to the
destination processes in a round-robin fashion. When &aéisin process receives a segment

158 H.H. Happe and B. Vinter / Improving TCP/IP Multicasting with Message Segmentation

4 5 6 3 2 1

Figure 3. Segmented bintree algorithm. Process 0 is the source groces

it becomes the root of the segment and sends the segmenbtbedldestination processes,
by means of an optimal single segment multicast tree (Figumre A final multicast structure
for each segment will depend on the logP parameters and theanof segments. Also, there
can be special cases where those processes that are dorid gafirashing the multicast
(end-game).

3. Segmented Multicastingin TCP/I P Networks

All the information needed in order to construct an optin@hp-to-point multicast is hard to
obtain at runtime. We have therefore tried a more generakritign inspired by the optimal
solution described in [8].

Figure 2.b illustrates how the algorithm works. The soumoeess spreads out segments
evenly to the destination processes. Each destinatiorepsaends the received segments to
all other destination processes. The message size is an hupped on how much data each
process must send in this algorithm and each segment is anhafded by one process.

We have evaluated the algorithm in an Ethernet based clusiag TCP/IP. Results
showed that the segmented seqtree algorithm performed imettdr for large messages.
Without further investigation we believe that TCP/IP does Imandle multiple connections
well. With this algorithm all processes have multiple coctiens that constantly are switch-
ing between activity and inactivity. This puts much presson the TCP subsystem in the
form of buffer management which again increase memory iactfue. cache misses). It
might also be TCP congestion control that cannot adapt fastigh. This is a subject of
further research.

TCP connections will always use extra memory, so limiting mumber of connections
is preferable. The segmented seqtree algorithm has thigréelut the path from the source
to the last destination i©(n) long. This will result in poor performance as the message siz
decreases.

We have devised an algorithm, we call “segmented bintrdwedt falls in between the
characteristics of two above. This algorithm uses a mininafrconnections given these
constraints:

1. The path length must @@(log n).
2. The message size is an upper bound on how much data a phasetssforward.

Figure 3 illustrates how it works. Two binary trees contagnall destination processes
are build with the constraint that the total sum of childrenéach process is at most two.
When multicasting the source process sends every otheresggothe root of each of these

H.H. Happe and B. Vinter / Improving TCP/IP Multicasting with Message Segmentation 159

two trees. The segments are forwarded all the way down teetnees with the result that all
processes receives the message.

The first constraint obviously hold with this algorithm. Bese of the manor in which
the two trees are created, the second constraint also Hedd$. process will at most have
four active connections which is a minimum given the comstsaIn the general case, the
first constraint dictates that the source process or one aiescendants must forward to at
least two processes. We will call this procass: also has to have a descendarthat has
to forward to at least two processes. The second constriatates that: cannot forward the
whole message tg, hencey has to receive the remaining part from some other process
will not always be a child of;, because some will have two or more children of its own.
Therefore, there will exist a procegshat has at least four connections given the constraints.

4. Experiments

The binomial, segmented seqtree and segmented bintredlahg® have been implemented
using TCP sockets for communication. The algorithms haga tieen compared in two dif-
ferent clusters.

4.1. Clusters

The clusters used have the following configurations:

e Gigabit: 64 nodes, Intel Pentium 4 3.2 GHz CPUs, switched gigabitria&ieetwork.
Network adapter is connected to the CPU via the 32bit PCllbasx 2.6.

e CSAGigabit: 13 nodes, Intel Pentium 4 2.6 GHz CPUs, switched gigabitiatiaet-
work. Network adapter is connected to the CPU via Intel's @amications Stream-
ing Architecture (CSA), Linux 2.6.

Note that the plain 64-node gigabit cluster is a productioster which we had very limited
access to (shared with other by means of a job queue). Therdgfavas not possible to
investigate irregularities in the following results. Algbe 32bit PCI bus connection to the
network adapter makes full-duplex gigabit communicatimpassible.

The interconnect consisted of a set of 24-port switches widependent full-duplex
10 gigabit connections between them. We did not try to corsgienfor this heterogeneity
when laying out the multicast trees, but all tests were rusame set of nodes. This issue
should only affect the segmented algorithms, because titéze parallel communication
extensively. The fact that the results do not show any ewéenfthis heterogeneity, suggests
that the 32bit PCl issue insured that the inter-switch Iwkse not saturated.

The small CSA gigabit cluster has been included to test tiarihms in a gigabit cluster
where close to maximum full-duplex gigabit bandwidth is gibke.

4.2. Results

Both the segmented algorithms have been run with a segnenbsBKB throughout the
tests. In general this size has proved to give good resuibsigh it might be a subject of
further study.

Time measurements have been carried out by letting allrédgin nodes notify the
source node when the full message had been received. We bagempensated for this
extra notification delay in the following results.

In all the results the multicast bandwidth is the bandwidtthe actual multicast and not
the accumulated bandwidth of all communication lines.

160 H.H. Happe and B. Vinter / Improving TCP/IP Multicasting with Message Segmentation

Gigabit cluster, message size 1B, segment size 8KB
18000

T T T T
segmented bintree —+— b

segmented seqtree --X-- /
binomial --3¥--- gam

16000

14000

12000

10000

8000

time - usec

6000

4000

2000

nodes

Figure 4. Multicast time/number of nodes. Latency in the gigabit tdugor one byte messages.

Overall the segmented bintree algorithm performs just dlovbetter than the binomial,
for 32KB or larger messages. The segmented seqtree algonideds even larger message
sizes before it generally outperforms the binomial, whiaswexpected.

Figure 4 shows the segmented seqtree algorithm’s problémsmall messages. The
binomial algorithm performs slightly better than the segtad bintree. This was expected
because the segmented bintree algorithm has a slightletquath to the last destinations,
due to the final communication between the subtrees.

With 256KB messages in Figure 5 the segmented bintree #igomenerally outper-
forms the others. With 64 nodes it is 196% faster than therbiabalgorithm. Also, when
comparing the two and four node runs, we start to see thatitdestannot handle full-duplex
gigabit communication.

In Figure 6 with 8MB messages the segmented bintree algoitales very well. The
bandwidth decrease is very small as the number nodes irsieakile additional nodes has
a much greater impact on the binomial algorithm. With 64 rsatie segmented bintree algo-
rithm is 320% faster than the binomial. The performance efsiegmented seqtree algorithm
should be close to that of the segmented bintree with 8MB agess but this is not the case.
It must be an issue with the specific cluster because we doeeothe same result in other
smaller clusters (Figure 8).

Figure 7 shows the results for different message sizes witha@dles. The segmented
bintree algorithm follows the binomial up to a message sizZ&2&KB. As the message size
increases beyond 32KB we see the effect of segmentatiorhwinies it possible to increase
its multicast bandwidth all the way up to the maximum, giviea 82bit PCI issue (see the
result for four nodes in Figure 6).

The importance of using nodes capable of full-duplex gigetnmunication becomes
very clear when looking at the results from the CSA gigahiistér (Figure 8). Here the
multicasting bandwidth reaches 82.6MB/s which is 74.4%hef taximum point-to-point
TCP bandwidth, which has been measured to 111MB/s.

H.H. Happe and B. Vinter / Improving TCP/IP Multicasting with Message Segmentation 161

Gigabit cluster, message size 256KB, segment size 8KB

70 T T T —
)L segmented bintree —+—
segmented seqtree —-X--
' binomial ---%---

bandwidth - MB/sec

nodes

Figure 5. Multicast bandwidth/number of nodes. Multicast bandwidtthe gigabit cluster with 256KB mes-
sages.

Gigabit cluster, message size 8MB, segment size 8KB

T T
segmented bintree —+—
segmented seqtree —-X--
... binomial --X--- |
N -]
9 L N]
Y
e}
=
- I LS N USRS SRRSOt]
3
= } !
ko] T
8
3 -] b o loiiioioioooioooooos —
R
e x"”””""'““'"'-”—”9(—”—'::'_”_"_”_”_; """"" =
"""" E
T e .
% ------
10 ! ! ! B MRELECEET P %
2 4 8 16 32 64

nodes

Figure 6. Multicast bandwidth/number of nodes. Multicast bandwititthe gigabit cluster with 8MB mes-
sages.

162 H.H. Happe and B. Vinter / Improving TCP/IP Multicasting with Message Segmentation

Gigabit cluster, 64 nodes, segment size 8KB
45

T T T T T T T T T T T T T
segmented bintree —+—
segmented seqtree —-X--
binomial --¥-- S —

40

L

T

25

20

bandwidth - MB/sec

15

10 [s gy e e 2

16384

message size - KB

Figure 7. Multicast bandwidth/message size. Multicast bandwidtthégigabit cluster with 64 nodes.

5. Conclusion

The goal of this work was to improve software-based poirpdamt multicasting, by means
of message segmentation. Tests has shown that minimizinguimber of active connections
reduces TCP/IP’s communication overhead considerablyn iMs in mind, we have devised
an algorithm that theoretically has &{log n) time complexity, while only using four or less
connections per process. This algorithm utilizes messagmentation in order to achieve
multicasting bandwidths, close to the maximum point-titapbandwidth. The algorithm can
do this because no process sends more data than the sizemiliieasted message. This
also distributes the work evenly among the involved proegss

We have compared the algorithm with a more obvious segmentalgorithm (sequen-
tial tree) and the widely used binomial tree algorithm. Tasults have shown that our al-
gorithm generally outperforms the binomial algorithm wKB or larger messages and in
some test it were up to 320% faster. For messages smallel3g2taB the binomial algo-
rithm wins with a small margin. Using another algorithm imstbase could easily solve this
problem.

References

[1] Taxonomy and Survey. Total order broadcast and multielg®rithms.

[2] Andrew S. Tanenbaum, M. Frans Kaashoek, and Henri E. Badallel programming using shared objects
and broadcastind EEE Computer, 25(8):10-19, 1992.

[3] Ted Tabe and Quentin F. Stout. The use of the MPI commtioicéibrary in the NAS parallel
benchmarks. Technical Report CSE-TR-386-99, 17, 1999.

[4] Message Passing Interface Forum. MPI: A message-gasggerface standard. Technical Report
UT-CS-94-230, 1994.

H.H. Happe and B. Vinter / Improving TCP/IP Multicasting with Message Segmentation 163

CSA Gigabit cluster, 13 nodes, segment size 8KB

90 T T T T T T T

T T T
segmented bintree —+—
segmented seqtree —-X--
80 [~ binomial --¥--

70

60

50

40

bandwidth - MB/s

30

20

10

—
-
-

128 -

256

512 |-
1024
2048 -
4096 -
8192 -
16384

message size - KB

Figure 8. Multicast bandwidth/message. Multicast bandwidth in ti8A@igabit cluster with 13 nodes.

[5] D. H. Bailey, L. Dagum, E. Barszcz, and H. D. Simon. Nasgtlat benchmark results. 18upercomputing
'92: Proceedings of the 1992 ACM/IEEE conference on Supercomputing, pages 386—393. IEEE Computer
Society Press, 1992.

[6] John Markus Bjgrndalen, Otto J. Anshus, Tore Aarsen,Bunh Vinter. Configurable Collective
Communication in LAM-MPI. In James Pascoe, Roger Loadeat \&idy Sunderam, editors,
Communicating Process Architectures 2002, pages 123-134, 2002.

[7] Lionel M. Ni and Philip K. McKinley. A survey of wormholeauting techniques in direct networks.
Computer, 26(2):62—-76, 1993.

[8] Richard M. Karp, Abhijit Sahay, Eunice E. Santos, andu€&. Schauser. Optimal broadcast and
summation in the logP model. KCM Symposium on Parallel Algorithms and Architectures, pages
142-153, 1993.

[9] David E. Culler, Richard M. Karp, David A. Patterson, AjittSahay, Klaus E. Schauser, Eunice Santos,
Ramesh Subramonian, and Thorsten von Eicken. LogP: Towamekslistic model of parallel computation.
In Principles Practice of Parallel Programming, pages 1-12, 1993.

