
Communicating Process Architectures 2005 129
Jan Broenink, Herman Roebbers, Johan Sunter, Peter Welch, and David Wood (Eds.)
IOS Press, 2005

CSP++: How Faithful to CSPm?
W. B. GARDNER 1

Dept. of Computing & Information Science, University of Guelph, Canada

Abstract. CSP++ is a tool that makes specifications written in CSPm executable
and extensible. It is the basis for a technique called selective formalism, which
allows part of a system to be designed in verifiable CSPm statements, automatically
translated into C++, and linked with functions coded in C++. This paper describes in
detail the subset of CSPm that can be accurately translated by CSP++, and how the
CSP semantics are achieved by the runtime framework. It also explains restrictions
that apply to coding in CSPm for software synthesis, and the rationale for those
restrictions.

Keywords. CSPm, C++, selective formalism

Introduction

CSP++ is a pair of tools—a translator and an object-oriented application framework
(OOAF)—that together make CSP specifications both executable and extensible. The initial
development goes back to 1999 [1], and was based on a local dialect of CSP called csp12
[2] that was supported by an in-house verification tool of fairly limited capabilities. In order
to bring CSP++ to a wider community, and build a straight-line design flow for software
synthesis starting from robust commercial verification tools, CSP++ has been recently
redeveloped so as to accept input in CSPm, the same machine-readable dialect used by
FDR2 and ProBE from Formal Systems (Europe) Ltd. [3].

There is more to CSP++ besides translation and execution of CSPm specifications. It
also includes a strategy for practicing formal methods in software engineering, dubbed
selective formalism [4]. This strategy provides a logical way to combine formal
specifications written in CSPm with source code written in the popular programming
language C++, without ruining verified properties. It is an unabashed attempt to breech the
resistance of software developers to adopting pure formal methods, by offering a sort of
pragmatic compromise.

The purpose of this paper is to expose the specific design choices that went into the
selection and implementation of the CSPm subset. It begins with an overview of CSP++,
first introducing the approach of selective formalism, and then going through the steps of
the design flow carried out by the automated tools.

The heart of the paper helps unfold in four sections the answer to the title’s question,
How faithful is CSP++ to CSPm? If one wants to synthesize software from a CSPm
specification, what can one expect, and what is one limited from doing? Do the execution
semantics match the traces of the specification, and what happens when non-formal C++
code is linked in? There is a clear rationale for what has and has not been implemented.
Convergence with CSPm is described in terms of the operators and constructs that are
synthesizeable (as of version 4.1). Divergence from CSPm is also discussed in detail. Note

1 Assistant Professor, Modeling & Design Automation Group, Dept. of Computing & Information Science,
University of Guelph, ON, Canada, N1G 2W1. E-mail: wgardner@cis.uoguelph.ca. CSP++ is available
for download from the author’s website: http://www.cis.uoguelph.ca/~wgardner, Research link.

130 W.B. Gardner / CSP++: How Faithful to CSPm?

that this order of presentation mixes together constructs, philosophy, implementation, and
limitations.

The main part of the paper ends with a list of platforms that CSP++ is known to run on,
and several case studies from which performance measurements have been gleaned. The
paper then concludes with a brief review of related work—other CSP frameworks and
translators—and plans for future work. Beyond the obvious issue of what features to add to
CSP++, we also muse on what it would take to popularize the practice of selective
formalism based on CSP.

1. Overview of CSP++

The overview below assumes that the reader is familiar with Communicating Sequential
Processes [5] and needs no special justification for choosing CSP as a modeling tool for
concurrent systems. The main contribution of CSP++ is software synthesis based on CSP.
The first subsection sets the context for this, by explaining what is meant by “selective
formalism” and how it applies to CSP++. The next subsection goes through the steps of the
CSP++ design flow. Finally, the synthesis tools—the translator and the OOAF—are
described chiefly from a user’s standpoint. Their internal operation is not described in
detail, in order to avoid duplicating documentation available from other sources [6][7].

1.1 Selective Formalism

The notion of selective formalism is based on the oft-observed fact that resistance to the
adoption of formal methods in the software industry runs high. This state of affairs is not
without rational basis. For example, three practical drawbacks of formal methods are:

1. A company will not likely have on hand many designers who can utilize a formal
notation, and will not be eager to retrain its programmers who are already skilled in
conventional programming languages.

2. Even if a specification is produced in a formal notation and subjected to verification,
the notation will have to be translated, presumably by hand, into a programming
language suitable for implementing on the target platform. Aside from the time-
consuming and error-prone nature of this manual step, it may not be clear that
properties verified in the formal specification could be retained in translated form.

3. Formal notations are more convenient for expressing abstractions above the level of
a detailed implementation. Therefore, specifications written in a formal notation will
likely need to be supplemented by conventional program code in any case.

It must be acknowledged that the first point above does not match the profile of
companies whose clients have forced them to take a “high road” vis-à-vis formal methods,
e.g. for the sake of highly safety-critical products. Such companies have their own
solutions, and selective formalism could even represent a backward step for them.

The essential compromise of selective formalism is that many benefits of using a
formal notation can be obtained without committing to it for building an entire system. It is
proposed that the control backbone of a system be specified using a formalism that is well-
suited to expressing interprocess synchronization and communication, i.e. CSP, and that
this specification be automatically translated to a conventional language, C++. Provision is
made for supplementing the translated formal backbone with additional C++ code in a way
that does not invalidate the specification’s formal properties. The “selective” aspect refers
to the designer’s decision to describe more or less of the system in CSP, according to the
system’s characteristics.

 W.B. Gardner / CSP++: How Faithful to CSPm? 131

This approach goes far to overcoming the three drawbacks:

1. The company will need only a small number of trained “CSP gurus” who can write
CSP and run the verification tools. Much of the coding, integration, and testing can
be carried out by programmers skilled in C++.

2. Automatic translation is used to render the verified CSP control backbone into
compilable C++. The semantics of the resulting executable code match the CSP
specification. Thus, the specification is not destined to become an “orphan” in the
development process; it can be modified and retranslated on demand.

3. Programmers need not attempt awkwardly to express every algorithm or calculation
in CSP, but can use C++ where formal properties are not an issue. Interfacing the
system with its actual environment via I/O can be carried out conveniently in C++.

Selective formalism is therefore based on software synthesis, particularly on the ability

to make CSP specifications both executable and extensible. The steps of the design flow
based on the automated tools are described in the next subsection. These steps are depicted
in Figure 1.

1.2 Design Flow

A designer will start by creating a specification in CSPm, and using the tools from Formal
Systems—checker, ProBE, and FDR2—to simulate it and verify its properties. Experience
shows that CSP tends to feature in four roles in such a specification, constituting four
complementary models:

1. Functional Model: These statements capture the desired system behavior in terms of

CSP processes engaging in named events.
2. Environment Model: These statements simulate the behavior of entities in the

system's target environment, in terms of processes engaging in events. The
functional model can be simulated by synchronizing it with the environment model.

3. Constraint Model: Other processes may optionally be added alongside the
functional model to limit or constrain the event sequences that can occur. A

CSP Specs

Verification
Tools

cspt
Translator

CSP++ Control Layer

User-coded
Functions
 Utilities

User-coded
C++ Functions

Target System

RTOS

Figure 1. CSP++ Design Flow

132 W.B. Gardner / CSP++: How Faithful to CSPm?

constraint model is used to focus on critical event sequences in the functional model
that must—or must not—occur in order for the system to be “safe.” If verification
shows that the constraint is violated, the functional model must be improved.

4. Implementation Model: Since the functional model will likely be fairly high-level, it
will normally need to be refined to an implementation model, still in CSP, but with
more detailed processes and events added. Verification will confirm whether the
implementation is a legitimate refinement of the original functional model.

After verification is satisfactory, the CSPm specification can be sent to the synthesis

tools (described next), and the resulting C++ source code compiled and linked. This
program can be run with tracing enabled for simulation purposes, in which case it will print
out a trace of every event executed, identifying the process in control at that moment. (For
synchronizing events, only the process that arrived last at the rendezvous will be identified.)

In order to complete the implementation, the designer returns to the CSPm
specification and removes (or comments out) the environment model, since the idea is for
the translated CSPm to interact with the system’s real environment. At this point, named
CSPm channels that were previously synchronized with the environment model are now
free to be linked with C++ user-coded functions (UCF). These functions can perform
system calls, carry out I/O, and utilize third-party packages such as a database management
system, under control of the translated CSPm backbone.

For debugging purposes, the translated C++ can be run with a conventional debugger
(e.g. gdb). Since the original CSPm is inserted as comments in the translated source file,
interleaved with the resulting C++ translation, it is easy to relate the two and, in effect, set
breakpoints in the CSPm and inspect local variables. Execution can also be conveniently
stepped out of the CSPm into the user-coded functions.

1.3 Synthesis Tools

Since the semantical “distance” between CSP and executable machine code is large, an
intermediate code translation target was created in the form of an OOAF. The framework,
called CSP++, is architected in terms of C++ classes that mirror the objects in the world of
CSP—chiefly processes and channels—and supply their proper semantics. The job of the
translator is to convert a CSPm specification into a particular customization of the
framework, which, when compiled and run, emulates the original specification. The
translator and framework form a tool chain (Fig. 2) and are described in the following
subsections.

1.3.1 cspt Translator

The translator, called cspt, originally supported the local dialect csp12. For version 4.0, it
has been refitted with a front end that accepts a carefully chosen subset of CSPm. The
particulars of this subset are discussed in detail in section 2. The aim is that any text file
conforming to the subset which is syntactically acceptable to checker, ProBE, and FDR2,

 Figure 2. CSP++ Tool Chain

CSPm
spec

cspt
Translator

C++
Compiler Linker

framework
headers

object
files

framework
library

executable C++

 W.B. Gardner / CSP++: How Faithful to CSPm? 133

will be translated accurately into C++ source code which, when compiled with the CSP++
class library headers and linked with the CSP++ object library, will execute with the same
semantics as simulated by ProBE.

Looking at the output source code, the user will observe that each CSPm process
definition has been translated into one or more C++ functions, and that the function bodies
contain instantiations and method invocations of CSP++ classes. Some CPP preprocessor
macros are used for the translator’s convenience, and the readability of the source code is
quite high. The process called SYS is taken as the starting point for execution, and a main
function is generated to process command line options (e.g. enable tracing) and then launch
SYS. Execution stops and the main function returns in any of these circumstances:

1. SYS terminates by executing SKIP.
2. Any process executes STOP.
3. All processes are waiting for a synchronization event and the command line option

of idle checking was enabled.

In cases 2 and 3, a dump is printed showing the status of all active processes,

identifying which events they are waiting on for synchronization.

1.3.2 Execution Framework

CSPm processes are mapped into threads. The current version of CSP++ is based on GNU
Pth [8], a portable package for nonpreemptible threads. The translator is smart enough to
avoid consuming resources with gratuitous thread creation: In the two common cases of a
process turning into another process (e.g. P = a -> Q) and tail recursion (P = b -> P),
the current thread simply carries on, in the one case changing its identity to Q, and in the
recursive case by looping back to P. This is called “chaining.”

Compositional cases spawn new threads as required. For example, P = A||B would
spawn threads for A and B. The sequence Q = R;S would spawn a thread for R, wait for it to
finish, and then chain to S without spawning. Now suppose R were written inline, as say, Q
= e->SKIP;S. In this case no thread would be spawned; e would just be executed by Q’s
thread.

Complex expressions incorporating composition are handled by extracting unnamed
subprocesses. In the example, Z = (P||Q);R, (P||Q) would be extracted by the translator
as a subprocess. Z would spawn it to perform the parallel composition and wait for it to
finish, after which Z would chain to R.

Changing the underlying thread model is not difficult, and has been done several times
already. The base class for CSPm process objects is called task, and all the thread-aware
code is localized in its methods for easy portability.

In order to fully emulate the dynamics of a CSPm specification, the runtime system
maintains a branching environment stack (i.e. tree structure). Whenever the CSPm elements
of synchronization sets, renaming, and hiding are encountered, corresponding environment
objects are pushed onto the current process’s branch of the stack. All CSPm events are
interpreted in light of their process’s current environment context, which necessitates a
good deal of stack searching.

User-coded functions are integrated as follows: When an event is to be executed, the
framework will check whether a user-coded function was supplied at link time. If so, the
UCF will be called, and if channel I/O is involved, data will be transferred to/from the
UCF. If no UCF is linked to the event/channel name, the event can be used for
synchronization with another CSPm process as usual.

134 W.B. Gardner / CSP++: How Faithful to CSPm?

The most challenging feature of CSPm to implement is multiparty synchronization in
the presence of external choice. This is handled by trying each alternative in turn until one
succeeds, or if none succeeds, then suspending the thread on a condition variable. The last
party to arrive at a synchronization is called the “active” party. It is responsible for
canceling the other choice alternatives (if applicable), transferring any channel data (if
applicable), and waking up all remaining “passive” parties.

For simulation purposes, any events that are not synchronized in the specification get
some default treatment at run time: plain events and channel output are printed, and integer
input is obtained for channel input. This means that, for example, if P = ch!10, the
framework will output 10. But if another process is put in parallel with P, say, Q = ch?x,
then nothing will be printed because the event will be absorbed internally.

In addition, as mentioned above, the framework can have trace printing enabled. In that
case, each successful synchronization and channel data transfer will be logged on the cerr
(stderr) stream, and will reflect any renaming and/or hiding that is in effect.

2. Convergence with CSPm

Appendix A of the FDR2 User’s Manual [9] is taken as the “bible” for CSPm syntax. The
same presentation is also available from Appendix B of [9]. The basic principles behind
decisions concerning which features of CSPm to support in CSP++ for translation can be
stated as follows:

• We want to implement for synthesis a rich, useful subset of CSPm with as few

restrictions as possible. Anything one writes in that subset, and verifies, should be
synthesizeable without modification and hand-tinkering, since those activities can be
fertile sources of bugs.

• The above principle implies that we don’t offer “extensions,” since those would not
be verifiable. Extensions for synthesis’ sake that could be camouflaged from FDR2,
say as comments, might be entertained in the future.

• We assume that users have access to the Formal Systems tools, so there are some
things, such as channel statements, that cspt does not validate. If one bypasses at
least running checker before translating, unnecessary problems may be created.

The idea of a “synthesizeable subset” is also found in hardware synthesis. For

example, VHDL was originally conceived as a specification language, and then became
adapted for simulation. In recent years, CAD vendors have created synthesis products that
generate digital circuits from structural or behavioural descriptions input in VHDL. There is
no attempt to synthesize each and every VHDL construct, since the language was never
created with that intention. Therefore, the vendors define their own synthesizeable subsets
of VHDL.

Similarly, CSP++ supports a subset of CSPm for software synthesis. Descriptions of
supported constructs are divided below into four areas: events, processes, operators, and
other language constructs.

2.1 Supported Events

In CSPm, the events collected into trace sequences are compound symbols made up of
components separated by dots. The leftmost symbol is a channel name, and the components
to its right (if any) are considered the channel’s subscripts and/or data. In CSP++, we dub
an event having no data—i.e. a bare occurrence of a channel name—as an atomic event.

 W.B. Gardner / CSP++: How Faithful to CSPm? 135

However, an atomic event may have subscripts. The distinction between subscripts and data
in CSPm is blurry; we attempt to clarify it in CSP++ usage (see section 3.3 for full
discussion). The designer’s intent in using subscripts is likely to define a group of channels
or events that have the same base name.

CSP++ supports alphanumeric channel names that are accepted by the C++ compiler
as valid variable names. Subscripts and data may comprise from 1 to n dotted components,
where n is currently set at 10.

The contents of subscripts and data components are determined by the datatypes
supported by the translator. Currently, CSP++ supports only integer data.

2.2 Supported Processes

In CSPm, a powerful feature is the ability to write parameterized process definitions,
including multiple definitions of the same-named process. CSP++ supports such overloaded
definitions with 0 to n parameters, where n is currently set at 10. There are two restrictions
regarding overloaded process definitions in CSP++:

• All definitions must have the same number of parameters.
• To work as expected, the most general definition should be coded last.

The first restriction means that the set of definitions P(1), P(2), and P(n) would be
valid in the same specification, but P, P(i), and P(1,n) would not. The second restriction
means that coding P(n) before P(1) and P(2) would result in the P(n) definition always
being invoked, even by explicit statements such as a -> P(1), which would be contrary to
the designer’s intent.

The cspt translator tells when a process invocation can be resolved at translation time,
and when binding must be deferred to run time. In the latter case, a parameter table is
generated for any sets of process definitions that require runtime binding.

Process definitions can be recursive, with tail recursion being handled very efficiently.
Even infinite tail recursion results in no stack growth.

In terms of special “built-in” process names, SKIP and STOP are supported. STOP aborts
execution with a process status dump.

2.3 Supported Operators

CSP++ supports these operators:

• Prefix: event -> proc
• Conditional: if expr then proc1 else proc2; where expr is a relational

expression
• Event renaming: proc[[oldname <- newname]]
• Event hiding: proc\{name}

CSPm’s relational operators (==, !=, <, >, <=, >=) and arithmetic operators (+, -, *, /,
%) are recognized. Renaming and hiding can be inserted anywhere, using parentheses to
designate their scope of application.

All styles of composition are supported, including parallel ([| |]), interleaving (|||),
and sequential (;). The one flavour of parallel syntax supported at present is interface
parallel, where the set of synchronizing events is explicitly listed. Within that set, only bare
channel names are permitted. The implication is that any event starting with a listed channel
name will be a synchronizing event. The production syntax {| names |} is handled
properly. Linked parallel and alphabetized parallel composition are not supported.

136 W.B. Gardner / CSP++: How Faithful to CSPm?

External choice ([]) is supported, but not internal (nondeterministic) choice (|~|). An
important restriction is that the first event of alternative processes must be explicitly
exposed using prefix notation. For example, let:

P = a -> A
Q = b -> B

Suppose my intention is to choose between P and Q. Simply writing (P [] Q) is not
allowed. Instead, I must write (a -> A [] b -> B), thereby exposing the initial events of
each alternative. This is to make it easy for the translator to identify the events that the
choice depends on. In fact, it is equivalent to writing (a -> A | b -> B), which is valid
CSP but not part of the CSPm dialect. Multiple alternatives can be written as (a -> A [] b
-> B [] c -> C), and so on.

2.4 Other Constructs

cspt recognizes both single-line (--) and block ({- … -}) style comments. All declarative
statements are ignored: nametype, datatype, subtype, and channel. Presently, these are
treated as equivalent to single-line comments, therefore declarations stretching over
multiple lines will regrettably result in syntax errors. At the current time, cspt does not need
to interpret these declarations, but instead infers channel names from operations.
Furthermore, all data is assumed to be of integer type. Assert statements (used by FDR2)
are also ignored.

In summary, the restrictions detailed above do yield a valid subset of CSPm that can be
input to checker, ProBE, and FDR2 without complaint from those tools.

3. Divergence from CSPm

In this section, the features of CSPm that are not fully supported by CSP++ are detailed.
They are broken into subsections of unimplemented operators, process parameters, and
channel I/O.

3.1 Unimplemented Operators

Some valid CSPm operators not supported, due either to the translator’s not handling the
syntax, or to the framework’s lack of a mechanism to implement the semantics. These are
listed in four separate categories to help illuminate their current status and future prospects.
The categories are arranged in order of increasing reluctance to tackle them.

3.1.1 Category: Planned for Later

Since data in CSP++ is handled via OO classes and polymorphism, adding support for
additional datatypes into the runtime framework is not difficult. Expanded support will be
targeted as the need is demonstrated by future case studies. Candidates from CSPm include
sets, sequences, and simple enumerated datatypes. Character strings might be introduced as
sequences of integer values.

The Boolean guard (&) will be added; it is similar to the if … then construct already
supported.

 W.B. Gardner / CSP++: How Faithful to CSPm? 137

Implementation of the interrupt (/\) operator is planned. It would be very useful, but
the framework currently does not contain a mechanism to support it. For example, P/\Q
would put P into a mode whereby prior to executing each event, it would check whether
the first event of Q has occurred, and if so, terminate itself (as if P executed SKIP).
Regarding UCFs linked from P’s events, it will have to be decided whether a blocked UCF
should be interruptible, perhaps with some optional cleanup feature.

3.1.2 Category: Low Benefit Cost Ratio

These include constructs that would admittedly be desirable to support, but whose benefits
do not presently appear to justify the effort entailed. There are satisfactory workarounds for
these cases.

Other flavours of parallel composition, linked and alphabetized, could be added, but
interface parallel is already satisfactory. Similarly, the lack of replicated operators can be
worked around by writing out all the cases.

P [] Q is problematic to translate in the general case. If P and Q are defined so that
their initial events are stated, well and good. But if not, locating the initial events requires
considerable manipulation so as to rearrange the process definitions into head normal form
[10]. That technique has not yet been pursued in the translator. To some extent, this is a
result of the decision to make the C++ output of the translator closely correspond with the
CSPm source input.

3.1.3 Category: Questionable in Synthesis Context

Nondeterminism, including internal choice (|~|) and “untimed” timeout ([>), falls into this
category. While nondeterminism can be useful in specifications, it is difficult to think of a
clearly appropriate treatment when synthesizing source code.

Some constructs that are not inherently nondeterministic can become such in practice.
For example, external choice, where the alternative events are the same, becomes
nondeterministic: e->P [] e->Q. cspt does not detect such cases, and would handle this
example by trying event e twice. If event e succeeds, P will be chosen. If the process has
to wait on event e, then when e eventually occurs, P will still be chosen.

3.2 Process Parameters

For now, only integer values are allowed for process parameters. As datatypes are
expanded, process parameters will accept non-numeric data. CSPm allows channel names
as parameters, and this may also be implemented in CSP++.

3.3 Channel I/O

If any area of CSPm could be described as a quagmire for software synthesis, this is it. The
problem of channel I/O, i.e. transferring data from one process to another, is that from the
trace semantics viewpoint of CSP, there is honestly no such thing as “I/O,” and ProBE and
FDR2 reflect this well. To be specific, if a trace is observed to contain the event
foo.1.2.3, there are many ways it could have got there:

• One process executed foo.1.2.3
• Two processes synchronized on foo.1.2.3
• One process output foo!1.2.3, and another input foo?x, or foo?1.2.y, or even

foo.1!2?z
• Two processes synchronized on foo.1.2.3, and a third input foo?x

138 W.B. Gardner / CSP++: How Faithful to CSPm?

Many other combinations are possible, including what could be called “mixed mode”

transfers where operators ostensibly calling for output (!) appear alongside input (?)
operators in the same event expression. Furthermore, in interpreting a compound (dotted)
event, one cannot say by inspection whether some or all components are intended to
function as 1- or n-dimensional subscripts of the channel name, or whether some or all
components are to be considered as data values. It is not difficult to write obscure-looking
specifications using these capabilities.

This free-for-all should be contrasted with the original straightforward meaning of
“channel” in CSP: A channel was intended to be a primitive structural component in the
design of a system, dedicated to one-way, unbuffered, point-to-point data transfer between
a particular pair of processes. This kind of definition is extremely easy for system designers
to understand and utilize, therefore, it is attractive to implement for the purpose of software
synthesis.

The key problem is that channel I/O is, in effect, a metaconcept layered on top of pure
event synchronization, and when one looks solely at traces, I/O is found to have dissolved
and disappeared. Since ProBE and FDR2 are engaged in state exploration, and since states
are represented by traces, it is natural that those tools focus on events, and thus treat I/O in
a highly generalized fashion that can barely be recognized as such by programmers. The
result is that in ProBE and FDR2, “I/O” operations are treated as pattern matching on
events, where “output” (!) asserts components that must match, and “input” (?) designates
wildcards that always match, provided any accompanying input datatype constraints are
satisfied. After a match has been identified among multiple processes, the full compound
event goes into the trace, and any wildcarded components (variables) are bound to copies of
the corresponding event components.

From the synthesis standpoint, it was judged that implementing ProBE/FDR2 style
pattern matching for events would burden the runtime mechanism with high overhead.
Furthermore, it was doubted that such generality was needed or even desirable in practical
systems. Instead, CSP++ for the most part reverts to the original meaning of channel I/O,
which is a valid subset of CSPm in any case.

The following restrictions have been adopted:

• cspt distinguishes between “atomic” events meant only for synchronization, and
“channel” events meant for either input or output.

• The general form of an atomic event is: chan[.s]*, where s is a numeric subscript
and []* represents zero or more instances.

• An output event is: chan[.s]*!d[.d]*, where s is as above, and d’s are data
values—numeric expressions or bound variables.

• An input event is: chan[.s]*?v[.v]*, where s is as above, and v’s are unbound
variables.

• An output event can transfer multiple data components into a single variable and
vice versa. In this skeletal example (which does not work exactly as written),
(cc!1.2.3 || (cc?x -> dd!x) || dd?a.b.c), x would receive 1.2.3, and then
a, b, and c would receive 1, 2, and 3, respectively.

• For synchronization and communication purposes, the channel name and all
subscripts must match. The synchronization set for interface parallel composition
should contain either the bare (unsubscripted) name of an atomic event {foo}, or
else the channel name within the closure set (production) notation {|chan|},
which will cover all variants of subscripts and data values.

 W.B. Gardner / CSP++: How Faithful to CSPm? 139

Thus it will be seen that subscripts, if any, must appear before an I/O operator, and that
only a single operator, and therefore transfer direction, is allowed. The number of
subscripts that appear with a given atomic or channel name must be consistent, or a
translation error will result. These restrictions impose considerable clarity on the usage of
channels in a specification.

While it may be advisable to use a given channel only for unidirectional
communication between a particular pair of processes, the translator does not enforce this.
Indeed, broadcast I/O is easy to arrange by means of one outputting process and multiple
inputting processes. However, multiple outputters of the same event are not allowed and
will result in a runtime error.

4. Extension of CSPm via User-coded Functions

The ability to link CSPm events with UCFs is an essential ingredient of selective
formalism. The basic idea is easy to explain.:

When CSP statements are used to model the behaviour of a system, the executions of
named events in CSP are intended for two purposes: (1) to synchronize and communicate
with other CSP processes; and (2) to mirror what the system does in reality. We could say
that purpose (1) is for internal use within the specification, but purpose (2) is for external
use. Thus, in the classic vending machine example, a coin.25 event corresponds to the
customer inserting a quarter, a choc event to pressing the chocolate candy button, and so
on. The concept of user-coded functions is essentially to provide some C++ code to bridge
the gap between the named CSP events and, in this case, the electronic switch inputs.

Just as two purposes for using events were identified in the previous paragraph, CSP++
makes the restriction that events can be used either for internal synchronization and
communication, or for linking to UCFs. Actually, the step in the design flow where the
environment model is removed frees up events that were synchronizing with the simulated
environment to be used externally with the real environment. To put it another way,
removing the environment model converts the events that were synchronizing it with the
implementation model from purpose (1) events into purpose (2) events that are now
candidates for linking with UCFs.

At first glance, this restriction may seem purely arbitrary. This question will be
revisited below, along with other issues raised by UCFs, after first looking more closely at
what UCFs can be used for.

4.1 Nature of UCFs

From the beginning of CSP++ development, it was intended that UCFs be put to practical
use in two primary roles, I/O and computation. The first role extends CSPm by providing
an interface to external hardware and software. The second role is an escape hatch from
CSPm – which was never intended to be a full-featured programming language – allowing
programmers to switch into C++ for tasks that would be too awkward to express in CSPm,
or too inefficient for execution in translated form.

Under the first role, three flavours of UCFs can be recognized, according to the three
types of events that invoke them. This is how their UCFs are invoked by CSP++:

1. Atomic event: call UCF, which returns when its processing is “done”
2. Channel input: call UCF, which returns when input has been obtained; input data is

bound to channel’s variables
3. Channel output: call UCF with output values as arguments; UCF returns when

output has been accomplished

140 W.B. Gardner / CSP++: How Faithful to CSPm?

Case 2 of channel input may involve blocking the process (thread) that is executing the
event, but other processes will continue to execute. Timeouts and interrupts are not
currently implemented in CSP++, but when they are, this raises the issue of applying them
to blocked UCFs.

In case studies to date, this first role has worked well, but plans for UCFs in the second
role proved to be too simplistic. The basic problem is illustrated by the following example:

Suppose my e-commerce system needs to calculate the sales tax for a purchase based
on the price of the goods and the country they will be shipped too. This calculation would
be nicely implemented by looking up the tax rate in a table and doing a multiplication. To
represent the lookup table in CSPm would be annoying, and there are no safety or deadlock
properties at stake, so this should be a perfect opportunity to drop out of CSPm into a C++
UCF. But how do we write the UCF-linked events in CSPm? The two tools at our disposal
are atomic events and channel I/O. The way to make channel I/O work is by visualizing a
black-box “ComputeSalesTax” process that has an input channel (for the price and country
code) and an output channel (for the tax). Then we might code the following to link to the
two UCFs:

MARKUP (price, destination) =
 putprice!price.destination -> gettax?tax -> ...

The problem here is that the mythical ComputeSalesTax process has to keep track of
internal state between the calls to the two UCFs linked to putprice and gettax. In the current
version of CSP++, this is left for the programmer to accomplish by means of static storage
shared by the two UCFs. This is not very satisfactory, since in the general case the UCFs
could be invoked at any time from multiple processes. Probably what is needed is a secure
mechanism for the framework to furnish storage to such UCFs on a per-process basis,
perhaps by extending the member data of the object that represents the process executing
the event.

The above illustrates the case where the UCFs are successively invoked from the same
process (i.e. the ends of the channels to and from the “black box” reside in the same CSP
process). There is another case, though. Suppose we wish to use UCFs to implement a
queue data structure. Then the ends of the enqueue and dequeue channels will very likely
be in different CSP processes. What we’re proposing here is to replace an entire CSPm
process with C++ code. This makes sense under two conditions: 1) the replaced process
doesn’t need its own thread of control; and 2) it was earlier represented as a CSPm process
that was subjected to verification, and we are convinced that the C++ replacement is
equivalent. It may be worth building up a library of tested UCFs, for example, of data
structures, that are known to be equivalent to given CSPm processes.

4.2 Issues Raised by UCFs

This subsection is organized as a series of four questions and answers.

1. How can we be sure that UCFs are not breaking the formalism, or giving us a mere
veneer of verification?

Since UCFs are replacing abstract named CSPm events that have no intrinsic meaning,
it does not really matter what UCFs do, with one exception: They must not go “behind the
back,” so to speak, of the CSPm control backbone by engaging in interprocess
synchronization or communication. As long as that principle is not violated, any formal
properties verified on the CSPm specification should still apply to the synthesized system.

 W.B. Gardner / CSP++: How Faithful to CSPm? 141

2. For input-linked UCFs, which party is responsible for validating input, the C++ or the
CSPm?

Validation can be done at either level. As an example, suppose we code the following
specification:

datatype Num = {1,2,3,4}
channel button : Num
GETINP = button?x:Num -> PROCESS(x)

When running ProBE or FDR2, if the environment of GETINP were to offer to engage

in button!5, no synchronization would take place. But the cspt translator ignores channel
declarations and datatypes, so if a UCF were linked to button?x, could it return 5 in x? It
could, but it should not. To obey the spirit of CSP, the UCF should validate its input to
ensure that it falls in the legal range and is not returned to the control backbone.
Alternatively, validation code can be written at the CSPm level, and UCF-linked events can
be used to reflect error conditions to the environment.

3. Events linked to UCFs currently cannot participate directly in choice. Why is that? Can

this restriction be overcome?

The reason for this restriction is that choice is implemented by “trying” an event (i.e.
offering to engage in it), and if it succeeds (meaning the offer is accepted), the successor
process is executed. If it does not succeed, each alternative is tried in turn. If none are found
to succeed, the process is blocked with all alternatives remaining on offer until one is
accepted. This kind of try-and-back-out protocol is difficult to coordinate with UCFs, since
their current calling sequence is designed to be exercised on a one-shot basis. A more
complex calling sequence, which allows direct participation in choice, may be provided in a
future version of CSP++. For example, this would be compatible with the programming of
polled input.

4. Events linked to UCFs cannot also be used internally for interprocess synchronization.

Can this restriction be overcome?

It is likely that the main circumstance where this need would arise is when a constraint
model is involved. Removing the environment model would normally take away the
internal use, but if a constraint model is present, the event may still be needed to
synchronize with those processes as well as to communicate with the environment.

If we allowed UCF-linked events to also synchronize with other CSPm processes, what
would be the implications? To answer this, we must start by identifying the precise time
when a UCF involved in synchronization should be called. The only sensible plan is to call
the UCF after the (two or more) parties arrive at the rendezvous, and of course it must be
called exactly once, in order to properly reflect CSP trace semantics. Now let’s look at the
possible participating events and decide what useful interpretations could be played out:

• Atomic events: After recognizing that it is the last party to arrive at the rendezvous,
the active party would call the UCF, and then complete synchronization processing
(including waking up the other parties).

• All parties are doing input (?): This is the broadcast case, from the outside
environment to multiple internal processes. The active party would call the UCF
and transfer the returned input to all parties, and then complete synchronization
processing.

142 W.B. Gardner / CSP++: How Faithful to CSPm?

• Multiple parties are doing output (!): This is not allowed in CSP++ (see section
3.3 above).

• One party is doing output, other parties are doing input: This is also a broadcast
case. The active party (who, as the last one to arrive at the rendezvous, knows the
output values) would call the UCF to perform the output externally, and then
transfer the output to the inputting parties prior to completing synchronization
processing.

The above analysis shows that lifting the restriction could be worthwhile. But the

programmer would need to understand clearly, on a case by case basis, exactly what a
linked UCF was expected to do.

5. Tested Platforms and Performance

By now, CSP++ has been ported to and tested on several different Unix variants, several
case studies have been created, and some performance measurements have been taken.
These three topics are presented below.

5.1 Platforms

Since CSP++ is currently based on GNU Pth threads, in principle it should be able to run on
any platform that Pth supports. So far it has been confirmed to work on Solaris 9 (i86),
Redhat Linux 9, Fedora Core 3, and Gentoo Linux, coupled with Pth-2 and the gcc-3 C++
compiler. It is available from the author’s website in a zip archive including:

• cspt compiler (binary executable)
• CSP++ framework (C++ header files and object library for classes)

5.2 Case Studies

Three case studies have been created. Each one features an initial design made in
StateCharts and the derived CSPm statements. In fairness, these are still at the level of
“toy” systems, chiefly for proof-of-concept purposes. They demonstrate CSP++ translating
and executing the full range of CSPm operators, and the integration of user-coded
functions. The references papers all have samples of CSPm and translated C++ code.

• DSS, Disk Server Subsystem—The implementation model includes a disk

scheduler and request buffer, with simulated disk driver and simulated clients
[7][1][4]. It was originally coded using csp12, but has been recoded in CSPm.

• ATM, Automated Teller Machine—The CSPm includes some verification
assertions, and the user-coded functions communicate with a MySQL database
[11][12].

• POS, Point-of-Sale Cash Register—This system (in progress) is based on porting
CSP++ to uClinux for the Xilinx MicroBlaze embedded processor core
implemented on a Virtex-II FPGA [13].

The CSPm and C++ source code for DSS and ATM are available for downloading

from the author’s website.

 W.B. Gardner / CSP++: How Faithful to CSPm? 143

5.3 Performance

The DSS case study has been useful for performance metrics, being easy to exercise in a
loop (e.g. 20,000 simulated disk requests). In order to make a comparison with a similar-
purpose commercial synthesis tool, the DSS system, going back to its StateCharts model,
was input to Rational Rose RealTime (RRT, now called Rational Technical Developer).
RRT accepts StateCharts as part of a UML model, and generates C++ source code that
compiles and links with its own message-driven runtime framework. The comparison is not
very ideal, since the operating systems differed (Linux vs. Windows 2000) and also the
compilers (g++ vs. Microsoft Visual C++), but tests were performed on the same hardware
platforms. The timings (in seconds) are shown in Table 1.

Table 1. Timing for 20,000 Repetitions of DSS
Tool Run Time Operating System, Threads Compiler, Optimization
CSP++ 2.1 1.60 s Redhat Linux 9,

LinuxThreads
gcc 2.96 –O2

RRT 1.47 s Windows XP MS VC++ 6.0
CSP++ 4.0 27.03 s Redhat Linux 9, Pth gcc 3.2.2 –O2

In measurements with an earlier version 2.1 of CSP++ based on LinuxThreads, the

CSP++ implementation of DSS was comparable to the RRT implementation in run time.
After porting to Pth, performance deteriorated alarmingly; the cause is under investigation.
If Pth is the culprit, another portable thread package will be sought.

6. Related Work

One category of related work is based not on coding in CSP directly, but on providing a
library of classes or functions for conventional programming languages that obey CSP’s
semantics. Rather than promoting direct verification of specifications, this is more an
attempt to give software practitioners reliable, well-understood components to build with.
Examples of libraries inspired by CSP communication semantics include, for Java, CTJ
(formerly called CJT) [14], JCSP [15], and JACK [16]; for C, CCSP [17] and libcsp [18];
and for C++, C++CSP [19] and CTC++ [20]. JCSP and CCSP are a related tool family, as
are CJT and CTC++.

Another category features a “straight line” route to verification, like CSP++’s
approach, starting with CSP that can be directly verified, and carrying out automatic
translation to an executable program. An older tool called CCSP [21] translated a small
subset of CSP to C. Recently, the emergence of first-category libraries has facilitated this
strategy, and there is now direct translation of CSPm into Java (based on CTJ and JCSP)
and C (based on the newer CCSP) [22].

7. Future Work

A good deal of future work has already been implied above in the listing of “divergences.”
Another potentially fruitful area is performance optimization. Currently, the runtime
framework always carries out full environment searching for every event. This allows for
dynamic process creation, recursion, and application of renaming and hiding. However, this
capability represents overkill for many applications, since CSPm is often used to initially
construct a static process structure which is subsequently maintained throughout execution.
In that typical system architecture, the translator would be capable of identifying and

144 W.B. Gardner / CSP++: How Faithful to CSPm?

binding synchronizing events to one another at translation time, rather than letting the
framework search for them over and over again. This would result in significant savings at
run time.

CSP++ has always been aimed at embedded systems, but application to real-time
systems will require introducing some notion of time. CSP++ is based on the original CSP
notation, which does not explicitly model time. While it is already possible to synthesize
specifications based on “tock” timing [9], the constant synchronizations on a periodic tock
event throughout the specification would be grossly inefficient. Instead, it is probably
preferable to implement operators from Timed CSP [23]. However, this raises the question
of verification, since the Formal Systems tools do not recognize those operators. Adding
timed operators to CSP++ would likely suit it for building “soft” real-time systems, but it
will probably not be possible to offer the latency guarantees required for “hard” real-time
applications.

Further on the theme of targeting embedded systems, porting is underway of CSP++ to
an SoPD (system on programmable device) platform [13]. If Pth proves too difficult to port
to this platform, there is the option of porting the framework’s thread model to a suitable
RTOS. This can be accomplished by changing only the task class.

Finally, some work has been reported in synthesizing hardware circuits from CSP via
Handel-C, an algorithmic hardware description language that has CSP-like constructs [24].
We would like to partition a CSPm specification into software- and hardware-based
processes, and synthesize the channel communication between them. This falls under the
heading of hardware/software codesign [25]. The aim is to make CSP++ useful for building
embedded systems with both hardware and software components, and for SoC (system on
chip).

8. Conclusion

To return to the question posed by the title, how faithful is CSP++ to CSPm? The short
answer is, faithful enough to be useful. The longer answer is, it doesn’t do everything
CSPm does, but results suggest that the subset it does do replicates the semantics of CSP.
Admittedly, this has not been formally proven.

The development of CSP++ has shown that selective formalism based on software
synthesis can be a viable software development technique. Furthermore, the recent
commercialization of some CSP-based toolkits indicates that some in industry are seeing
practical value to CSP-based approaches. But how can more acceptance of such approaches
be achieved? The rest of this conclusion speculates on this topic.

First, we could point out that even without carrying out verification, which admittedly
takes training to do well, the CSP++ approach is attractive on its own right. Here are
several reasons:

1. Some verification is “automatic” anyway, particularly checking for deadlocks, so if
one uses CSPm and FDR2, that will come as a beneficial side effect.

2. Software synthesis is a productivity tool and a way of maturing the software
engineering process by putting more emphasis on the specification as the primary
design artifact.

3. CSP is a natural, disciplined way to organize the design of concurrent systems, and
should make them more reliable, even without verification.

4. CSP is not one of the more obscure formal notations, therefore portions of CSPm
specifications can be shown to clients as a way of getting to the bottom of what they
really mean by prose requirements.

 W.B. Gardner / CSP++: How Faithful to CSPm? 145

5. StateCharts are also a nice way to design systems and are useful to show people, and
it is easy to convert StateCharts to CSPm for the purpose of software synthesis via
CSP++.

Undoubtedly, using CSP with verification is much better than without. While the

paradigm of selective formalism means that a company would not have to train every
software developer in CSP, some CSP gurus would necessarily be required. What human
organizational elements are needed to facilitate this?

First of all, it’s easy to speculate that sending people for one or two complete
university courses in formal methods and CSP is not going to have wide appeal to many
managers. Therefore, we would like to find effective ways to bring a typical college-trained
programmer up to a level of competency in CSP sufficient to understand, write, and verify
CSPm specifications. For this purpose, it is unnecessary to understand deeply the theory of
CSP or be able to do proofs. One does have to learn the operators, see and write samples of
code according to the “four roles of CSPm” (section 1.2), plug them into ProBE and play
with them. In terms of CSP++ specific training, they must learn how to use the synthesis
tools and how to link in user-coded functions that obey the restrictions. The concepts
behind formal verification are more abstract, but minimal competency using FDR2 is also
important. This includes learning how to make simplifications for the sake of verification.
Even if the subset of gurus who handle the verification is small, the under-guru level of
CSPm practitioners should at least understand what formal verification is about.

From the standpoint of training a cadre of CSPm practitioners, we feel that existing
literature on CSP is largely missing a “cookbook” aspect comparable to the popular “Gang
of Four” design patterns book [26]. The purpose of that book was to enlighten programmers
who already knew the basics of object-oriented programming that “To accomplish common
task X, with which you’re likely familiar, you code up your classes thusly.” This kind of
cookbook approach spares programmers from “reinventing the wheel,” and, more
important, enlightens them on different useful models of “wheels” they would not have
imagined for themselves.

Can a similar kind of “CSP design pattern cookbook” be provided for would-be CSPm
programmers? This would be a great help in popularizing CSP-based techniques, such as
CSP++.

Acknowledgments

This research was supported by NSERC (Natural Science and Engineering Research
Council) of Canada.

References

[1] W.B. Gardner, and Micaela Serra. CSP++: A Framework for Executable Specifications, chapter 9. In
Fayad, M., Schmidt, D., and Johnson, R., editors. Implementing Application Frameworks: Object-
Oriented Frameworks at Work. John Wiley & Sons. 1999.

[2] Mantis H.M. Cheng. Communicating Sequential Processes: a Synopsis. Dept. of Computer Science,
Univ. of Victoria, Canada, April 1994.

[3] FDR2 web site, Formal Systems (Europe) Limited. http://www.fsel.com [as of 5/16/05].
[4] W.B. Gardner. Bridging CSP and C++ with Selective Formalism and Executable Specifications, In

First ACM & IEEE International Conference on Formal Methods and Models for Co-design
(MEMOCODE '03), Mont St-Michel, France, June 2003, pp. 237-245.

[5] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall. 1985.

146 W.B. Gardner / CSP++: How Faithful to CSPm?

[6] W.B. Gardner. Converging CSP Specifications and C++ Programming via Selective Formalism, ACM
Transactions on Embedded Computing Systems (TECS), Vol. 4, No. 2, May 2005, pp. 1-29. Special
Issue on Models & Methodologies for Co-Design of Embedded Systems.

[7] W.B. Gardner. CSP++: An Object-Oriented Application Framework for Software Synthesis from CSP
Specifications. Ph. D. dissertation, Dept. of Computer Science, Univ. of Victoria, Canada. 2000.
http://www.cis.uoguelph.ca/~wgardner/, Research link.

[8] GNU Pth – The GNU Portable Threads. http://www.gnu.org/software/pth/.
[9] Failures-Divergence Refinement: FDR2 User Manual, May 2, 2003, Formal Systems (Europe) Ltd.
[10] A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.
[11] S. Doxsee, and W.B. Gardner, Synthesis of C++ Software from Verifiable CSPm Specifications, to

appear in: 12th Annual IEEE International Conference and Workshop on the Engineering of Computer
Based Systems (ECBS 2005), Greenbelt, MD, Apr. 4-5, pp. 193-201.

[12] S. Doxsee, and W.B. Gardner, Synthesis of C++ Software for Automated Teller from CSPm
Specifications, 20th Annual ACM Symposium on Applied Computing (SAC ‘05), Track: Software
Engineering: Applications, Practices, and Tools, poster paper, Santa Fe, NM, Mar. 2005, pp.1565-1566.

[13] J. Carter, M. Xu, and W.B. Gardner, Rapid Prototyping of Embedded Software Using Selective
Formalism, to appear in: 16th IEEE International Workshop on Rapid System Prototyping (RSP 2005),
Montréal, June 8-10, pp. 99-104.

[14] G. Hilderink, J. Broenink, W. Vervoort, and A. Bakkers, Communicating Java Threads, Proc. of the
20th World occam and Transputer User Group Technical Meeting, Enschede, The Netherlands, 1997,
pp. 48–76.

[15] P.H. Welch, and J.M.R. Martin, A CSP Model for Java Multithreading, International Symposium on
Software Engineering for Parallel and Distributed Systems (PDSE 2000), Limerick, Ireland, 2000, pp.
114-122.

[16] L. Freitas, A. Cavalcanti, and A. Sampaio, JACK: A Framework for Process Algebra Implementation in
Java, Proceedings of XVI Simpósio Brasileiro de Engenharia de Software, Sociedade Brasileira de
Computacao, Oct. 2002.

[17] J. Moores, CCSP—A Portable CSP-based Run-time System Supporting C and occam, in B.M. Cook,
editor, Architectures, Languages and Techniques for Concurrent Systems, vol. 57 of Concurrent
Systems Engineering series, WoTUG, IOS Press, Amsterdam, the Netherlands, April 1999, pp. 147-
168.

[18] R.D. Beton, libcsp—A Building mechanism for CSP Communication and Synchronisation in
Multithreaded C Programs, in P.H. Welch and A.W.P. Bakkers, eds., Communicating Process
Architectures 2000, vol. 58 of Concurrent Systems Engineering series, IOS Press, Amsterdam, The
Netherlands.

[19] N.C.C. Brown, and P.H. Welch, An Introduction to the Kent C++CSP Library, in J.F. Broenink and
G.H. Hilderink, eds., Communicating Process Architectures 2003, vol. 61 of Concurrent Systems
Engineering Series, IOS Press, Amsterdam, The Netherlands, September 2003, pp. 139-156.

[20] J.F. Broenink, D. Jovanovic and G.H. Hilderink, Controlling a Mechatronic Setup Using Real-time
Linux and CTC++, S. Stramigioli (Ed.), Proc. Mechatronics 2002, Enschede, The Netherlands, pp.
1323-1331.

[21] B. Arrowsmith, and B. McMillin, How to Program in CCSP, Technical Report CSC 94-20, Department
of Computer Science, University of Missouri-Rolla, August 1994.

[22] V. Raju, L. Rong, and G.S. Stiles, Automatic Conversion of CSP to CTJ, JCSP, and CCSP,
Communicating Process Architectures 2003, vol. 61 of Concurrent Systems Engineering Series, IOS
Press, 2003.

[23] Steve Schneider, Concurrent and Real Time Systems: The CSP Approach, John Wiley & Sons, Inc.,
New York, NY, 2000.

[24] Jonathan D. Phillips, and G.S. Stiles, An Automatic Translation of CSP to Handel-C, Communicating
Process Architectures 2004, vol. 62 of Concurrent Systems Engineering Series,IOS Press, pp. 19-37.

[25] Frank Vahid and Tony Givargis. Embedded System Design: A Unified Hardware/Software Introduction,
John Wiley & Sons, 2002.

[26] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

