Communicating Process Architectures 2005 71
Jan Broenink, Herman Roebbers, Johan Sunter, Peter Welch, and David Wood (Eds.)
IOS Press, 2005

JCSP-Poison: Safe Termination of CSP
Process Networks

Bernhard H.C. SPUTH and Alastair R. ALLEN

Department of Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK
bernhard@erg.abdn.ac.uk , a.allen@abdn.ac.uk

Abstract. This paper presents a novel technique for safe partial or complete process
network termination. The idea is to have two types of termination messages / poison:
LocalPoison and GlobalPoison. Injecting GlobalPoison into a process network results
in a safe termination of the whole process network. In contrast, injected LocalPoi-
son only terminates all processes until it is filtered out by Poison-Filtering Channels.
This allows the creation of termination domains inside a process network. To make
handling of a termination message easy, it is delivered as an exception and not as a
normal message. The necessary Poisonable- and Poison-Filtering-Channels have been
modelled in CSP and checked using FDR. A proof of concept implementation for
Communicating Sequential Processes for Java (JCSP) has been developed and refined.
Previously, JCSP offered no safe way to terminate the process network. When the
user terminated the program, the Java Virtual Machine (JVM) simply stops all threads
(processes), without giving the processes the chance to perform clean up operations. A
similar technique is used to perform partial termination of process networks in JCSP,
making it unsafe as well. The technique presented in this paper is not limited to JCSP,
but can easily be ported to other CSP environments. Partial process network termi-
nation can be applied in the area of Software Defined Radio (SDR), because SDR
systems need to be able to change their signal processing algorithms during runtime.

Keywords. JCSP, SDR, Partial Process Network Termination, Poisoning, Poionable-
Channel, Poison-Filtering-Channel, Termination Domains

Introduction

In CSP [1,2] applications consist of processes. A process is a sequence of instructions. In
complex applications multiple processes execute concurrently. To avoid race conditions when
accessing global resources, processes are not allowed to share global resources without syn-
chronisation. Processes communicate with each other by using unidirectional channels. A
communication over a channel only takes place when receiver and sender processes are co-
operating. This rendezvous of processes is used for synchronisation in CSP. The combination
of processes and channels formgracess network

Process networks can be visualised in the form of block diagrams. Processes are rep-
resented by blocks. Channels are represented by arrows, with the arrow head indicating
the direction of communication of the channel. Figure 1 shows a simple process network,
where thePRODUCERprocess sends messages, over a channel with mesgengeto the
CONSUMERprocess.

To terminate a process network all processes of it need to terminate. In the example
given this means the boPRODUCERaNdCONSUMERhave to terminate. In CSP a process
only terminates once it has fulfilled its task. A problem occurs when a process does not know
when it has fulfilled its task. This is, for instance, the case for processes that are part of a
signal processing chain. A signal processing chain consists of three parts: data source, signal

72 B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks

PRODUCER messenger CONSUMER
(Process) (Channel) (Process)

Figure 1. Simple process network diagram

processing part and a data sink, see figure 2. In such a chain, only the data source is able to
determine that all signal processing has been performed. And this only if the data processing
is done off-line, meaning that the signal data was provided in the form of a file. If the signal
processing is performed online not even the data source knows when it has reached its end
of usefulness. This decision is made by the user, who then has to close the application to
stop the signal processing. But even if the data source is able to determine that the task is
fulfilled, it has no way of telling the other processes of the chain. This is caused by the way
signal processing processes operate, it is a constant loop of: inputting a frame of signal data,
processing the frame and then outputting it. In the case of no signal data arriving anymore,
these processes will wait infinitely for new signal data and thus never terminate. The follow-
ing text will discuss different methods to enable safe termination of process networks. Fur-
thermore, in Software Defined Radios (SDR)[3,4], it is necessary to exchange software mod-
ules, without affecting their execution environment, thus partial process network termination
is necessary and a technique for it will be developed and discussed as well in this paper. Due
to previous work by us in the field of signal processing and CSP done using JCSP [5], the
implementation of the techniques shown in this paper are based upon JCSP.

Data Signal Signal .
. Data Sink
Source DataPath * Processing

Figure 2. Principle Signal Processing Chain

1. Terminating Networks in JCSP

In this section the various available techniques of process network termination in JCSP [6]
are introduced. The shortcomings of these techniques are discussed as well.

1.1. Process Network Termination in JCSP

JCSP [6] is an environment allowing the development of Java applications following CSP
principles. In JCSP, processes are represented by Java threads. The Java Virtual Machine
(JVM) differentiates between two types of threads, user threads and daemon threads. The
definition of a daemon thread, according to [7, Page 26], is: "A daemon is simply a thread that
has no other role in life than to serve others”, with others meaning other threads. By contrast,
a user thread serves the user of the program. For the JVM, a program which consists only of
daemon threads does not perform any purpose and is terminated. As this can lead to unwanted
program termination, all threads are created as user threads by default and can be converted
to daemons afterwards. JCSP creates all threads as daemons. Only the thread created by the
JVM itself, when starting the program, is a user thread. Termination of a complete JCSP
process network can therefore be done by terminating the thread created by the JVM. This
type of process network termination is simple to use but in most cases utterly unsafe. This
is due to the fact that individual processes cannot perform clean up operations prior to their
termination.

B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks73

1.1.1. Partial Process Network Termination in JCSP

In JCSP it is possible to spin off process networks usingRfugessManager class. This

class also provides the ability to stop the process network, that it spun off. According to the
documentation this function should not be used. JCSP therefore, offers no special support for
network termination. Instead the user must arrange for network termination himself.

1.1.2. Possible Solution

One possible way to terminate a process network is by broadcasting the termination mes-
sage to all processes, of a process network. Upon reception of this message, the processes
terminate. This can be achieved in JCSP by sharing a message variable among the group
of processes to be terminated. There are two types of processes: one broadcaster process
and multiple receiver processes. Access to this variable is synchronised on a JCSP Barrier
shared among all processes. The JCSP Barrier splits each processing cycle into two phases,
to comply with the CREW (Concurrent-Read, Exclusive-Write) concept:

e Inthe first phase all receiver processes check the shared message variable. Broadcaster
process will not change the message variable during that time.

e In the second phase the broadcaster may change the shared message variable. The
receiver processes must not look at the shared message variable.

Once the broadcaster decides to terminate the system, it changes the message variable
and all processes, including the broadcaster, will see the termination message the next time
they check the variable. This way all processes terminate in the same cycle. This approach is
having a number of drawbacks:

e Broadcaster and receiver processes need to synchronise twice per cycle on the JCSP
Barrier. This is an computing intensive task.

e It will only work for systems where all processes have the same cycle length. In
signal processing this is not necessary the case. There a combiner process may require
multiple signal data frames, from the process up the stream, to construct a single
frame which is required by the later stages of processing. For the process upstream a
single cycle is the creation of one frame, for the combiner process the cycle length is
as well the creation of one frame, but it requires multiple frames from the upstream
process to do so. If now the upstream process tries to synchronise with the JCSP
Barrier it will have to wait for the combiner process as well to synchronise. But with
the combiner process not having finished its cycle, it will not synchronise, instead it
will wait for a frame to arrive from the process upstream. The result is a deadlock.
Therefore, if in such a system the previous mentioned technique for broadcasting is
used, the developer has to make sure that all processes have the same cycle length.
In the example given, the upstream process would have to produce multiple output
frames during one cycle.

1.2. Introduction to Graceful Termination

Not being able to perform clean up operations may lead to data corruption, or unnecessary
resource consumption. In [8] P.H. Welch discusses different ways to perform safe termination
of process networks, and introduces a technique cghaceful terminationin this technique

a special message, the poison, is sent to one process of the network, this is the reason why
this technique is also referred tojasisoning

74 B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks

A process receiving poison:

1. Performs all necessary clean up operations;

2. Placeswhile-no-poison-black-hole-messageocesses, also known #&ack-hole
processes at all its channel inputs. Such processes swallow any arriving messages, but
terminate when poison is received.

3. Sends poison over all its channel outputs, to poison all processes it sends data to.

4. Does items 2. and 3. above parallel and waits for all installed processes an the
poison-sends to terminate. Then it terminates.

While this technique looks good at first glance there are several problems when trying to
use it in practice. Why this is the case will be discussed in the following.

1.3. JCSP and Graceful Termination

The implementation of graceful termination as proposed in [8], relies on the ability of pro-
cesses to differentiate between incoming normal messages and poison. But how to differen-
tiate between a poisonous and a normal message? For the Object-channels available in JCSP,
it can be easily done by defining a class representing poison, so the receiver of a message
has only to perform a type checking operation. For integer-channels, this is not possible, as
only integer values are passed. One possible solution is to send two integer values for a nor-
mal message. The first integer value indicating the poison or not (for instance use 0 for non
poisoned and 1 for poisoned), the second the value to be transferred. In case of poison only
the first integer is transmitted. This will work, but requires the double amount of bandwidth
and increases the processor drain during normal operation. As this is undesirable, a different
delivery mechanism for poison has to be found.

(a) Prior to termination (b) After termination of process B

Figure 3. Complex process network before and after termination of process B

A terminated process does not any longer fetch messages from its channel-inputs. If
now processes try to send messages over the associated channels, these processes will wait
indefinitely for the receiving process to fetch the message: these processes deadlock. To avoid
this situation, the terminating process needs to somehow service its channel inputs. This is
done by connecting each channel input with a process that simply swallows any incoming
message, these processes are calieck holeprocesses. This effectively prevent the process
network from deadlocking.

If in the process network shown in Figure 3(a), prod@ssrminates, it creates twilack
Hole processes for its two channel inputs and sends poison to its channel output. Process
C terminates, without creatingBlack Holeprocess, due to it only being connected to one
channel over which it received poison. As illustrated in Figure 3(b), the net result of the ter-
mination operation is that there are now two black hole processes, swallowing any messages
arriving fromAl andA2. These processes will cease to exist once procéssandA2 each

B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks75

decided to terminate and send poison down their channels. The result of applying the graceful
termination technique to this network with proc&sletermining when to terminate, is an
incomplete process network termination. Lets investigate how a complete network termina-
tion can be achieved using graceful termination and the possibility of every process of the
network being able to initiate a complete termination.

EB Ei=yl
DD B=ED
5 5

(a) Process network ready for complete termi- (b) Process network modified to allow termina-
nation initiated by B tion initiation by any process

Figure 4. Complete terminatable complex process network for different poison originators

With the poison represented as a message, every incoming message needs to be checked
whether it is poison or not. This constant checking not only results in an overhead, but also
makes the resulting code more complex, due to the additional code necessary for checking
and handling. Also, messages can only travel in the direction of the channel. For processes
which act as data source, this can result in extra channels, just to transport the termination
message. This camouflages the data flow, and makes use of these processes more complex.
To be able to terminate the complete process network of figure 3(a), assuming that process
injects the poison, it would be necessary to introduce two additional channels. The resulting
process network is shown in figure 4(a). When the decision to inject poison can only be made
by processC, then a total of three additional channels are required. The data flow of the
process network becomes totally hidden if we have the goal that any process should be able
to initiate a complete network termination, see figure 4(b). Of course the complexity of every
process increases as it has to check all channel inputs for incoming messages.

Figure 5. One2Any-Channel with multiple receiver processes

In JCSP, channels are allowed with multiple channel-inputs and outputs, such as the
One2Any-, Any20ne- or Any2AnyChannels. These channel types are necessary to have a
way to implement master-worker environments, where multiple identical workers operate
upon requests issued by one master. Another area is that of environments where multiple
processes want to submit similar requests to one process. This is, for instance, the case when
a process is used to guard a resource from concurrent access. An example for a process
network not terminating correctly using this approach, is given in Figure 5. To terminate the
process network shown it is necessary to relay a termination message to all processes that are
listening on this channel. But how does procadsiow how many processes are listening on
the channel?

76 B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks

1.4. Summary of Problems of Graceful Termination and JCSP

The previous sections detailed the problems poisoning poses in general and especially for
use in the JCSP environment. In the following our JCSP-Poison approach will be introduced,
which tackles these problems:

e Every message received by a process has to be checked, as to whether it is poisonous.
For channels that are heavily used, this may waste a lot of computing resources.

e Termination of a process only having an outgoing channel, from outside this process,
is not possible, unless a dedicated termination channel is provided. This is caused by
delivering the poison as a message, which can only travel in one direction over the
channel.

e Partial process network termination is handled by the graceful resetting technique.
But requires to adjust all processes connecting to the sub-network.

e JCSP channels can have multiple writer and reader processes, but only one writer
and one reader can exchange messages at any one time. To deliver poison in such a
system, the sending process would need to know how many processes are connected
to each channel over which it is sending poison over. For a process this is impossible
to know, as the decision is made by the developer of the overlying process network.

The following section will detail how these problems have been resolved for JCSP. Sec-
tion 3 will cover the actual implementation and how to use it. A CSP model for the JCSP
implementation will be developed in section 4. The paper closes with drawing conclusions
and an outlook of further work in the area.

2. JCSP-Poison

The first part of this introduction to JCSP-Poison covers improvements for complete process
network termination, with the second part detailing the changes to support partial process
network termination.

JCSP-Poison tries to provide clean process network termination for JCSP using the
graceful termination technique introduced in section 1.2. In order to make this technique
feasible in JCSP, the previously mentioned problems need to be overcome.

The core problem of graceful termination in conjunction with JCSP is that poison is
defined as a message. A message can only be sent to one recipient: other processes listening
on this channel will be unaware of the situation. The poison also only affects the processes
that receive it but not the channels that carry it.

In JCSP-Poison, poison is not a message but an object that is passed from processes to
channels and vice versa. A special mechanism for propagation is used. The propagation of
poison is done by injecting it into a channel instead of using the normal channel-output meth-
ods. A channel which got injected with poison is considered to be poisoned. The delivery of
the poison to a process is done by throwing an exception, whenever a process tries to interact
with a poisoned channel. This is a similarity to the poisoned channel of Gerald Hilderink,
mentioned in [9], where aArrrghExceptionis thrown at anyone, tries to use a poisoned
channel. What is unclear here is who is allowed to poison the channel, only the writer end or
is it possible for the reader end to do this also. The channels of C++CSP [10] both channel
ends are able receive and deliver poison. The direction independence of the injection method,
makes it possible for the poison to travel in the reverse direction of the data flow of a channel,
thus avoiding the need to add extra channels for this purpose. Once a channel gets poisoned
it wakes up any processes currently waiting for a rendezvous and throws a poison exception
at them.

B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks77

This technique solves the following of the earlier mentioned problems:

1. No need to check every incoming message for poison, therefore clearer handling code
and less computing resource usage;

2. The poison can propagate backwards over the channels, making correct termination
of a process network easier to implement;

3. Due to the channel rejecting any interaction with it, no black hole processes are re-
quired to avoid deadlocks. This once again saves computing resources.

4. Poison spreads to all processes using a channel, even when channels with multiple
inputs and outputs are used;

5. Handling of poison messages is enforced, due to the delivdtyigs Exception and
the Java compiler enforcing exception handling.

This technique is optimised to terminate a complete process network. Its working is sim-
ilar to a bulldozer destroying everything in its path: it terminates every process that crosses
its path. In this state it is unsuitable for terminating only parts of a process network. To ter-
minate sub-networks is a requirement for exchanging software modules in an SDR-Platform.
An SDR-Platform is basically split into a signal processing part and a data acquisition part.
The signal processing part is represented by exchangeable software modules. The data acqui-
sition part runs constantly, in the case of it terminating it terminates the software module as
well.

2.1. Poisoning of Sub-Networks

To poison sub-networks it is necessary to limit the propagation of poison in the process
network. To do so one could install channels that do not let poison pass, at the borders of the
sub network. This approach has the flaw that it effectively prevents the complete termination
of the process network. To avoid this, it is necessary for the channels at the borders to be
able to differentiate between a complete and a sub-network termination message. This can
be achieved by having multiple types of poison, in the case of JCSP-Poison two types are
defined:

e GlobalPoison: GlobalPoison is distributed throughout the complete Process Network,
it is never filtered out. This type of poison is used to terminate the complete process
network.

e LocalPoison: LocalPoison is used to terminate sub-networks and is filtered out by the
channels at the borders.

Both types of poison are derived from a common base class. With these two types of poison
comes the need to ensure that the type of poison does not change during propagation. There-
fore, thePoisonException carries a reference to the original poison exception, which can be
retrieved in the exception handler and injected into the other channel ends of the process.
The two types of poison and the different channels provided are the main difference between
JCSP-Poison and its predecessors.

2.2. Poisonable-Channel

A Poisonable-channel can be in two states. The first one being normal operation, in this
state the channel acts as a normal channel. However, once the channel is in the poisoned
state, all requests to it, whether reading or writing to it, will result in the channel issuing
an exception. To change from normal state into poisoned state, the channel offesgithe
injectPoison(Poison) method. The nam#jectPoisonwas chosen because the process that
poisons the channel has the choice between two types of poison. Another reason was that it
seemed a nice connection to the real world, where poison is injected into an organism.

78 B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks
2.3. Poison-Filtering-Channel

A Poison-Filtering-Channel is a channel that acts as a normal channel, but depending on the
type of poison received acts differently. When receivingl@balPoison the channel will act
like a poisoned Poisonable-Channel, thus allowing for a complete process network termina-
tion. The situation is different if &ocalPoison is received. In this case, the poison will not
be relayed at all but silently disposed of and the Poison-Filtering-Channel will not change
in to the poisoned state. It is the responsibility of the developer not to operate on a channel
end previously poisoned. Use of these channels is at the borders of sub-networks, to avoid
LocalPoison leaving the sub-network. These channels have to be used with care, as they can
easily result in systems that deadlock. This is, for instance, the case when two sub-networks
are connected over a Poison-Filtering-Channel and one of these networks terminates using
a LocalPoison. The other sub-network not knowing about this termination, might now try
to communicate with the terminated network over the channel, but will wait for a reply in-
definitely. Poison-Filtering-Channels should only be used in cases where the sub-network is
meant to be exchanged. In this case they ensure that no message is lost during the change of
the sub-networks.

One feature concerning Poison-Filtering-Channels is when they have multiple channel-
inputs or outputs. As they effectively block ahgcalPoison arriving and do not relay it at
all, it is possible to terminate only one connected sub-network. This allows the number of
worker process sub-networks in a master-worker system to be adjusted dynamically.

2.3.1. Poison-Injector-Channel

A special case of Poison-Filtering-Channel is the so called Poison-Injector-Channel. This
channel behaves normally like a normal One20ne Poison-Filtering-Channel, lie:atioi-
son will affect it. But it is possible for a process to poison one channel end,withlPoison,
using either thénjectLocalPoisonIntoWriter() or injectLocalPoisonIntoReader().

This channel makes it possible to injecLécalPoison into a sub-network to terminate
it. At the same time a complete process network termination is not hindered, i.e. no special
precautions have to be made.

An implementation of this channel exists, but so far no CSP model has been created.

3. JCSP Implementation

In the previous sections the ideas behind JCSP-Poison were discussed. The following section
discusses the implementation of poisoning in JCSP-Poison. It starts with the definition of
poison in JCSP, followed by a definition of the interface exposed by the poisonable channels.

3.1. Representation of Poison

In JCSP-Poison, poison is represented by two clagdebalPoison andLocalPoison. Both
classes are derived from the interfa®eison. This allows the use of functions which are
indifferent to the type of poison they handle. The classes representing poison have no further
functionality. The class diagram in figure 6 shows the relationshipabn and its children.

3.2. Delivery of Poison to a Process

In JCSP-Poison, poison is delivered to a process not as a message, but as an exception. The
classPoisonException is used for this task. The exception has a member which can hold

an instance oPoison. The methodPoison getPoison() is used to retrieve the value of this
member. This new property requires a redefinition of the JCSP channel ends, detailed in
section 3.3.4.

B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks79

«interface»
Poison
GlobalPoison LocalPoison

Figure 6. Class Diagram of the different types of Poison

public interface Poisonable {
/*-k
* Injects Poison into a Channel,
* @param Poison Poison to be injected.
*/
public void injectPoison(Poison poison);

Listing 1: Definition of thePoisonable interface

3.3. Poisonable-Channel Interface

A JCSP-Poison channel provides three methods to the processes using it:

1. Poisoning the channel.
2. Sending a message.
3. Receiving a message.

In the following these three methods will be detailed.

3.3.1. Poisoning a Channel

For JCSP-Poison to work, it is important to be able to poison a channel. The question is how
to do that. With poison not being a message in JCSP-Poison, and its need to travel backwards
over a channel, it was not possible to use the nof@igéct read() andvoid write(Object)
methods. For this reason a new methedld injectPoison(Poison), has been added to the
JCSP channel interface. This method is available to both channel ends, accepting any type of
poison. Once this method is called, and decided that the channel should be poisoned, it will
wake up any process currently waiting for a channel transaction, and a poison exception will
be thrown.

The implementation of theoid injectPoison(Poison) differs between the Poisonable-
and Poison-Filtering-Channels. Poison-Filtering-Channels only become poisoned by a Glob-
alPoison. This is the only difference between these two JCSP channel types.

Poisonable Interface: As both channel ends allow for injecting poison into the channel an
interface calledPoisonable has been defined which contains the definition ofithiectPoi-
son(Poison poison) method. Its source is given in listing 1.

3.3.2. Sending a Message

In JCSP sending a message is done usingditewrite(Object object) method. To be able
to deliver the poison exception, this method had to be enabled to throReidue Exception.

80 B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks

public interface PoisonableChannelOutput extends Poisonable {
/**
* This method sends a message over a channel.
* @param object
* Reference to the message to send.
* @throws PoisonException
* Is thrown when the channel has been poisoned

*/
public void write(Object object) throws PoisonException;
}
Listing 2: ThePoisonableChannelOutput interface
public interface PoisonableChannellnput extends Poisonable {
/**
* This method reads a message from the channel.
* @return The message read from the channel
* @throws PoisonException
* Is thrown, when the channel has been poisoned.
*/
public Object read() throws PoisonException;
}

Listing 3: ThePoisonableChannellnput interface

3.3.3. Receiving a message

To receive messages from a channel in JCSP the mélhpdt read() is used. Like the write
method previously this method had to be extended to be able to throw exceptions of type
PoisonException.

3.3.4. Channel Ends

A channel in CSP has two ends, a writer and a reader channel end. In the following paragraphs
the definition of these channel ends in JCSP-Poison is detailed.

Writer Channel End: The complete writer channel end for the Poisonable-Channel is given
in listing 2. To allow the writer process to poison the channel, this interface is derived from
the Poisonable interface of listing 1.

Reader Channel End: The reader channel end of a JCSP-Poison channel is a combination
of thePoisonable interface and the modified read method. Its definition is shown in listing 3.

Relationship of Channels and Channel End3:he class tree of figure 7 shows the relation-

ship between the three interfaces defined previously. This concludes the definition of the in-
terface exposed by the JCSP-Poison channels. A derivation of the poisonable channels from
the standard JCSP channels removes the distinction between the normal channels and poi-
sonable channel ends. It is therefore not advisable. It might seem to be a good idea from the
perspective of code reuse. This is actually not the case, as all methods of the original JCSP
channel implementation had to be modified, so no code could be reused by derivation. The
JCSP channel implementation code was reused by means of copy and paste, so the system
did not start from scratch. Only the implementation of the Poisonable-Channel and Poison-
Filtering-Channel constructs were added to the system, leaving the rest of JCSP untouched.

B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks81

«interface»
Poisonable
«interface» «interface» Guard
PoisonableChannelOutput PoisonableChannellnput

Tt =

PoisonableAltingChannelinput

‘rj

PoisonableOne20neChannel PoisonFilteringOne20neChannel

Figure 7. Class diagram of the Poisonable- and the Poison-Filtering-Channel

3.3.5. Provided Channels
JCSP-Poison provides currently three channel implementations:

e The clas$oisonableOne20neChannel provides an implementation of the Poisonable-
Channel defined earlier.

e The Poison-Filtering-Channel is provided by the class
PoisonFilteringOne20neChannel.

e The Poison-Injector-Channel is provided by the class
PoisonlnjectorOne20neChannel

The class diagram of the two channel types is given in figure 7, these implementations
have been modelled using CSPM by us. These models are not shown here, due to their high
complexity. Both channel models have been tested for equivalence with the models shown in
section 4, using FDR 2.80[11]. There are also unchecked versions@ht2ény, Any20ne-
and Any2AnyChannels available, which should work fine, since they are derived from the
One20neChannel versions. At least during the test phase we could not find any anomalies,
but admit that this is no proof for correctness of implementation.

3.4. An Example for Handling of Poison

To give a simple example of how JCSP-Poison is used in practice, one of the test processes
is discussed. This process is not doing anything useful but shows how a process should react
upon catching &oisonException.

The process of listing 4 has tweoisonableChannelOutputs: outl andout2 . While
running, this process sends integers of increasing value over the two channels connected to it.
If one of these channels gets poisoned, it reports this to the process, by throwing an exception
of typePoisonException, once the process tries to access the channel. The process catches this
exception and injects the received poison into both channels, usimgdbigoison(Poison)
method. The poison that has been transferred over the channel is retrieved from the exception

82 B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks

public class Producer implements CSProcess {
PoisonableChannelOutput outl;
PoisonableChannelOutput out2;

public Producer(PoisonableChannelOutput outl,
PoisonableChannelOutput out2) {
outl;

out2;

this .outl
this .out2

}
public void run() {
Integer inputint = null
int i =0;
while (true) {
try {
i++;
outl.write(new Integer(i));
out2.write(new Integer(i));
} catch (PoisonException e) {
outl.injectPoison(e.getPoison());
out2.injectPoison(e.getPoison());
return

Listing 4: Example of a JCSP Process handliri@paonException

using the metho@oison getPoison(). Itis important to mention that no process should create
its own instance of a poison while handlindg?@isonException.

The example given shows that JCSP-Poison is easy to apply in JCSP based programs.
Also altering of existing JCSP process networks should be easy without disrupting existing
structures.

4. CSP Model for the Poisonable Channels

In the following, the CSP model for the poisonable channels is developed. It models the
functionality of the poisonable channels Java implementation. It is not a direct mapping
of the Java code, but only behaves like its Java counterpart. The counter part is a di-
rect mapping of the Java implementation of tdsonableOne20neChannel andPoisonFil-
teringOne20neChannel classes to CSP. This has been developed, but is not shown in this
paper. The reason for this is the high complexity of this model due to trying to be as close to
Java as possible. The Java implementation model is equivalent to the model shown here.

The section starts with defining the interface used to communicate with the channel.
This is followed by the development of the CSP model of the Poisonable-Channel and the
Poison-Filtering-Channel. We know that the model shown has a high complexity, it is caused
by the fact that this model has been developed to match its java counter part. Plans to develop
a simplified model exist, but have not yet been implemented.

4.1. Interface of the Poisonable Channels

Channels in JCSP, due to their unidirectional nature, have a writer end and a reader end.
This results in two different protocols, one for each end. As discussed earlier, the goal of

B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks83

the poisonable channels is to allow poison to travel backwards over channels, to get an easy
and therefore safe to use poison mechanism. Furthermore, the poison should not be encoded
in standard messages, but should be reported by using the Java exception mechanism. The
protocols used for these channels are orientated by the way Java method calls are modelled in
[12]. The reason for this is that the model shown here is the counter part to the CSP version
of the Java implementation for the poisonable channels. The model given in [12] has been
extended by us to support exceptions and also to standardise the names of the channels and
events used to perform function calls. It is not included in this paper, but whenever this paper
drifts away from the original model a short explanation is given.

The protocols shown here are meant for interaction with the model given for the poison-
able channels. That is the reason why these processes terminate after having sent a message.

Before defining the protocol for reader and writer in detail, the data types for the mes-
sage and the poison have to be defined, this is done in equation 1. This equation defines three
sets:Poison InternalPoisonandData. The setPoisondefines the types of poison used out-
side the channel and consistslaicalPoisonand GlobalPoison The channel itself can be
in three possible states: not poisor¢dne poisoned withLocalPoisonand poisoned with
GlobalPoison These states are stored in a variable of tigernalPoison which incorpo-
ratesPoisonandNone The Data set defines the possible messages that can be transferred
over the channels.

Poison= {LocalPoisonGlobalPoisor}
InternalPoison= PoisonJ {None} (1)
Data = {True, False}

Due to the fact that the model is meant to provide a functional model of a Java imple-
mentation, it is necessary to include the notion of object and thread into the model. This is
done by appending the object-id and thread-id to the channel and event names. The sets of
equation 2 define the se@bjectsfor possible object-ids ant@ihreadsfor the thread-ids. In
the present model there is always only object of a channel being created. Thetdf@ets
containing only one object-id is sufficient. If at a later time the number of possible objects
should be increased, the s@bjectshas to be modified. To be able to check a channel it is
necessary to have at least two processes accessing it, in JCSP processes are represented by
threads, therefore at least two thread-ids have to be available.

Objects= {0}

(2)
Threads= {1, 2}

4.1.1. Modelling Method Calls and Exceptions

In the model used in this paper, methods are called by an evetitodnamestarto.t, with
o being the object-id antithe thread-id used. If the method has one parameter, this is trans-
ferred over a channel nameaethodnamestart.o.t: transmission of the parameter will then
also start the method. Once the method has completed its task, it will acknowledge the suc-
cessful transaction using an event of namethodnameacko.t. If the method is provides a
return value, this value will be transferred over a channel of the same name.

Exception will be transferred over a channel nanmethodnameexo.t. An excep-
tion can be thrown by a method during the whole time the process is waiting for the
methodnameacko.t event. To be able to cater for that, the reception of the exception mes-
sage is modelled as an interruption.

84 B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks

4.1.2. Inject Poison Interface

Both reader and writer sides can inject poison into a channel. Injecting poison is a time
consuming operation, and no other operations should take place at the same time. To cater
for this, it is modelled as a method call using these two events:

e inject_poisonstarto.t.p — threadt : Threadswants to inject poisomp : Poisoninto
the channel with the object-i: Objects

e inject poison acko.t — injecting poison into the channel with objectad: Objects
by thread : Threadscompletes successfully;

The resulting alphabetINJECT_POISONo : Objectst : Threads is given in equa-
tion 3. Processes can not know whether they will receilze@alPoisonor a GlobalPoison
therefore this alphabet includes both types of poison.

aINJECT_POISONoO : Objectst : Threads =
{inject_poison starto.t.p, inject_poison.acko.t | p € Poisor}

3)
The snippet of equation 4, shows how to inject a poipanPoisoninto a Poisonable-
Channeb : Objectsby a thread : Threads Developers wanting to use this functionality can
simply adjust it to their needs and insert in their own code.

inject_poison starto.t!p — inject_poisonacko.t — ... 4)

4.1.3. Write Interface

The write method takes the messageDatato be transferred as parametaite_starto.t!m,
and successful completion of the transaction is signalled by the ewést acko.t. If the
channel is poisoned, the poison will be transferred over the chaniel exo.t. In equation
6 the CSP model of a write method call is given.

e write_starto.t. m—thread : Threadswvants to write a message: Dataon a channel
0 : Objects

e write_acko.t — the write operation, by thread Threads on the channed : Objects
completed successfully;

e write_exo.t.p — the write operation of thread Threads on channeb : Objectswas
interrupted by a Poison-Exception, delivering poiganPoison

In equation 5, the alphabetWRITEo0 : Objectst : Threads is given. It should be
incorporated by processes that want to write to poisonable channels.
aWRITEo : Objectst : Threads =
{write_starto.t.m write_acko.t, write_exo.t.p | m € Data, p € Poisor}

(5)
The code snippet of equation 6, can be used when writing to poisonable channels. It
is important that the user of the poisonable channels offers the ability to receive exceptions
delivered by thevrite_exo.t channel.

(write_starto.t/m — write_acko.t — ...)

(6)

A (write_exo.t?p : Poison— .. .)

4.1.4. Read Interface

The protocol to be used on the reader side is given in equation 8. Similar to the writer protocol
the reader protocol can be interrupted by an exception if the channel is poisonous.

B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks85

e read starto.t — threadt : Threadswants to read a message from a Poisonable-
Channeb : Objects

e read acko.t.m—threadt : Threadsread operation, on the chanree! Objectstermi-
nates successfully, returning messageData;

e read_exo.t.p — the read operation of thredad: Threads on channeb : Objects
resulted in a Poison-Exception to be thrown with poiparPoison

The alphabet of th&READ process, given in equation 5, contains all events that are
possible in when reading from a Poisonable-ChaoneéDbjectswith a thread : Threads

aREAD(0 : Objectst : Threads =
{read_starto.t,read_acko.t.m read exo.t.p | m € Data p € Poisor}

(7)
Reading from a Poisonable-Channel requires similar precautions as writing to it. The
code snippet given in equation 8, shows how to do it correctly.

(read_starto.t — read_acko.t!m: Data— ...)

(8)

A (read_exo.t?p : Poison— ...)

4.1.5. The Reader and Writer Channel Ends

Traditionally the writer end of a channel is considered to be the left side, while the reader
end is the right side. In our model a Poisonable-Channel offers its writer and reader ends
to inject poison into the channel. This has to be reflected in the interface of the poisonable
channels. The interface for the left side of a Poisonable-Channel is given in equation 9, while
the interface of the right side is given in equation 10.

aLEFT(0 : Objectst : Threads = ©
aWRITEoO, t) U «INJECT_POISONO,)
aRIGHT(o : Objectst : Threadg =

10
aREAD(0, 1) U oINJECT_POISONO, t) 10

4.1.6. The Complete Poisonable Channels Interface

The complete interface, valid for all poisonable channeldC(o, t;,t,), is obtained by com-

bining theaLEFT(o,t) andaRIGHT(0, t) . The resulting interfacePC, is given in equation

11 and expanded in equation 12. Figure 8 gives a graphical representation of the interface
poisonable channels represented by the proe€$s.) expose.

(1 N\
PC(o.t,,t,)
write_start.o.t .d:Data Ve ~ Ve ~ read_start.o.t)
write_ack.o.t| read_ack.o.t ,.d:Data
write_ex.o.t .p:Poison read_ex.o.t, .p:Poison
7
LEFT(o,t)) RIGHT(o,1,)
inject_poison_start.o.t |.p:Poison inject_poison_start.o.t ,.p:Poison
inject_poison_ack.o.t | inject_poison_ack.o.t
& J

Figure 8. Interface for all Poisonable Channels

86 B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks

aPC(o : Objectst; : Threadst, : Threads =

aLEFT(0,t;) U aRIGHT(0, t,) 1)
aPC(o,ty,t3) =
(write_start.o.t;.d, write_acko.t;, inject_poison.acko.t;,)
inject_poison starto.t;.p, read_exo.t;.p, (12)

read_starto.t,, read_acko.t,.d, inject_poison.acko.t,,
inject_poison.starto.t,.p, write_exo.t,.p

| | d € Data, p € Poison
4.2. Test-Bench for Poisonable Channels

In the following the desired behaviour of the poisonable channels is defined. This is neces-
sary to test whether the model developed later on complies with our expectations. For this
purpose the test-bench given in equations 13 till 19has been created. The test-bench covers
the different scenarios the Poisonable-Channel and the Poison-Filtering-Channel should cater
for. In section 4.5 the channel models are verified using this test-bench.

4.2.1. Sending a Message

The Poisonable channels should operate just like normal channels. Equation 13 defines the
processTB_MESSAGETRANSFER..), which specifies a normal channel transaction using
the interface specified above.

TB_MESSAGETRANSFERb : Objectst; : Threadst, : Threadsm: Data) =
TB_WRITE MESSAGKo, t;, m)
[« TB_WRITE.MESSAGHKo, t;, m) | « TB_READ MESSAGIKD, t,) |
TB_READ MESSAGHo, t;) \ {transmito.d | d € Data}

(13)

TB_WRITE.MESSAGHKO : Objectst : Threadsm: Data) =
write_starto.t.m — transmito!m — write_acko.t — TB_-WRITE.MESSAGHKo, t, m)
aTB_WRITE.MESSAGKO : Objectst : Threadsm : Data) =

{write_starto.t.m write_acko.t, transmito.d | d € Data}
(14)
TheTB_WRITE.MESSAGE ..) process of equation 14 performs a successful write transac-
tion on a channel, complying to the interface specification of the poisonable channels.

TB_READ MESSAGHKo : Objectst : Threadg =
read_starto.t — transmito?x — read acko.t.x — TB_.READ MESSAGKo, t, m)
aTB_READ MESSAGHKOD : Objectst : Threadsm : Data) =

{read_starto.t, read_acko.t.d, transmito.d | d € Data}
(15)
In equation 15 the successful reception of messages is modelled, according to the poisonable
channels interface specification.

B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks87
4.2.2. Sending a Message, Reader Injects Poison

The process of equation 16 simulates the case, that the writer end of the channel tries to write
a message, while reader end injects poison into the channel. In this case the writer should
receive an exception.

TB_READERINJECTSPOISONOo : Objectst; : Threadst, : Threadsp : Poison =
write_starto.t;. True — inject_poison starto.t;.p —

inject_poisonacko.t, — write_exo.t;.p — STOP
(16)

4.2.3. Trying to Receive a Message, Writer Injects Poison

In equation 17 the roles are reversed, now the reader end tries to receive a message, while the
writer end injects poison into the channel. The reader should receive an exception.

TB_WRITERINJECTSPOISONO : Objectst; : Threadst, : Threadsp : Poison =
read_starto.t; — inject_poison starto.t;.p —

inject_poison.acko.t; — read_exo.t;.p — STOP
17)

4.2.4. Access to a Poisoned Channel

Proces§B_POISONED CHANNEL...), given in equation 18, first poisons the channel, and
then lets both reader and writer ends access it. It is expected that both processes receive an
exception.

TB_POISONEDCHANNEL(0 : Objectst; : Threadst, : Threadsp : Poison =
inject_poison starto.t;.p — inject_poison.acko.t; — 18)
read _starto.t, — read_exo.ty.p —

write_starto.t;. True — write_exo.t;.p — STOP

4.2.5. A LocalPoisoned Channel is Used

TB_LOCAL POISONEDCHANNEL...) of equation 19 demonstrates that a Poison-Filtering-
Channel really filters out BocalPoisorand operates normally after that. This is done by first
injectingLocalPoisoninto the channel and then performing normal channel operations using
the TB_MESSAGETRANSFER..) process.

TB_LOCAL POISONEDCHANNEL(0 : Objectst; : Threadst, : Threadsm: Data) =
inject_poison starto.t;.LocalPoison— inject_poison acko.t; —

TB_MESSAGETRANSFERD, t;, t,, m)
(19)

88 B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks

4.3. The Poisonable-Channel

The Poisonable-Channel’s behaviour depends upon the state itis in. It can be in any of these
three states:

1. Normal: In this state it operates as a normal CSP channel. This is the default state after
creation of the channel. When injected wiithcalPoisorthe channel will change into
the LPoison state. Injecting the channel w@tobalPoisonwill change the state to
GPoison.

2. LPoison: The channel changes into this state after it gets injectedl@dtiPoisonn
the Normal state. Every invocation of either read or write functions will be answered
by an exception with.ocalPoison The channel stays in this state until it gets injected
with GlobalPoisonthen it changes into the GPoison state.

3. GPoison: In this state the channel will answer any read or write request by throwing
an exception wittGlobalPoison There is no possible state change from this state.

4.3.1. The POISO[® : Objectg Process

ThePOISONo : Objectg process is responsible to store the state of the poisonable channels.
With poison being injectable from both sides of a channel it is necessary to provide both
sides with access to this process. ThePmsonAccessf equation 20, defines the possible
accessors of the process.

PoisonAccess- {left, right} (20)

The state of the channel has to be consistent for both sides of the channel. This means that
once one side of the channel receives a poison, both channel ends deliver it to their users. To
keep the channel state consistent only one side of the channel is allowed to change the poison
state of the channel at a time, following the CREW rules. The read access has therefore,
be blocked during a change of the channel state. IP@EONo0 : Objectg process this
is achieved by going into a locked state, using ploéson lock.o.a : PoisonAccessvents,
before altering the state of the channel. Once the state change is done the process is unlocked
with the poison.unlocko.a : PoisonAccessvents.

Equations 21 - 25, give the definition of tRROISONoO : Objectg process. Figure 9
illustrates the interface tHeOISONo : Objectg process offers to its environment.

poison_lock.o.left (\ poison_lock.o.right
poison_unlock.o.left poison_unlock.o.right
POISON
poison_get.o.left. p:Internal Poison (0:Objects) poison_get.o.right. p:InternalPoison
poison_set.o.left. p:InternalPoison poison_set.o.right. p:InternalPoison
./

Figure 9. Interface of the POISON(0:Objects) process

POISONo : Objectg =

(0]

IZ\(|:|

poisonlocko.a — POISON.LOCKED(0,a POISONO))) (21)

a:PoisonAccess

poison geto.alNone— POISONO))

a:PoisonAccess

B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks89

LPOISONo : Objectg =

(O

D(D

poisonlocka — POISON.LOCKED(a, LPOISONO))) (22

a:PoisonAccess

poison.geto.alLocalPoison— LPOISONO0))

a:PoisonAccess

GPOISONo : Objectg =

(m

D(D

poison lock0.a — POISON.LOCKED(a, GPOISONO0))) (23)

a:PoisonAccess

poison geto.a/GlobalPoison— GPOISONo))

a:PoisonAccess

POISON LOCKED(o : Objectsa : PoisonAccesgallingProcess =
(poisorLseta.None—> poison.unlocko.a — caIIingProces$
O (poison.seto.a.LocalPoison— poison.unlocko.a — LPOISONO0)) (24)
O (poison seto.a.GlobalPoison— poison.unlocko.a — GPOISON0))

O (poison.unlocko.a — callingProces$

poison geto.a.p, poison.seto.a.p,
aPOISONo : Objectg = ¢ poison.lock.o.a, poisonunlocko.a (25)
| a € PoisonAccesp < InternalPoiso

4.3.2. The POISONALVE...) Process

In the previous section the states of the poisonable channels and their handling were detailed.
So far it is possible to correctly handle poison that is received while both channel ends are
unused. But what if one end tries to send or receive a message? In this case the waiting
channel end should be woken up and throw an exception with the received poison at its user.
This requires that the channel end injected with poison, sends a wake up call to the waiting
channel end. But this is only necessary when one channel end is currently waiting. Therefore
it is necessary for the channel ends to be able to filter events when they are not appropriate.
This task is done by thBOISON VALVHE...) process, which is detailed in equations 27 till

30, a graphical representation is given in figure 10. To control the valve, a channel carrying
messages of typealveControlis used, the type is defined in equation 26.

out.p:Poison
in.p:Poison POISON_VALVE
LM/ ctrl.vc:ValveControl

Figure 10. Interface of thePOISON VALVE...) process

ValveControl= {open close (26)

POISON.VALVKEin, out ctrl) = POISON.VALVE_CLOSEDin, out, ctrl) (27)

90 B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks

POISON.VALVE OPEN(in, out ctrl) =
(ctrl.close— POISON.VALVE_CLOSEMin, out, ctrl))
in?m—
O (outm — POISON.VALVE OPEN(in, out, ctrl))
(O (ctrl.close— POISON.VALVE CLOSEin, out, ctrI)))
O (ctrl.open— POISON.VALVE OPEN(in, out, ctrl))

(28)

POISON VALVE CLOSEMin, out, ctrl) =
(in?m — POISON.VALVE _CLOSERin, out, ctrl))
O (ctrl.open— POISON.VALVE OPEN(in, out, ctrl))
O (ctrl.close— POISON.VALVE CLOSEQin, out, ctrl))

(29)

_ in.p, outp, ctrl.vc
aPOISON.VALVKEin, out ctrl) = | (30)

| p € Poisonvp € ValveContro

4.3.3. The PCMINJECT_POISON...) Process

Both channel ends offer the environment to inject poison into the channel. As they behave
similarly in this respect they both use tREM_INJECT_POISON ...) process for this task.

The prefixPCM indicates that this process is part of the Poisonable-Channel-Model. The key
task of this process is to pass the received poison tP@KSON ...) process and signal the
other channel end about the arrival of new poison, by sending it over the channel given in
parametepc. The definition of the process is given in equations 31 and 32, while the interface
is illustrated in figure 11.

Ve N poison_lock.o.a

inject_poison_start.o.t. p:Poison poison_unlock.o.a

PCM_INJECT_POISON
inject_poison_ack.o.t (0:0bjects, t:Threads, poison_set.o.a. p:Poison
a:PoisonAccess, pc)

. J

pc.p:Poison

Figure 11. Interface of the?CM_INJECT_POISONprocess

PCM_INJECT_POISONo : Objectst : Threadsa : PoisonAccespc) =
inject_poison starto.t”p : Poison— poisonlocko.a — (31)
poison seto.alp — poison.unlocko.a — pclp —

inject_poison.acko.t — SKIP

aPCM_INJECT_POISONoO : Objectst : Threadsa : PoisonAccespc) =

inject_poison starto.t.p, inject_poison.acko.t, poison lock.o.a, (32)
poison.unlocko.a, poison seto.a.p, pc.p | p € Poison

B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks91

4.3.4. The PCMTRANSMIT...) Process

To allow a channel transaction to take place, a transmitter and a receiver are necessary. The
PCM_TRANSMIT...) process, defined in equations 33 and 34, complies to the write interface
defined earlier. The complete interface of the process is shown in figure 12.

Before thePCM_TRANSMIT...) process sends the message passed to it over the
write_starto.t channel, it checks whether the channel is poisoned. If that is the case the poi-
son is delivered to the caller over theite_exo.t channel. If the reader channel end gets poi-
soned while the write operation on the chanmahsmito is still pending, the writer channel
end should be alarmed. This is done by having an external choice between the writing on
the transmito channel and receiving poison from th#.o channel, rp stands for right side
poison. Thap2.o channel is the output of ROISON VALVE ...) process, discussed earlier.
The status of the valve is controlled using thectrl.o channel, which stands for right poison
control.

/ N\ transmit.o.m:Data
write_start.o.t.m :Data
- rp_ctrl.o.cm:ValveControl
write_ack.o.t PCM_TRANSMIT rpz B P‘Poison
write_ex.o.t.p :Poison (0:0bjects, t:Threads) -
¢ poison_get.o.left.p InternalPoison
. J

Figure 12. Interface of th(eCM_TRANSMITprocess

PCM_TRANSMITo : Objectst : Threads =
write_starto.t’m: Data — rp_ctrl.open— poison getleft’p —
if p= Nonethen

transmito!m — rp_ctrl.o.close—
write_acko.t — SKIP

_ rp2.0?p — rp_ctrl.o.close— (33)
write_exo.t!p — SKIP
else

rp_ctrl.o.close—
write_exo.tlp —
SKIP

aPCM_TRANSMITo : Objectst : Threads =
write_starto.t.m, write_acko.t, write_exo.t.p,
rp_ctrl.o.openrp_ctrl.o.close rp2.0.p, (34)
poison geto.left.ip, transmito.m
| me Data, ip € InternalPoisonp € Poison

92 B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks

4.3.5. Preventing Concurrent Writing and Poisoning

The left channel side offers its user two possible operations, either transmission of a mes-
sage or inject poison into the channel. Both operations can not happen concurrently. To rep-
resent this the proce®3CM_LEFT_CHOOSERQ , t) has been created which is an external
choice between theCM_TRANSMITo, t) and thePCM_INJECT_POISON...) processes,

its definition is given in equations 35 and 36. A compositional block diagram of the resulting
process is given in figure 13.

(" PCM_LEFT CHOOSER)
(0:Objects, t:Threads)

/ N transmit.o.m:Data
write_start.o.t.m:Data

rp_ctrl.o.cm:ValveControl

Write_aCk.O.t PCM TRANSMIT
- rp2.0.p:Poison
write_ex.o.t.p:Poison (0,1) _ _
poison_get.o.left.p :Internal Poison
N J
/" N poison_lock.o.a

inject_poison_start.o.t. p:Poison poison_unlock.o.a

PCM_INJECT_POISON
inject_poison_ack.o.t (o,t, poison_set.o.left. p:Poison
left, Ipl.0)

Ip1.0.p:Poison

\\ Y J

Figure 13. ThePCM_LEFT_CHOOSERprocesses composition

PCM_LEFT_CHOOSERo, t) =

(PCM_TRANSMITo, t) 0 PCM_INJECT_POISONO, t, left, Ip1.0)); (35)
PCM_LEFT_CHOOSERO, 1)

aPCM_LEFT_CHOOSERo : Objectst : Threads =
aPCM_TRANSMITo, t) U «PCM_INJECT_POISONGo, t, left, Ip1.0)
4.3.6. Writer Channel End

To complete the writer channel end it is necessary to includ®@KSON VALVE...) pro-

cess required by theCM_TRANSMIT...) process. The valve can not be brought in ear-
lier, as the valve has to be constantly running, while there is an external choice whether
the PCM_TRANSMIT...) or the PCM_INJECT_POISON...) process is executed. The
PCM_LEFT(...) process, of equations 37 and 38, is the result of these considerations. The
structure of the?CM_LEFT(...) process is also shown in figure 14.

(36)

PCM_LEFT(o: Objectst : Threads =
PCM_LEFT_CHOOSERQo, t)

37

|[«PCM_LEFT_CHOOSERQO, t) | «POISON.VALVErp1.0, rp2.0, rp_ctrl.o) || 57)
POISON.VALVErp1.0, rp2.0, rp_ctrl.o)

aPCM_LEFT (0 : Objectst : Threads = (38)

aPCM_LEFT_CHOOSERQO, t) U aPOISON.VALVETrp1.0, rp2.0, rp_ctrl.o)

The writer channel end of the Poisonable-Channel is now completely defined.

B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks93

4 PCM_LEFT (o0:Objects, t:Threads) N

N

PCM_LEFT_CHOOSER
(0:0bjects, t:Threads)

transmit.o.m:Data

write_start.o.t.m :Data

rp_ctrl.o.cm:ValveControl)
write_ack.o.t PCM_TRANSMIT = POISON_VALVE rpl.o.p:Poison
0.1 rp2.0.p:Poison (rpl.o, rp2.0,
ite_ex.o.t.p :Poi. 0, .
writeexoLb: oton rp_ctrl.o) poison_get.o.left.p :InternalPoison

—
T\ poison_lock.o.left

inject_poison_start.o.t. p:Poison poison_unlock.o.left

PCM_INJECT_POISON
inject_poison_ack.o.t (o, t, poison_set.o.left.p :Poison

left, Ip1.0)

Ipl.o.p:Poison

J

Figure 14. Interface of the®eCM_LEFT process

4.3.7. PCMRECEIVE...) Process

The PCM_RECEIVE...) process defined in equations 39 and 40, allows to read a message
from the channel. Once started with tlead starto.t event it opens the valve enabling it

to receive incoming poison. This is followed by checking whether the channel is already in
a poisoned state. If that is the case, the valve will be closed again and the poison will be
delivered to the calling process, using tkad_exo.t channel, before terminating.

In case the channel is not poisonous, the process tries to read a message from the
transmito channel. While waiting for the message to arrive it also waits for a potential poi-
son to arrive over th¢p2.0 channel. Once th&#ansmito channel delivered a message the
valve is closed and the process delivers the received message usiegdh&cko.t chan-
nel. The process then terminates. If instead poison arrives frorp2techannel, the pro-
cess closes the valve and delivers the poison usingetek exo.t channel. This is followed
by terminating of thePCM_RECEIVE...) process. This concludes the description of the
PCM_RECEIVE...) process. The interface of this process is shown in figure 15.

transmit.o.m:Data
() read_start.o.t

Ip_ctrl.o.cm:ValveControl

PCM RECEIVE read_ack.o.t.m:Data
(0:0bjects, t:-Threads)

Ip2.0.p:Poison

:)) read_ex.o.t.p :Poison
poison_get.o.right.p :InternalPoison

N J

Figure 15. Interface of thd?CM_RECEIVEprocess

94 B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks

PCM_RECEIVEo : Objectst : Threadg =
read_starto.t — Ip_ctrl.o.open— poison geto.right?’p —
if p = Nonethen
transmito?’m : Data — Ip_ctrl.o.close—
(reaoLacko.t!m — SKIP)
_ (Ip2.o?p — Ipctrl.o.close—>) (39)
read_exo.t!p — SKIP
else
Ip_ctrl.o.close—
read exo.tlp —
SKIP
aPCM_RECEIVEoO : Objectst : Threads =

read_starto.t,read_acko.t.m exo.t.p,

Ip_ctrl.o.openIp_ctrl.o.close Ip2.0.p, (40)
poison geto.right.p, transmito.m
| m e Data, p € InternalPoison

4.3.8. Preventing Concurrent Reading and Poisoning

ThePCM_RIGHT_CHOOSER...) process is used to prevent the reading process simultane-
ously performing a channel transaction and injecting poison into the channel. The definition
of the process is given in equations 41 and 42. A graphical representation is given in figure
16.

(PCM_RIGHT CHOOSER)
(0:Objects, t:Threads)

transmit.o.m:Data 7 N
read_start.o.t
Ip_ctrl.o.cm:ValveControl
- PCM RECEIVE read_ack.o.t.m:Data
[p2.0.p:Poison - -
_ : . ©.1 read_ex.o.t.p:Poison
poison_get.o.right.p :Internal Poison
\ /
poison_lock.o.a e N
poison_unlock.o.a inject_poison_start.o.t. p:Poison
poison_set.o.right. p:Poison PC'\(/IO—IIN‘:E]E:TZ?L?ON inject_poison_ack.o.t
rpl.o.p:Poison
> v,

Figure 16. Interface of theeCM_RIGHT_CHOOSERprocess

PCM_RIGHT_CHOOSERQo, t) =
(PCM_RECEIVEo,t) O PCM_INJECT_POISONOo, t, right, rp1.0)) ; (41)
PCM_RIGHT_CHOOSERQo, t)

B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks95

aPCM_RIGHT_CHOOSEROo : Objectst : Threadg =

42
aPCM_RECEIVEO, t) U «PCM_INJECT_POISONG, t, right, rp1.0) (42)

4.3.9. Reader Channel End

Similar to the writer channel end the reader channel end also needs to incorporate a
POISONLVALVE...) process for thePCM_RECEIVE...) process, this is done in the
PCM_RIGHTY(...) process, which is a combination of tREM_RIGHT_CHOOSER...) and
POISON.VALVE...) processes. ThRCM_RIGHT(...) processes CSP model is given in
equations 43 and 44. Figure 17 illustrates the interconnections of the combined processes.

4 PCM_RIGHT (0:Objects, t:Threads) M)

PCM_RIGHT_CHOOSER)
(%))

transmit.o.m:Data / N
read_start.o.t
Ip_ctrl.o.cm:ValveControl
Ipl.0.p:Poison POISON_VALVE - PCM_RECEIVE read_ack.o.t.m:Data
(Ipl.o, Ip2.0, Ip2.0.p:Poison
l Ip_ctrl.o) (0,1 read_ex.o.t.p:Poison
poison_get.o.right.p :Internal Poison i
poison_lock.o.right s N

poison_unlock.o.right inject_poison_start.o.t. p:Poison

PCM_INJECT_POISON

poison_set.o.right. p:Poison (0, 1, right, rpl.0)

inject_poison_ack.o.t

rpl.o.p:Poison

- @/
_ S P,

Figure 17. Interface of thePCM_RIGHT process

PCM_RIGHT(o : Objectst : Threads =
PCM_RIGHT_CHOOSERo, 1)

43

[«PCM_RIGHT_CHOOSERQO, t) | «POISON VALVKIp1.0, Ip2.0, Ip_ctrl.o) || 43)
POISON VALVEIp1.0,Ip2.0,Ip_ctrl.0)

aPCM_RIGHT(o : Objectst : Threads = (44)

aPCM_RIGHT_CHOOSERO, t) U «POISON.VALVE(Ip1.0, Ip2.0, Ip_ctrl.0)

4.3.10. The POISONABLEHANNEL...) Process

The Poisonable-Channel is a combination of the writer channel end (left side) and the
reader channel end (right side). The channel ends are represented PgNhe EFT(...)

and thePCM_RIGHTY(...) processes. To avoid exposing internal events, the alphabet of the
POISONABLECHANNEL...) process is defined to be identical to the one defined for the
interfacePC defined in equation 11. The CSP model for the channel is given in equation 45,

its alphabet in equation 46. The Poisonable-Channel structure is graphically represented in
figure 18.

96 B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks

POISONABLECHANNEL0 : Objectst; : Threadst, : Threads =
PCM_LEFT(o,t;)
I[aPCM_LEFT(0,t,) | aPCM_RIGHT(0, t,)]|

(45)
PCM_RIGHT(o, tz))
|[«PCM_LEFT(0,t;) UaPCM_RIGHT(0, t;) | «POISONO) ||
POISONo)
aPOISONABLECHANNEL(0 : Objectst; : Threadst, : Threads = (46)

OéPC(O, t1, t2)

4.4. Poison-Filtering-Channel

The Poison-Filtering-Channel is used to segment a process network into two parts, which
can then be poisoned independently, by udiegalPoison This is for instance a desired
behaviour when having a design with fixed and a reconfigurable part, as is the case in a
SDR Platform. There the signal processing module needs to be exchanged during runtime,
without affecting the remaining platform. But even in segmented designs, there should be the
ability to be terminated completely without caring about the segments. This was the reason
for introducing GlobalPoison, which should be distributed into every corner of a process
network.

4.4.1. The PFCMINJECT_POISON...) Process

The previous paragraph gave an indirect description of the behaviour of the Poison-
Filtering-Channel. In short it should filter out ahycalPoisonit gets injected, but let pass
GlobalPoison. The process now needs to differentiate betweealPoison which is ig-
nored, andGlobalPoisonwhich will poison the channel. This results in a change of the
PCM_INJECT_POISON process into the®FCM_INJECT_POISON...) process given in
equations 47 and 48. In this case the pr&fixXCM indicates that this process is part of the
Poison-Filtering-Channel Model.

PFCM_INJECT_POISONo : Objectst : Threadsa : PoisonAcces®c) =
inject_poison starto.t”p —
if p = GlobalPoisonthen
poisonlocko.a — poison.seto.alp — poison.unlocko.a — 47
pclp — inject_poison.acko.t — SKIP

else

inject_poison.acko.t — SKIP

aPFCM_INJECT_POISONo : Objectst : Threadsa : PoisonAccespc) =

inject_poison.starto.t.p, inject_poison.acko.t, poison_locko.a, (48)
poison.unlocko.a, poison.seto.a.p, pc.p | p € Poison

B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks97

$$9201dTaINNVHO WDau} Jo 8depiaul 8T ainbi

' y-oyov~uosiod 1oafun

uos10g:d"' 1oy~ uos1od 1afur

uos10g:d"' 1:0'xa”ap14m

1oyov~anum

-~
e ™ 4 O
(N S ()
o L d y31-0gas uos10d d 3fa1°0"12s uos1od (o 1d) 4o
z — (o°1dt “3y81t <1 “0) — (0 = 1
1°0yov"uos10d 1oafu1 _ _ 1Y314°0y20] uos1od 1f21°0°y20] uosiod 1 ¢0)
- NOSIOd LOHAINI NOd = NOSIOd _ _ _
u0s104:d " 1°0"1101s"uos10d " 192{u1 8110 yd0jun—uosiod 12170 y00jun"uos10d NOSIOd LOFINI WOd
\) d'yS1r-0128 uosiod |\ / | dif1°0125 uosiod \)
4 4
/¢ " A
uos104:d-oxa"ppai) (0'1u97d) uosiog:d o dj (o puo~du ('1°0)
P—— AAADTA WOd ozdy ‘o1 [l | cedcondn LINSNVALL WO
DIDQ: UL 10D pral AATVA"NOSIOd uosiog:do1di| | 5 1yA~NOSIOd
C1r01anis pau
_ J DIDC UL O JIUUSUDA] _ /
(4 °0) (' *0)
f%@wb@tb LHOIY Ebm\ _ _ YASOOHD IAdT Ebm\
T = (1°0)L4dT WOd
1°0
_ (7°0)IHOIN MOd Y, _ J
Y (sppaay:°1 ‘sppasy "1 '$192[90:0) TANNVHO WOd

@' 1°0 1DIS 2 11IM

98 B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks

4.4.2. Writer Channel End

The writer channel end of the Poison-Filtering-Channel is represented by the process
PFCM_LEFT(...), equations 49 and 50. This process offers two types of operation, either
transmitting a message to the other channel end or injecting poison into the system.

PFCM_LEFT(o : Objectst : Threads =
PFCM_LEFT_CHOOSERQ, t)
|[«PFCM_LEFT_CHOOSERQO, t) | «POISON.VALVErp1.0, rp2.0, rp_ctrl.o) ||
POISON.VALVErp1.0, rp2.0, rp_ctrl.o)
(49)
aPFCM_LEFT(o : Objectst : Threads =
aPFCM_LEFT_CHOOSEROo, t) U aPOISON.VALVErp1.0, rp2.0, rp_ctrl.o)
The definition of the®FCM_LEFT_CHOOSER...) process is given in equations 51, 52.

(50)

PFCM_LEFT_CHOOSERO : Objectst : Threads =
(PCM_TRANSMITo,t) O PFCM_INJECT_POISONGo, t, left, Ip1.0)) ; (51)
PFCM_LEFT_CHOOSERo, 1))

aPFCM_LEFT_CHOOSER®O : Objectst : Threads =
aPCM_TRANSMITo, t) U aPFCM_INJECT_POISONOo, t, left, Ip1.0)

4.4.3. Reader Channel End

The reader channel end offers a choice between reading from the channel and injecting poison
into it. The reader side’s CSP model is given in equations 53, 54.

(52)

PFCM_RIGHT(o : Objectst : Threads =
PFCM_RIGHT_CHOOSERQo, t)
|[«PFCM_RIGHT_CHOOSERQO, t) | «POISON.VALVEIp1.0,Ip2.0, Ip_ctrl.0) |
POISON.VALVEIp1.0,Ip2.0, Ip_ctrl.0)
(53)
aPCM_RIGHT(o : Objectst : Threads =
aPFCM_RIGHT_CHOOSERQO, t) U aPOISON.VALVEIp1.0,p2.0, Ip_ctrl.o0)
ThePFCM_RIGHT_CHOOSER ..) processes definition is given in equations: 55, 56.

(54)

PFCM_RIGHT_CHOOSERO : Objectst : Threads =
(PCM_RECEIVEo,t) O PFCM_INJECT_POISONao, t, right, rp1.0)) ; (55)
PFCM_RIGHT_CHOOSERQo, t)

aPCM_RIGHT_CHOOSER®O : Objectst : Threads =

56
aPCM_RECEIVEOo, t) U aPFCM_INJECT_POISONQo, t, right, rp1.0) (56)

B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks99

4.4.4. The POISON-ILTERING.CHANNEL...) Process

The Poison-Filtering-Channel is split into the writer channel end (left side) and the reader
channel end (right side). The channel ends are represented By @ _LEFT(...) and the
PFCM_RIGHT(...) processes. The CSP model for the channel is given in equation 57, its
alphabet in equation 58.

POISON FILTERING CHANNEL0 : Objectst,; : Threadst, : Threads =
PFCM_LEFT(o,t,)
|[aPFCM_LEFT(0,t;) | aPFCM_RIGHT(0, 1,)]|

(57)
PFCM_RIGHT(o, t,))
|[aPFCM_LEFT(0,t;) UaPFCM_RIGHT(0, 1,) | «POISONO)]|
POISONoO)
aPOISONFILTERING.CHANNEL0 : Objectst; : Threadst, : Threadg = (58)

CYPC(O, tl, tg)
4.5. Applying the Test-Bench

After developing the model for Poisonable-Channel and the Poison-Filtering-Channel it is
necessary to see whether they comply with the test-bench defined in section 4.2.

4.5.1. Testing the Poisonable-Channel

Equation 59 shows the desired outcome when checking the Poisonable-Channel against the
test-bench. All checks except the one againstlitBeLOCAL POISONED CHANNEL...)
process should succeed. Figure 19 shows a screen-shot of FDR with the results of the checks.

assertPOISONABLECHANNELO, 1, 2)

Cr TBLMESSAGETRANSFER), 1,2, TRUE)
assertPOISONABLECHANNELO, 1, 2)

Ct TBLREADERINJECTSPOISONQO, 1, 2, LocalPoisor)
assertPOISONABLECHANNEL(O, 1, 2)

Cr TB_LREADERINJECTSPOISONO, 1, 2, GlobalPoison
assertPOISONABLECHANNEL(0, 1,2)

Cr TBOWRITERINJECTSPOISONO, 1, 2, LocalPoison
assertPOISONABLECHANNEL(0, 1,2)

Cr TBAOWRITERINJECTSPOISONQ, 1, 2, GlobalPoisor)
assertPOISONABLECHANNEL(O, 1, 2)

Cr TB_POISONEDCHANNEL(0, 1,2, LocalPoison
assertPOISONABLECHANNEL(O, 1, 2)

Cr TB_.POISONEDCHANNELQ, 1, 2, GlobalPoisor)
assertPOISONABLECHANNEL(Q, 1, 2)

Zt TBLLOCAL_POISONEDCHANNELQO, 1, 2)

(59)

100 B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks

POISONABLE CHAMNEL(D,1,2) [T- TB_MESSAGE_TRANSFER(D,1,2, TRUE) &
POISOMABLE CHAMMEL(D,1,2) [T= TB_READER_INJECTS POISGN(D,1,2 LocalPoison]
POISONABLE. CHAMNEL(D,1,2) [T= TB_READER_INJECTS_POISOM(D,1,2,GlobalPoison)
POISOMABLE CHAMMEL(D,1,2) [T- TB_WRITER_INJECTS POISON(D,1,2,LocalPaison)
POISONABLE CHAMMEL(D,1,2) [T= TB_WRITER_INJECTS POISOIN(D,1,2,GlobalPoison)
POISOMABLE CHAMMEL(D,1,2) [T- TB_POISGMNED. GHANNEL(D, 1,2 LocalPaison)
POISONABLE_CHANNEL(D,1,2) [T- TB_POISONED. CHANNEL(D,1,2 GlobalPoison]

3 POISONABLE CHANMEL(D,1,2) [T= TB_LOCAL POISOMED. CHANMEL(D,1,2)

« POISON_FILTERING_GHANMEL(D,1,2) [T- TB_MESSAGE TRANSFER(D,1,2TRUE)

3 POISON_FILTERING CHAMMEL(D,1,2) [T= TB_READER. INJECTS POISGN(D,1,2, LocalPoison)

LASNSNSNS

+ POISON_FILTERING_CHANMEL(D,1,2) [T= TB:READER_II\IJECTS_POISOI\I(D,1,2,GIObaIF’0ison)
¥ POISON_FILTERING_CHAMMEL(D,1.2) [T= TE_WRITER_INJECTS_PQISOM(0,1,2,LocalPoison)

(0.1.2)
(0,1.2)
(0.1.2) (
« POISON_FILTERING_CHANMEL(0,1,2) [T= TE_WRITER_INJECTS_POISON(0,1,2,GlobalPoison)
(0.1.2)
(0.1.2)
(0.1.2)

X POISON_FILTERING_CHANNEL(0,1,2) [T= TB_POISOMED. CHANNEL(D,1,2,LocalPoison)
« POISON 5
+ POISON_FILTERING CHANNEL(D,1,2) [T= TB_LOCAL POISONED CHANMEL(D,1,2)

FILTERING_CHANMEL(D,1,2) [T= TB_PQISQMNED CHANMEL(D,1,2,GlobalPoison)

Figure 19. FDR Screen Shot showing the results of the refinement operations

4.5.2. Testing the Poison-Filtering-Channel

Testing the Poison-Filtering-Channel against the test-bench must result in the tests with
LocalPoisonto fail. This is caused by the fact that the Poison-Filtering-Channel is not
transparent fol.ocalPoison Which is of course its purpose. Instead the test against the
TB_LOCAL POISONEDCHANNEL...) must succeed, to show that the Poison-Filtering-
Channel is working properly. Checking was done using FDR and a screen-shot showing the

results is given in figure 19.

assertPOISON FILTERING CHANNELO, 1, 2)

Cr TBLMESSAGETRANSFER), 1,2, TRUE)
assertPOISON FILTERING CHANNELO, 1, 2)

Z+ TBLREADERINJECTSPOISONQO, 1, 2, LocalPoisor)
assertPOISON FILTERING CHANNELO, 1, 2)

C+ TB_.READERINJECTSPOISONQO, 1, 2, GlobalPoison
assertPOISON FILTERING CHANNELO, 1, 2)

Z+ TB.WRITERINJECTSPOISONO, 1, 2, LocalPoisor)
assertPOISON FILTERING_.CHANNELO, 1, 2)

C+ TB.WRITERINJECTSPOISONQO, 1, 2, GlobalPoison
assertPOISON FILTERING_.CHANNELO, 1, 2)

Z+ TB_POISONEDCHANNELQO, 1, 2, LocalPoisorn
assertPOISON FILTERING CHANNELO, 1, 2)

Cr TB_POISONEDCHANNELQ, 1, 2, GlobalPoison
assertPOISON FILTERING CHANNELO, 1, 2)

C+ TB_LOCAL POISONEDCHANNELQO, 1, 2)

B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Network401

t-domain1
t-domainl
o TCP | | Protocol | |_ .
TCP Protocol Connection Handler 1
P
Connection Handler i_ N Server
Server P : Back-end
. Ter | rotoco. A
Back-end " Connection[™ | Handler N
TCP Protocol
Connection Handler t-domain2

———> Poison-Filtering-Channel
Figure 20. Process network of the Streamer

Figure 21. Termination Domains created by a Poi-
son-Filtering-Channel

5. Applications / Examples

The example shown in this section was the initial motivation to look into the area of termi-
nating sub networks.

The project we were working on was the development of a small server application to
deliver signal data streams to multiple clients over the network. Similar to the SHOUTcast
[13] or icecast [14] servers used for mp3 streaming. The functioning of this server was sim-
ple: a client should connect to a TCP socket provided by the service and then &st@ibl
Handlerprocess would be spun off, handling one client. The streaming of the data was han-
dled by theServer Back- endprocess. Thé&rotocol Handlerwas connected to th&erver
Back— Endusing anAny20neChannel for data exchange. The resulting structure of the pro-
cess network for two simultaneously connected clients is shown in figure 20. The spinning
off of the Protocol Handlerprocesses was no problem, due to the availability oPtleeess-
Manager class in JCSP.

When a client disconnected from the server,Rinetocol Handlerprocess for this client
detected this, and informed ti8erver Back- endprocess about this, to remove this client
from all streams. After this th@rotocol Handlerbecomes obsolete and should terminate.
Naturally theServer Back- endshould stay online, to be able to serve current and future
clients. The solution during that time was to use the deprecaid®rocessManager.stop()
method to terminate thBrotocol Handlerprocess. This was done despite the JCSP docu-
mentation warning about possible deadlocks. It worked for the streamer project but it was
clear that a clean and safe solution had to be found. The result of this effort is presented in
this paper.

So how to perform this termination in JCSP-Poison, without using the depregated
ProcessManager.stop() method? It is actually quite simple. They20neChannel used to
connect thérotocol Handlerand theServer Back- endhas to be made a Poison-Filtering-
Channel. Upon detection of a client disconnectPnetocol Handlerprocess has to start to
poison its channel ends usihgcalPoison. In case the server back-end is terminated by the
user, it must start to inject poison usitpbalPoison, which will then also affect the protocol
handler process networks.

The resulting system is segmented in multiple termination domains, one for each pro-
tocol handler process network plus one for the server back-end, these of course only work
if LocalPoison is injected. An additional termination domain exists wlt@obalPoison is in-
jected, then the complete network terminates. The different termination domains (t-domain)
are illustrated in figure 21.

102 B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks

6. Conclusions

This paper showed a channel model supporting an easy way to terminate process networks.
It furthermore showed how to enhance poisoning to support partial process network termina-
tion. This technique has further applications in the area of partial process network reconfig-
uration, where one process network is replaced by another. This is for instance necessary to
create a CSP based Software Defined Radio.

The technique shown in this paper resolved some of the problems of the original
graceful-termination technique proposed by P.H. Welch. Most important to mention is that
now processes do not need to spin off black hole processes anymore to swallow any arriv-
ing messages. The possibility to poison data source processes, which only have outgoing
channels, is a further advantage of the technique demonstrated here.

Other applications of the technique shown here, include the KCSP [15] environment,
which currently provides complete process network termination. Unfortunately, this environ-
ment does not support the generation of exceptions, so the developer has to check the return
value of each channel operation. But in the kernel environment it is even more important to
perform proper clean up operations, than it is in user mode applications.

7. Further Work

Obviously, there are a lot of channel types not handled in this paper. To just name a few, there
is still no model on how to deal with poison and the call channels provided by JCSP. Fur-
ther investigations also include modelling the poisonable Any20ne, One2Any and Any2Any
channel types, to see whether they behave as expected.

The model shown in this paper was used to verify the correctness of the JCSP-Poison
implementation model (which was not shown). This results in the shown model to be more
complex than necessary, as it had to behave externally like a Java class. The next iteration
of the shown model should be completely independent from JCSP and therefore become less
complex. This should be done before modelling the other channel types available in JCSP.

In C++CSP Networked [16], channel ends can be restricted in their ability to poison a
channel. Depending on the actual application of this feature, it is similar to use a Poison-
Filtering-Channel and only uskocalPoison in the sub-network that should not affect the
other networks. From a security standpoint, it is more powerful, as it allows to prevent a
sub-network to poison its environment, by accidentally usingabalPoison instead of a
LocalPoison. Therefore, the ability to prevent a channel end to inject poison into a channel
should be added to the poisonable channels available in JCSP-Poison.

Partial process network reconfiguration in JCSP is also an area to look into, some ideas
have already been drafted, but a proof of concept implementation is still missing.

A JCSP implementation of mobile processes [17], which are available for OCCAM al-
ready [18,19], will have to broadcast a message inside a sub-network. JCSP-Poison had sim-
ilar problems when trying to poison a sub-network, so an extension of JCSP-Poison should
be able to provide the desired sub-network broadcast functionality. Developing a concept to
bring general message broadcasting, without using the barrier technique, to JCSP is a possi-
ble area to improveme JCSP-Poison.

Acknowledgements

The authors would like to thank P.H. Welch for providing the JCSP source code. Also appre-
ciation to the reviewers for their careful reading.

B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Network403

References

[1] C.A.R. Hoare. Communicating sequential proces§&snmunications of the ACN1(8):666—677,
August 1978.

[2] C. A. R. Hoare.Communicating Sequential ProcessBEsentice-Hall, 1985.

[3] Joseph Mitola. The software radio architectuteEE Communications Magizinés):26—38, May 1995.

[4] Joseph Mitola. Software radio architecture: A mathematical perspetfita= Journal on Selected Areas
in Communicationsl7(4):514-538, April 1999.

[5] Oliver Faust, Bernhard Sputh, and David Endler. Chaining Communications Algorithms with CSP. In
lan R. East, Prof David Duce, Mark Green, Jeremy M. R. Martin, and Peter H. Welch, editors,
Communicating Process Architectures 20pdges 325-338, 2004.

[6] P. H. Welch and P. D. Austin. Jcsp home page
http://www.cs.kent.ac.uk/projects/ofal/jcsp/

[7] Cay S. Horstmann and Gary Corneltore Java 2: Volume Il Advanced Featurgslume 2 ofThe Sun
Microsystems Press Java Seri&in Microsystems Press, A Prentice Hall Title, 901 San Antonio Road,
Palo Alto, California, 94303-4900 U.S.A., 2002. ISBN: 0-13-092738-4.

[8] Peter H. Welch. Graceful termination — graceful resetting. In &ndt P. Bakkers, edito@UG-10:
Applying Transputer Based Parallel Machingages 310-317, 1989.

[9] P.H. Welch. Concurrency, exceptions and poison. Mailing List, September 2001. URL.:
http://www.wotug.org/lists/occam/1076.shtml

[10] Neil C. Brown and Peter H. Welch. An Introduction to the Kent C++CSP Library. In Jan F. Broenink and
Gerald H. Hilderink, editorsCommunicating Process Architectures 20p&ges 139-156, 2003.

[11] Formal Systems (Europe) Lt&EDR2 User Manualsixth edition, May 2003. URL:
http://www.fsel.com/fdr2 _manual.html

[12] Peter H. Welch and Jeremy M. R. Martin. Formal Analysis of Concurrent Java Systems. In Peter H.
Welch and Ande W. P. Bakkers, editor§§ommunicating Process Architectures 20p8ges 275-301.

[13] nullsoft AOLmusic. SHOUTcast homepage. Internet. URLttp://www.shoutcast.com

[14] Xiph.org Foundation. icecast homepage. Internet. URLtp://www.icecast.org

[15] Bernhard Sputh. K-CSP Component Based Development of Kernel Extensions. In lan R. East,

Prof David Duce, Mark Green, Jeremy M. R. Martin, and Peter H. Welch, ed@orsmunicating
Process Architectures 200gages 311-324, 2004.

[16] Neil C. Brown. C++CSP Networked. In lan R. East, David Duce, Mark Green, Jeremy M. R. Martin, and
Peter H. Welch, editor&Sommunicating Process Architectures 20pdges 185—-200, 2004.

[17] Fred Barnes and Peter H. Welch. Communicating Mobile Processes. In lan R. East, David Duce, Mark
Green, Jeremy M. R. Martin, and Peter H. Welch, editG@nmunicating Process Architectures 2004
pages 201-218, 2004.

[18] Mario Schweigler, Frederick R. M. Barnes, and Peter H. Welch. Flexible, Transparent and Dynamic
occam Networking With KRoC.net. In Jan F. Broenink and Gerald H. Hilderink, edi@amsymunicating
Process Architectures 200Bages 199-224, 2003.

[19] Mario Schweigler. Adding Mobility to Networked Channel-Types. In lan R. East, David Duce, Mark
Green, Jeremy M. R. Martin, and Peter H. Welch, editG@nmunicating Process Architectures 2004
pages 107-126, 2004.

Appendix. PoisonableOne20neChannel Source Code

Listing 5 shows the actual implementation of tReisonableOne20neChannel in JCSP-
Poison. The code is based upon e20neChannel provided by JCSP. The original list-

ing is quite long, due to extensive commenting the code (originally this were seven pages).
Some of the comments were removed where appropriate, but the comments concerned with
the poisoning aspect of the system were left in. The code shown below is the basis for all
poisonable channels. One of them, the Poison-Injector-Channel has to be able to differentiate
between the two channel ends in terms of poison. This is the reason for the metReats:
erPoisoned(), getReaderPoison(), isWriterPoisoned() andgetWriterPoison(). In this channel

no differentiation between reader and writer end poison is performed.

104 B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks

package jcsp.lang;

public class PoisonableOne20neChannel
extends PoisonableAltingChannellnput
implements PoisonableChannelOutput {

/**

* The monitor synchronising reader and writer on this channel
*/

protected Object rwMonitor = new Object();

/**

* The (invisible-to-users) buffer used to
* store the data for the channel.

*/

protected Object hold;

/**

* The synchronisation flag

*

protected boolean empty = true ;
/**

* This flag indicates that the last transfer went OK. The

* purpose is to not throw a PoisonException to the writer
* side when the last transfer went OK, but the reader side
* injected poison before the writer side finished processing
* of the last write transfer.

*/

protected boolean done = false ;

/**

* The Alternative class that controls the selection
*/

protected Alternative alt;

/**

* This member holds the poison

* that was injected into the channel.
*

protected Poison poison = null ;

/**
* This method is used whether the
* reader side of the channel is poisoned.

* o

@return True if the reader side is poisoned, else false.
*/
protected boolean isReaderPoisoned() {
return (null != poison);
}

/**

This method is used to retrieve the type of
poison that the reader side is poisoned with.

*
*
*
* @return The poison that should be reported
* to the reader side.

*/
protected Poison getReaderPoison() {

return poison;

}

B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Network405

/**

* This method is used whether the
* writer side of the channel is poisoned.
*

* @return True if the writer side is poisoned, else false.
*
protected boolean isWriterPoisoned() {
return (null = poison);
}

This method is used to retrieve the type of poison that
the writer side is poisoned with.

@return The poison that should be reported
to the writer side.

protected Poison getWriterPoison() {
return poison;
}

/**

* Reads an Object from the channel.

*

* @return the object read from the channel.
*

*

@throws PoisonException in case the channel is poisoned.
*/
public Object read() throws PoisonException {
synchronized (rwMonitor) {
if (isReaderPoisoned()) {
throw new PoisonException(getReaderPoison());

}
it (empty) {
empty = false ;
try {
rwMonitor.wait();
} catch (InterruptedException e) {
throw new ProcessinterruptedError(
"*** Thrown from Poisonable
One20neChannel.read ()\n"
+ e.toString());
}
} else {
empty = true ;
rwMonitor.notify();

}
if (isReaderPoisoned()) {

throw new PoisonException(getReaderPoison());
} else {

done = true ;

rwMonitor.notify();

return hold;

/**

* Writes an <TT>Object</TT> to the channel.

* @param value the object to write to the channel.

* @throws PoisonException in case the channel is poisoned.
*

106 B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Networks

public void write(Object value) throws PoisonException {
synchronized (rwMonitor) {
if (isWriterPoisoned()) {
throw new PoisonException(getWriterPoison());

hold = value;

if (empty) {
empty = false ;
if (alt != null) {

alt.schedule();

} else {
empty = true ,
rwMonitor.notify();
}

try {
rwMonitor.wait();

} catch (InterruptedException e) {
throw new ProcessinterruptedError(
"** Thrown from Poisnhable
One20neChannel.write (Object)\n"
+ e.toString());

}
if (true == done) {
done = false ;
} else {
if (isWriterPoisoned()) {
hold = null ;
throw new PoisonException(getWriterPoison());
} else {
done = true ;
}
}
}
}
/**

* Turns on Alternative selection for the channel.
* @param alt the Alternative class which will control the selection
* @return true if the channel has data that can be read
or is poisoned, else false
*
boolean enable(Alternative alt) {
synchronized (rwMonitor) {

/I ' When the channel is poisoned then make

/I it seem as if a message has arrived.

if (isReaderPoisoned()) {

return true

}
if (empty) {
this .alt = alt;
return false ;
} else {
return true
}

/**

* Turns off Alternative selection for the channel.

* @return true if the channel has data that can be read
* or is poisoned, else false

*/

B.H.C. Sputh and A.R. Allen / JCSP-Poison: Safe Termination of CSP Process Network4d07

boolean disable() {
synchronized (rwMonitor) {
alt = null ;
/I Either data or Poison available for pickup.
return (lempty || isReaderPoisoned());

}
/**

* Returns whether there is data pending on this channel.
* @return true if the channel has data that can be read
* or is poisoned, else false
*/
public boolean pending() {
synchronized (rwMonitor) {
/I Data or Poison waiting for pickup
return (lempty || isReaderPoisoned());

}
/**

* Injects poison into the channel.
* @param poison the poison to inject into the channel.

*
public void injectPoison(Poison poison) {
synchronized (rwMonitor) {
/I did get poison passed to the function?
if (null == poison) {
return ;
/I channel currently not poisoned
if (null == this .poison) {
this .poison = poison;
/I wake up possible sleeper
rwMonitor.notifyAll();
/I If alternation is used at the
/I reader side, alarm the reader.
if (null = alt) {
alt.schedule();
}
/I done
return ;
[/l is this Channel only poisoned with
/I LocalPoison?
if (LocalPoison. class .islnstance(this .poison)) {
/I Global Poison overwrites LocalPoison
if (GlobalPoison. class .isInstance(poison)) {
this .poison = poison;
/I wake up possible sleeper
rwMonitor.notifyAll();
/I If alternation is used at the
/I reader side, alarm the reader.
if (null = alt) {
alt.schedule();
}
return ;
}
}
}
}

Listing 5: Implementation of thBoisonableOne20neChannel

