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Abstract. Honeysuckle [1] is a new programming language that allows systems to
be constructed from processes which communicate under service (client-server or
master-servant) protocol [2]. The model for abstraction includes a formal definition of
both service andservice-network(system or component) [3]. Any interface between
two components thus forms a binding contract which will be statically verified by the
compiler. An account is given of how such an interface is constructed and expressed in
Honeysuckle, including how it may encapsulate state, and how access may be shared
and distributed. Implementation is also briefly discussed.
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Introduction

The Honeysuckle project has two motivations. First, is the need for a method by which to
design and construct reactive (event-driven) and concurrent systems free of pathological be-
haviour, such as deadlock. Second, is the desire to design a new programming language that
builds on the success ofoccam [4] and profits from all that has been learned in two decades
of its use [5].

occam already has one worthy successor inoccam-π which extends the original lan-
guage to support the development of distributed applications [6]. Both processes and chan-
nels thus become mobile. Honeysuckle is more conservative and allows only objects mobil-
ity. Emphasis has instead been placed on securing integritywithin the embedded application
domain. Multiple offspring are testimony to the innovativevigour ofoccam.

Any successor must preserve its salient features.occam facilitates the natural expression
of concurrency without semaphore or monitor. It possesses transparent, and mostly formal,
semantics, based upon the theory of Communicating Sequential Processes (CSP) [7,8]. It is
alsocompositional, in that it is rendered inherently free of side-effects by the strict separation
of value and action (the changing of value).

occam also had its weaknesses, that limited its commercial potential. It offered poor
support for the expression of data structure and none for dynamic (abstract) data types. While
processes afford encapsulation and allow effective systemmodularity, there is also no support
for project (source code) modularity. One cannot collect related definitions in any kind of
reusable package. Also, the ability only to copy a value, andnot pass access to an object, to
a parallel process caused inefficiency, and lay in contrast with the passing of parameters to a
sequential procedure.

Perhaps the most significant factor limiting the take-up ofoccam has been the additional
threats to security against error that come with concurrency; most notably, deadlock. Jeremy
Martin successfully brought together theoretical work on deadlock-avoidance usingCSPwith
the effective design patterns for process-oriented systems introduced by Peter Welch et al.
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[9,10,11,12]. The result was a set offormal design rules, each proven to guarantee deadlock-
freedom within aCSPframework.

By far the most widely applicable design rule relies on a formal service(client-server)
protocol to define a model for system architecture. This ideaoriginated with Per Brinch-
Hansen [2] in the study of operating systems. Service architecture has a wide domain of
application because it can abstract a large variety of systems, including any that can be ex-
pressed usingchannels, as employed byoccam. However, architecture is limited to hierar-
chical structure because of a design rule that requires the absence of any directed circuit in
service provision, in order to guarantee freedom from deadlock.

A formal model for the abstraction of systems with service architecture has been pre-
viously given [3], based upon the rules employed by Martin. This separates the abstraction
of service protocol and service network component, and shows how the definition of system
and component can be unified (a point to be revisited in the next section). Furthermore, the
model incorporatesprioritisation, which not only offers support for reactive systems (that
typically prioritise event response), but also liberates system architecture from the constraint
of hierarchical (tree) structure. Finally, a further proofof the absence of deadlock was given,
subject to a new design rule.

Prioritised service architecture(PSA) presents the opportunity to build a wide range of
reactive/concurrent systems, guaranteed free of deadlock. However, it is too much to expect
any designer to take responsibility for thestatic verificationof many formal design rules.
Specialist skills would be required. Even then, mistakes would be made. In order to ease
design and implementation, a new programming language is required. The compiler can then
automate all verification.

Honeysuckle seeks to combine the ambition for such a language with that for a succes-
sor tooccam. It renders systems withPSA simple to derive and express, while retaining a
formal guarantee of deadlock-freedom, without resort to any specialist skill or tool beyond
the compiler. Its design is now complete and stable. A compiler is under construction and
will be made available free of charge.

This paper presents a detailed account of the programming ofservice protocol and the
construction of an interface for system or component in Honeysuckle. In so doing it continues
from the previous language overview [1]. We begin by considering the problem of modular
software composition and the limitations of existing object- and process-oriented languages.

1. The Problem of Composition

While occam is compositional in the construction of a monolithic program, it is not so with
regard to system modularity. In order to recursively compose or decompose a system, we
require:

• some components that are indivisible
• that compositions of components are themselves valid components
• that behaviour of any component is manifest in its interface, without reference to any

internal structure

Components whose definition complies with all the above conditions may be termed
compositionalwith regard to some operator or set of operators. As alluded to earlier, it has
been shown how service network components (SNCs) may be defined in such a way as to
satisfy the first two requirements when subject to parallel composition [3].

A corollary is that any system forms a valid component, sinceit is (by definition) a com-
position. Another corollary, vital to all forms of engineering, is that it is then possible tosub-
stitute any component with another, possessing the same interface, without affecting either
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design or compliance with specification. Software engineering now aspires to this principle
[13].

Clearly, listing a series of procedures, with given parameters, or a series of channels,
with associated data types, does little to describe object or process. To substitute one process
with another that simply sports the same channels would obviously be asking for trouble. A
much richer language is called for, in which to describe an interface.

One possibility is to resort to Floyd-Hoare logic [14,15,16] and impose formal pre- and
post-conditions on each procedure (‘method’) or channel, and maintain invariants associated
with each component (process or object class). However, this would require effectively the
development of a language to suit each individual application and is somewhat cumbersome
and expensive. It also requires special skill. Perhaps for that reason, such an explicitly for-
mal approach has not found favour in much of industry. Furthermore, no other branch of
engineering resorts to such powerful methods.

Meyer introduced the expressiondesign by contract[17], to which he devotes an entire
chapter of his textbook on object-oriented programming [18]. This would seem to be just
a particular usage of invariants and pre- and post-conditions, but it does render clear the
principle that some protocol must precede composition and be verifiable.

The difficulty that is peculiar to software, and that does notapply (often) to, say, me-
chanical engineering, is, of course, that a component is likely to be capable of complex be-
haviour, responding in a unique and perhaps extended mannerto each possible input com-
bination. Not many mechanical systems possess memory and the ability to change their re-
sponse in perhaps a highly non-linear fashion. However, many electronic systems do possess
significantly complex behaviour, yet have interfaces specified without resort to full first-order
predicate calculus. Electronic engineers expect to be ableto substitute components according
to somewhat more specific interface description.

One possibility for software component interface description, that is common with hard-
ware, is a formal communication protocol detailing the order in which messages are ex-
changed, together with their type and structure. In this way, a binding and meaningful con-
tract is espoused. Verification can be performed via the execution of an appropriate “state-
machine” (finite-state automaton (FSA)).

Marcel Boosten proposed just such a mechanism to resolve problems encountered upon
integration under component-based software development [19]. These included race condi-
tions, re-entrant call-backs, and inconsistency between component states. He interposed an
object between components that would simulate an appropriate FSA.

Communication protocol can provide an interface that is both verifiable and sufficiently
rich to at least reduce the amount of logic necessary for an adequate definition, if not eliminate
it altogether.

In Honeysuckle, an interface comprises a list ofports, each of which corresponds to one
end (client or provider) of a service and forms an attribute of the component. Each service
defines a communication protocol that is translated by the compiler into an appropriateFSA.
Conformance to that protocol isstaticallyverifiable by the compiler.

Static verification is to be preferred wherever possible forthe obvious reason that errors
can be safely corrected. Dynamic verification can be compared to checking your boatafter
setting out to sea. Should you discover a hole, there is little you can then do but sink. Dis-
covering an error in software that is deployed and running rarely leaves an opportunity for
effective counter-measures, still less rectification. Furthermore, dynamic verification imposes
a performance overhead that may well prove significant, especially for low-latency reactive
applications.

It is thus claimed here that (prioritised) service architecture is an ideal candidate for
secure component-based software development (CBSD).
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Honeysuckle also providesbalanced abstractionbetween object and process. Both static
and dynamic object composition may be transparently expressed, without recourse to any
explicit reference (pointer). Distributed applications are supported with objects mobile be-
tween processes. Together, object and service abstractionaffords a rich language in which to
express the interface between processes composed in eithersequence or parallel.

2. Parallel Composition and Interfacing in Honeysuckle

2.1. Composition and Definition

Honeysuckle interposes “clear blue water” between system and project modularity. Each
definition of process, object, and service, is termed anitem. Items may be gathered into a
collection. Items and collections serve the needs of separated development and reuse.

Processes and objects are the components from which systemsare composed, and to-
gether serve the needs of system abstraction, design, and maintenance. Every object is owned
by a single process, though ownership may be transferred between processes at run-time.
Here, we are concerned only with the programming of processes and their service interface.

A program consists of one or more item definitions, includingat least one of a process.
For example:

definition of process greet

imports
service console from Environment

process greet :
{
interface

client of console
defines

String value greeting : "Hello world!\n"

send greeting to console
}

This defines a unique processgreet that has a single port consuming a service named
consoleas interface. The console service is assumed provided by thesystem environment,
which is effectively another process composed in parallel (which must include “provider
of console” within its interface description). Figure 1 shows how both project and system
modularity may be visualized or drawn.

p.greet s.console greet
console

Figure 1. Visualizing both project and system modularity.

The left-hand drawing shows the item defining process greet importing the definition of
service console. On the right, the process is shown running as a client of that service.

Braces (curly brackets) denote the boundary of block scope,not sequential construction,
as in C or Java. They may be omitted where no context is given, and thus no indication of
scope required.
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A process may be defined inline or offline in Honeysuckle with identical semantics.
When defined inline, any further (offline) definitions must beimported above the description
of the parent process.

...
{
interface

client of console
defines

String greeting : "Hello world!\n"

send greeting to console
}
...

An inline definition is achieved simultaneously with command issue (greet!).
A process thus defined can still be named, facilitating recursion. For example, a proce-

dure to create a new document in, say, a word processor might include the means by which a
user can create a further document:

...
process new_document :
{
... context

...
...

...
new_document

}
...

2.2. Simple Services

If all the console service does is eat strings it is sent, it could be very simply defined:

definition of service console

imports
object class String from StandardTypes

service console :
receive String

This is the sort of thing a channel can do — simply define the type of value that can be
transmitted. Any such simple protocol can be achieved usinga single service primitive. This
is termed asimple service. Note that it is expressed from the provider perspective. The client
mustsenda string.

One further definition is imported, of a string data type froma standard library — part of
theprogram environment. It was not necessary for the definition of process greet to directly
import that of String. Definitions in Honeysuckle aretransparent. Since that of greet can see
that of console, it can also see that of String. For this reason, no standard data type need be
imported to an application program.

If more than one instance of a console service is required then one must define aclassof
service, perhaps called Console:

definition of service class Console
...

It is often very useful to communicate a “null datum” — asignal:



6 I. East / Interfacing with Honeysuckle

definition of service class Sentinel

service class Sentinel :
send signal

This example makes an important point. A service definition says nothing aboutwhenthe
signal is sent. That will depend on that of the process that provides it. Any service simply acts
as a template governing the communication undertaken between two (or more) processes.

Signal protocol illustrates a second point, also of some importance. The rules governing
the behaviour of everyservice network component(SNC) [3] do not require any service to
necessarily become available immediately. This allows signal protocol to be used tosynchro-
nizetwo processes, where either may arrive first.

2.3. Service Construction and Context

Service protocol can provide a much richer interface, and thus tighter component specifica-
tion, by constraining the order in which communications occur. Perhaps the simplest example
is of handshaking, where a response is always made to any request:

definition of service class Console

imports
object class String from Standard_Types

service class Console :
sequence
receive String
send String

Any process implementing acompound service, like the above, is more tightly con-
strained than with a simple service.

A rather more sophisticated console might be subject to a small command set and would
behave accordingly:

service class Console :
{
defines

Byte write : #01
Byte read : #02

names
Byte command

sequence
receive command
if command
write
acquire String

read
sequence
receive Cardinal
transfer String

...

Now something strange has happened. A service has acquiredstate. While strange it may
seem, there is no cause for alarm. Naming within a service is ignored within any process that
implements it (either as client or provider). It simply allows identification between references
within a service definition, and so allows a decision to be taken according the intended object
or value. This leaves control over all naming with the definition of process context.
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One peculiarity to watch out for is illustrated by the following:

service class Business :
{
...

sequence
acquire Order
send Invoice
if
acquire Payment
transfer Item

otherwise
skip

}

It might at first appear that payment will never be required and that service will always
terminate after the dispatch of (a copy of) the invoice. Suchis not the case. The above def-
inition allows either payment to be acquired, then an item transferred, or no further transac-
tion between client and provider. It simply endorses eitheras legitimate. Perhaps the busi-
ness makes use of a timer service and decides according to elapsed time whether to accept or
refuse payment if/when offered.

Although it makes sense, any such protocol isnot legitimate because it does not conform
to the formal conditions defining service protocol [3]. The sequence in which communica-
tions take place must be agreed between client and provider.Agreement can be made as late
as desired but it must be made. Here, at the point of selection(if) there is no agreement.
Selection and repetition must be undertaken according tomutually recorded values, which is
why a service may require state.

A compound service may also be constructed via repetition. It might seem unnecessary,
given that a service protocol is inherently repeatable anyway, but account must be taken of
other associated structure. For example, the following might be a useful protocol for copying
each week between two diaries:

service diary :
{
...

sequence
repeat
for each WeekDay
send day

send week
}

It also serves as a nice illustration of the Honeysuckle use of an enumeration as both data
type and range.

2.4. Implementation and Verification

Any service could be implemented inoccam, using at most two channels — one in each
direction of data flow. Like a channel, a service is implemented using rendezvous. Because,
within a service, communications are undertaken strictly in sequence, only a single ren-
dezvous is required. As withoccam, the rendezvous must be initially empty and then occu-
pied by the first party to become ready, which must render apparent the location of, or for,
any message and then wait.

Each service can be verified via a finite-state automaton (FSA) augmented with a loop
iteration counter. At process start, each service begins inan initial state and moves to its
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successor every time a communication is encountered matching that expected. Upon process
termination, each automaton must be in a final “accepting” state. A single state marks any
repetition underway. Transition from that state awaits completion of the required number
of iterations, which may depend upon a previous communication (within the same service).
Selection is marked by multiple transitions leaving the state adopted on seeing the preceding
communication. A separate state-chain follows each option.

Static verification can be completeexceptfor repetition terminated according to state
incorporated within the service. The compiler must take account of this and generate an
appropriate warning. Partial verification is still possible at compile-time, though the final
iteration count must be checked at run-time.

3. Shared and Distributed Services

3.1. Sharing

By definition, a service represents a contract between two parties only. However, the question
of which two can be resolved dynamically. In the use ofoccam, it became apparent that a
significant number of applications required the same superstructure, to allow services to be
shared in this way.

occam 3 [20] sought to address both the need to establish a protocol governing more
than one communication at a time and the need for shared access. Remote call channels
effected a remote procedure call (RPC), and thus afforded a protocol specifying a list of
parameters received by a subroutine, followed by a result returned. Once defined,RPCs could
be shared in a simple and transparent manner.occam 3 also added shared groups of simple
channels via yet another mechanism, somewhat less simple and transparent.

TheRPC is less flexible than service protocol, which allows specifying communications
in either direction in any order. Furthermore, multiple services may beinterleaved; multiple
calls to a remote procedure cannot, any more than they can to alocal one. Lastly, theRPC is
addedto the existing channel abstraction of communication, complicating the model signifi-
cantly. In Honeysuckle, services are all that is needed to abstract communication, all the way
from the simplest to the most complex protocol.

Honeysuckle allows services to be shared by multiple clients at the point of declaration.
No service need be explicitly designed for sharing or definedas shared.

{
...
network
shared console

parallel
{

interface
provider of console

...
}
... console clients

}

Any client of a shared service will be delayed while another is served. Multiple clients
form an implicit queue.
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3.2. Synchronized Sharing

Experience withoccam and the success ofbulk-synchronousparallel processing strongly
suggest the need for barrier synchronisation. Honeysuckleobliges with the notion ofsyn-
chronized sharing, where every client must consume the service before any can reinitiate
consumption, and the cycle begin again.

...
network
synchronized shared console

...

Like the sharing inoccam 3, synchronized sharing in Honeysuckle is superstructure. It
could be implemented directly via the use of an additional co-ordinating process but is be-
lieved useful and intuitive enough to warrant its own syntax. The degree of system abstraction
possible is thus raised.

3.3. Distribution

Sharing provides a many-to-one configuration between clients and a single provider. It is also
possible, in Honeysuckle, to describe both one-to-many andmany-to-many configurations.

A service is said to bedistributedwhen it is provided by more than one process.

...
network
distributed validation

...

Note that the service thus described may remain unique and should be defined accord-
ingly. Definition of an entireclassof service is not required. (By now, the convention may
be apparent whereby a lower-case initial indicates uniqueness and an upper-case one a class,
with regard to any item — object, process, or service.)

The utility of this is to simplify the design of many systems and reduce the code required
for their implementation. Again, the degree of system abstraction possible is raised.

A many-to-many configuration may be expressed by combining two qualifiers:

...
network
distributed shared validation

...

When distributed, a shared service cannot be synchronized.This would make no sense,
as providers possess no intrinsic way of knowing when a cycleof service, around all clients,
is complete.

3.4. Design and Implementation

Neither sharing nor distribution influence the abstract interface of a component. Considera-
tion is only necessary when combining components. For example, the designer may choose
to replicate a number of components, each of which provides serviceA and declare provision
distributed between them. Similarly, they may choose a component providing serviceB and
declare provision shared between a number of clients.

A shared service requires little more in implementation than an unshared one. Two ren-
dezvous (locations) are required. One is used to synchronize access to the service and the
other each communication within it. Any client finding the provider both free and ready (both
rendezvous occupied) may simply proceed and complete the initial communication. After
this, it must clear both rendezvous. It may subsequently ignore the service rendezvous until
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completion. Any other client arriving while service is in progress will find the provider un-
ready (service rendezvous empty). It then joins a queue, at the head of which is the service
rendezvous. The maximum length of the queue is just the totalnumber of clients, defined at
compile-time.

Synchronized sharing requires a secondary queue from whichelements are prevented
from joining the primary one until a cycle is complete. A shared distributed service requires
multiple primary queues. The physical interface that implements sharing and shared distribu-
tion is thus a small process, encapsulating one or more queues.

4. Conclusion

Honeysuckle affords powerful and fully component-wise compositional system design and
programming, yet with a simple and intuitive model for abstraction. It inherits and continues
the simplicity of occam but has added the ability to express the component (or system)
interface in much greater detail, so that integration and substitution should be more easily
achieved. Support is also included for distributed and bulk-synchronous application design,
with mobile objects and synchronized sharing of services.

Service (client-server) architecture is proving extremely popular in the design of dis-
tributed applications but is currently lacking an established formal basis, simple consistent
model for abstraction, and programming language. Honeysuckle andPSAwould seem timely
and well-placed. Though no formal semantics for prioritisation yet appears to have gained
both stability and wide acceptance, this looks set to change[21].

A complete programming language manual is in preparation, as is a working compiler.
These will be completed and published as soon as possible.
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