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Abstract. Honeysuckle [1] is a new programming language that allovedesys to
be constructed from processes which communicate undeiceefslient-server or
master-servant) protocol [2]. The model for abstractiatuides a formal definition of
both service andervice-networKsystem or component) [3]. Any interface between
two components thus forms a binding contract which will lzisally verified by the
compiler. An account is given of how such an interface is troiesed and expressed in
Honeysuckle, including how it may encapsulate state, amddezess may be shared
and distributed. Implementation is also briefly discussed.
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Introduction

The Honeysuckle project has two motivations. First, is teechfor a method by which to
design and construct reactive (event-driven) and conotusyestems free of pathological be-
haviour, such as deadlock. Second, is the desire to desigw @amgramming language that
builds on the success otcam [4] and profits from all that has been learned in two decades
of its use [5].

occam already has one worthy successooittam-7 which extends the original lan-
guage to support the development of distributed applinat[6]. Both processes and chan-
nels thus become mobile. Honeysuckle is more conservatidabows only objects mobil-
ity. Emphasis has instead been placed on securing integitityn the embedded application
domain. Multiple offspring are testimony to the innovatiwgour of occam.

Any successor must preserve its salient featuwresam facilitates the natural expression
of concurrency without semaphore or monitor. It possessesparent, and mostly formal,
semantics, based upon the theory of Communicating Seaql@nbcessescsP [7,8]. Itis
alsocompositionalin that it is rendered inherently free of side-effects by dkrict separation
of value and action (the changing of value).

occam also had its weaknesses, that limited its commercial padefit offered poor
support for the expression of data structure and none foamyo(abstract) data types. While
processes afford encapsulation and allow effective systedularity, there is also no support
for project (source code) modularity. One cannot colletatesl definitions in any kind of
reusable package. Also, the ability only to copy a value, rtcpass access to an object, to
a parallel process caused inefficiency, and lay in contréhttive passing of parameters to a
sequential procedure.

Perhaps the most significant factor limiting the take-upaafam has been the additional
threats to security against error that come with concugremost notably, deadlock. Jeremy
Martin successfully brought together theoretical work eadlock-avoidance usirgsPwith
the effective design patterns for process-oriented sysiatroduced by Peter Welch et al.
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[9,10,11,12]. The result was a setfofmal design ruleseach proven to guarantee deadlock-
freedom within acspframework.

By far the most widely applicable design rule relies on a falrservice(client-server)
protocol to define a model for system architecture. This ioleginated with Per Brinch-
Hansen [2] in the study of operating systems. Service achite has a wide domain of
application because it can abstract a large variety of systencluding any that can be ex-
pressed usinghannels as employed bypccam. However, architecture is limited to hierar-
chical structure because of a design rule that requirestibenge of any directed circuit in
service provision, in order to guarantee freedom from decdl|

A formal model for the abstraction of systems with servicehdecture has been pre-
viously given [3], based upon the rules employed by MartinisTseparates the abstraction
of service protocol and service network component, and shmw the definition of system
and component can be unified (a point to be revisited in thé sextion). Furthermore, the
model incorporategrioritisation, which not only offers support for reactive systems (that
typically prioritise event response), but also liberatgstesm architecture from the constraint
of hierarchical (tree) structure. Finally, a further probthe absence of deadlock was given,
subject to a new design rule.

Prioritised service architecturérsa) presents the opportunity to build a wide range of
reactive/concurrent systems, guaranteed free of deadimkever, it is too much to expect
any designer to take responsibility for te&atic verificationof many formal design rules.
Specialist skills would be required. Even then, mistakesldidoe made. In order to ease
design and implementation, a new programming languagejisreel. The compiler can then
automate all verification.

Honeysuckle seeks to combine the ambition for such a lareguéty that for a succes-
sor tooccam. It renders systems witRSA simple to derive and express, while retaining a
formal guarantee of deadlock-freedom, without resort tp specialist skill or tool beyond
the compiler. Its design is now complete and stable. A caenpd under construction and
will be made available free of charge.

This paper presents a detailed account of the programmisgreice protocol and the
construction of an interface for system or component in fenekle. In so doing it continues
from the previous language overview [1]. We begin by cormémgdethe problem of modular
software composition and the limitations of existing obj@nd process-oriented languages.

1. The Problem of Composition

While occam is compositional in the construction of a monolithic pragrat is not so with
regard to system modularity. In order to recursively congposdecompose a system, we
require:

e some components that are indivisible

e that compositions of components are themselves valid cosmge

e that behaviour of any component is manifest in its interfagéhout reference to any
internal structure

Components whose definition complies with all the above timm$ may be termed
compositionalwith regard to some operator or set of operators. As alludeghtlier, it has
been shown how service network componestsds) may be defined in such a way as to
satisfy the first two requirements when subject to parathehgosition [3].

A corollary is that any system forms a valid component, sibise(by definition) a com-
position. Another corollary, vital to all forms of enginewy, is that it is then possible &ub-
stitute any component with anothgrossessing the same interface, without affecting either
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design or compliance with specification. Software engiimgenow aspires to this principle
[13].

Clearly, listing a series of procedures, with given pararstor a series of channels,
with associated data types, does little to describe objgutaress. To substitute one process
with another that simply sports the same channels wouldooisly be asking for trouble. A
much richer language is called for, in which to describe a&erface.

One possibility is to resort to Floyd-Hoare logic [14,15,46d impose formal pre- and
post-conditions on each procedure (‘method’) or chanmel,raaintain invariants associated
with each component (process or object class). Howeverwbuld require effectively the
development of a language to suit each individual appboatind is somewhat cumbersome
and expensive. It also requires special skill. Perhapshfatr teason, such an explicitly for-
mal approach has not found favour in much of industry. Funtioee, no other branch of
engineering resorts to such powerful methods.

Meyer introduced the expressidesign by contracdil7], to which he devotes an entire
chapter of his textbook on object-oriented programming.[T8is would seem to be just
a particular usage of invariants and pre- and post-comditibut it does render clear the
principle that some protocol must precede composition awkbifiable.

The difficulty that is peculiar to software, and that does aygply (often) to, say, me-
chanical engineering, is, of course, that a componentéylito be capable of complex be-
haviour, responding in a unique and perhaps extended mémmeach possible input com-
bination. Not many mechanical systems possess memory arabtlity to change their re-
sponse in perhaps a highly non-linear fashion. Howeveryrafettronic systems do possess
significantly complex behaviour, yet have interfaces dptivithout resort to full first-order
predicate calculus. Electronic engineers expect to betalslebstitute components according
to somewhat more specific interface description.

One possibility for software component interface desmwiptthat is common with hard-
ware, is a formal communication protocol detailing the orolewhich messages are ex-
changed, together with their type and structure. In this,wayinding and meaningful con-
tract is espoused. Verification can be performed via thewi@t of an appropriate “state-
machine” (finite-state automatoRga)).

Marcel Boosten proposed just such a mechanism to resolsgpns encountered upon
integration under component-based software developmi@pt These included race condi-
tions, re-entrant call-backs, and inconsistency betweamponent states. He interposed an
object between components that would simulate an appteps$a.

Communication protocol can provide an interface that is vetifiable and sufficiently
rich to at least reduce the amount of logic necessary for aquate definition, if not eliminate
it altogether.

In Honeysuckle, an interface comprises a lispofts each of which corresponds to one
end Client or provider) of a service and forms an attribute of the component. Eachcee
defines a communication protocol that is translated by tinepdier into an appropriatesa.
Conformance to that protocol statically verifiable by the compiler.

Static verification is to be preferred wherever possibldlierobvious reason that errors
can be safely corrected. Dynamic verification can be contperehecking your boadfter
setting out to sea. Should you discover a hole, there is itlu can then do but sink. Dis-
covering an error in software that is deployed and runnimglydeaves an opportunity for
effective counter-measures, still less rectificationtirenmore, dynamic verification imposes
a performance overhead that may well prove significant,@albefor low-latency reactive
applications.

It is thus claimed here that (prioritised) service archiitez is an ideal candidate for
secure component-based software developnesg ).
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Honeysuckle also providdmlanced abstractiobetween object and process. Both static
and dynamic object composition may be transparently egpreswithout recourse to any
explicit reference (pointer). Distributed applicationg aupported with objects mobile be-
tween processes. Together, object and service abstradtads a rich language in which to
express the interface between processes composed insstingence or parallel.

2. Parallel Composition and Interfacing in Honeysuckle
2.1. Composition and Definition

Honeysuckle interposes “clear blue water” between systedhmoject modularity. Each
definition of process, object, and service, is termedtam Items may be gathered into a
collection Items and collections serve the needs of separated denetd@and reuse.

Processes and objects are the components from which syatencemposed, and to-
gether serve the needs of system abstraction, design, antemance. Every object is owned
by a single process, though ownership may be transferredelet processes at run-time.
Here, we are concerned only with the programming of proceasd their service interface.

A program consists of one or more item definitions, includad¢east one of a process.
For example:

definition of process greet

i mports
servi ce consol e from Envi ronnent

process greet

{

interface
client of console
defi nes
String value greeting : "Hello world!'\n"

send greeting to console

}

This defines a unique procegeeetthat has a single port consuming a service named
consoleas interface. The console service is assumed provided bgygtem environment
which is effectively another process composed in paraliddi¢h must include “provider
of console” within its interface description). Figure 1 slsohow both project and system
modularity may be visualized or drawn.

console
p.greet s.console

Figure 1. Visualizing both project and system modularity.

The left-hand drawing shows the item defining process gnegorting the definition of
service console. On the right, the process is shown runrsregciient of that service.

Braces (curly brackets) denote the boundary of block saoesequential construction,
as in C or Java. They may be omitted where no context is giveshlaus no indication of
scope required.
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A process may be defined inline or offline in Honeysuckle withntical semantics.
When defined inline, any further (offline) definitions mustilmgorted above the description
of the parent process.

{..

interface
client of console
defi nes
String greeting : "Hello world!\n"

send greeting to console

}

An inline definition is achieved simultaneously with comrdassue @reet)).

A process thus defined can still be named, facilitating rgoar For example, a proce-
dure to create a new document in, say, a word processor miglatie the means by which a
user can create a further document:

process new _docunent :

{

cont ext

new_docunent

2.2. Simple Services

If all the console service does is eat strings it is sent,uldbde very simply defined:

definition of service console

i mports
object class String from StandardTypes

servi ce consol e
receive String

This is the sort of thing a channel can do — simply define the tyfpvalue that can be
transmitted. Any such simple protocol can be achieved usisiggle service primitive. This
is termed asimple serviceNote that it is expressed from the provider perspective. ditent
mustsenda string.

One further definition is imported, of a string data type frastandard library — part of
the program environmenit was not necessary for the definition of process greetrectdy
import that of String. Definitions in Honeysuckle dransparent Since that of greet can see
that of console, it can also see that of String. For this neaso standard data type need be
imported to an application program.

If more than one instance of a console service is requiraddhe must define elassof
service, perhaps called Console:

definition of service class Consol e

It is often very useful to communicate a “null datum” —signal
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definition of service class Sentine

servi ce class Sentine
send signa

This example makes an important point. A service definitayssiothing abouvhenthe
signal is sent. That will depend on that of the process thatiges it. Any service simply acts
as a template governing the communication undertaken leettveo (or more) processes.

Signal protocol illustrates a second point, also of someontgmce. The rules governing
the behaviour of evergervice network compone(gNC) [3] do not require any service to
necessarily become available immediately. This allowsaigrotocol to be used t®ynchro-
nizetwo processes, where either may arrive first.

2.3. Service Construction and Context

Service protocol can provide a much richer interface, and tlghter component specifica-
tion, by constraining the order in which communicationsuwwcPerhaps the simplest example
is of handshakingwhere a response is always made to any request:

definition of service class Consol e

i mports
object class String from Standard_Types

servi ce class Consol e

sequence
receive String
send String

Any process implementing eompound servigdike the above, is more tightly con-
strained than with a simple service.

A rather more sophisticated console might be subject to d soramand set and would
behave accordingly:

servi ce class Consol e
{
defi nes
Byte wite : #01
Byte read : #02
nanes
Byt e command

sequence
recei ve conmand
i f command
wite
acquire String
read
sequence

receive Cardina
transfer String

Now something strange has happened. A service has acgtated/Vhile strange it may
seem, there is no cause for alarm. Naming within a servignisred within any process that
implements it (either as client or provider). It simply a®identification between references
within a service definition, and so allows a decision to bete&kccording the intended object
or value. This leaves control over all naming with the deifomitof process context.
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One peculiarity to watch out for is illustrated by the follio:

servi ce cl ass Busi ness

{

sequence
acqui re Order
send | nvoice
i f
acqui re Paynent
transfer Item
ot herwi se
skip
}

It might at first appear that payment will never be required @nat service will always
terminate after the dispatch of (a copy of) the invoice. Ssatot the case. The above def-
inition allows either payment to be acquired, then an iteangferred, or no further transac-
tion between client and provider. It simply endorses eitetegitimate. Perhaps the busi-
ness makes use of a timer service and decides accordingpsedlime whether to accept or
refuse payment if/when offered.

Although it makes sense, any such protocaiaslegitimate because it does not conform
to the formal conditions defining service protocol [3]. Theggence in which communica-
tions take place must be agreed between client and proideeement can be made as late
as desired but it must be made. Here, at the point of sele@tionthere is no agreement.
Selection and repetition must be undertaken accordimguimally recorded valuesvhich is
why a service may require state.

A compound service may also be constructed via repetittanight seem unnecessary,
given that a service protocol is inherently repeatable ayywut account must be taken of
other associated structure. For example, the followindhirtag a useful protocol for copying
each week between two diaries:

service diary

{
sequence
r epeat
for each WeekDay
send day
send week
}

It also serves as a nice illustration of the Honeysuckle fisa enumeration as both data
type and range.

2.4. Implementation and Verification

Any service could be implemented otcam, using at most two channels — one in each
direction of data flow. Like a channel, a service is implerednising rendezvous. Because,
within a service, communications are undertaken strigthsequence, only a single ren-
dezvous is required. As witbccam, the rendezvous must be initially empty and then occu-
pied by the first party to become ready, which must render rappahe location of, or for,
any message and then wait.

Each service can be verified via a finite-state automatsn)(augmented with a loop
iteration counter. At process start, each service begiraimitial state and moves to its
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successor every time a communication is encountered matthat expected. Upon process
termination, each automaton must be in a final “acceptingtestA single state marks any
repetition underway. Transition from that state awaits pl@tion of the required number
of iterations, which may depend upon a previous commumiogivithin the same service).
Selection is marked by multiple transitions leaving theéestalopted on seeing the preceding
communication. A separate state-chain follows each option

Static verification can be compleexceptfor repetition terminated according to state
incorporated within the service. The compiler must takeoaot of this and generate an
appropriate warning. Partial verification is still possilat compile-time, though the final
iteration count must be checked at run-time.

3. Shared and Distributed Services
3.1. Sharing

By definition, a service represents a contract between tw@panly. However, the question
of whichtwo can be resolved dynamically. In the useostam, it became apparent that a
significant number of applications required the same stipetsire, to allow services to be
shared in this way.

occam 3 [20] sought to address both the need to establish a protas@rging more
than one communication at a time and the need for sharedad®esiote call channels
effected a remote procedure calAQ), and thus afforded a protocol specifying a list of
parameters received by a subroutine, followed by a reswitrred. Once defineepPcs could
be shared in a simple and transparent marowam 3 also added shared groups of simple
channels via yet another mechanism, somewhat less simgleaarsparent.

TheRPcCis less flexible than service protocol, which allows spengycommunications
in either direction in any order. Furthermore, multiplevsegs may benterleaved multiple
calls to a remote procedure cannot, any more than they calotakbone. Lastly, th&PcCis
addedto the existing channel abstraction of communication, darapng the model signifi-
cantly. In Honeysuckle, services are all that is needed $tratt communication, all the way
from the simplest to the most complex protocol.

Honeysuckle allows services to be shared by multiple dianthe point of declaration.
No service need be explicitly designed for sharing or defasedhared.

{
net wor k
shared consol e

paral | el

{

i nterface
provi der of console

consol e clients

}

Any client of a shared service will be delayed while anotlseserved. Multiple clients
form an implicit queue.
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3.2. Synchronized Sharing

Experience withoccam and the success difulk-synchronougarallel processing strongly
suggest the need for barrier synchronisation. Honeysuaiiges with the notion ofyn-
chronized sharingwhere every client must consume the service before any eartiate
consumption, and the cycle begin again.

net wor k
synchroni zed shared consol e

Like the sharing iroccam 3, synchronized sharing in Honeysuckle is superstructtire. |
could be implemented directly via the use of an additionabiinating process but is be-
lieved useful and intuitive enough to warrant its own synifiehe degree of system abstraction
possible is thus raised.

3.3. Distribution

Sharing provides a many-to-one configuration betweentslignd a single provider. Itis also
possible, in Honeysuckle, to describe both one-to-manynaaualy-to-many configurations.
A service is said to bdistributedwhen it is provided by more than one process.

net wor k
di stributed validation

Note that the service thus described may remain unique anuldsbe defined accord-
ingly. Definition of an entireclassof service is not required. (By now, the convention may
be apparent whereby a lower-case initial indicates unigsgand an upper-case one a class,
with regard to any item — object, process, or service.)

The utility of this is to simplify the design of many systenmglaeduce the code required
for their implementation. Again, the degree of system aosivn possible is raised.

A many-to-many configuration may be expressed by combinuagaualifiers:

net wor k
di stributed shared validation

When distributed, a shared service cannot be synchronfteslwould make no sense,
as providers possess no intrinsic way of knowing when a ayfcéervice, around all clients,
is complete.

3.4. Design and Implementation

Neither sharing nor distribution influence the abstracriigice of a component. Considera-
tion is only necessary when combining components. For el@rtipe designer may choose
to replicate a number of components, each of which providesce A and declare provision
distributed between them. Similarly, they may choose a aomapt providing servicé and
declare provision shared between a number of clients.

A shared service requires little more in implementatiomtha unshared one. Two ren-
dezvous (locations) are required. One is used to syncle@uzess to the service and the
other each communication within it. Any client finding th@pider both free and ready (both
rendezvous occupied) may simply proceed and complete tti@ icommunication. After
this, it must clear both rendezvous. It may subsequentlgriggthe service rendezvous until
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completion. Any other client arriving while service is inogress will find the provider un-
ready (service rendezvous empty). It then joins a queudgeatbé¢ad of which is the service
rendezvous. The maximum length of the queue is just the notaber of clients, defined at
compile-time.

Synchronized sharing requires a secondary queue from vétghents are prevented
from joining the primary one until a cycle is complete. A stdistributed service requires
multiple primary queues. The physical interface that impats sharing and shared distribu-
tion is thus a small process, encapsulating one or more gueue

4. Conclusion

Honeysuckle affords powerful and fully component-wise positional system design and
programming, yet with a simple and intuitive model for ahstion. It inherits and continues
the simplicity of occam but has added the ability to express the component (or system
interface in much greater detail, so that integration arabstution should be more easily
achieved. Support is also included for distributed and 4sytkchronous application design,
with mobile objects and synchronized sharing of services.

Service (client-server) architecture is proving extrgm@bpular in the design of dis-
tributed applications but is currently lacking an estdi#i$ formal basis, simple consistent
model for abstraction, and programming language. HondysandrsAwould seem timely
and well-placed. Though no formal semantics for prioritayet appears to have gained
both stability and wide acceptance, this looks set to chfitje

A complete programming language manual is in preparati®ins a working compiler.
These will be completed and published as soon as possible.
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