Communicating Process Architectures 2004 157
lan East, Jeremy Martin, Peter Welch, David Duce, and Mark Green (Eds.)
10S Press, 2004

Triples

A.E. Lawrence
Department of Computer Science, Loughborough University, Leicestershire LE11 3TU UK.

Abstract. The most abstract form of acceptance semantics for a varia®$eP is
outlined. It encompasses processes which may involve priority, but covers a much
wider class of systems including real time behaviour. It shares many of the features of
the standard Failures-Divergences treatment: thus it is only a Complete Partial Order
when the alphabet of events is finite.

1 Introduction

CSPP is a close relative of the process algebra CSP: [1], [2], [3]. It was designed originally
to capture priority in the context of hardware compilation usiraceamlike language. Its
development has been informed by the work of the WoTUG community, and explorations of
various sorts have been presented regularly in this conference series: [4], [5] [6], [7], [8], [9],
[10], [11] and [12]. The intuition and core ideas have not changed and are transparent.

The occamcommunity does not need any convincing that CSP is extremely simple and
elegant: it well understands that this theoretical underpinning is responsible for the simplicity
and power obbccam CSPP aspires to have the same simplicity and elegance, and to achieve
that in the same way: by being properly defined by a mathematical theory. One motivation for
its development was to provide the same sort of theoretical underpinning for tdcae
like languages for co-design.

As with standard CSP, the routine use of the language is quite simple. But setting up a
rigorous mathematical theory which covers all the obscure corners is a substantial task. Yet
without that theory, we cannot be certain that there is no serious unrecognised trouble waiting
to cause disaster.

The mathematical theories underlying process algebras are generally of three sorts: alge-
braic, operational and denotational. The characteristic flavour of CSP derives from the fact
that the first full semantic models were denotational rather than operational: algebraic seman-
tics also played an important role in the development as is evident in [1]. The denotational
theories are still regarded as canonical, even though operational semantics have subsequently
been developed. [2] gives a comprehensive account of many theories and their interplay.

Denotational semantic theories generally take the form of a mapping from syntax into
a mathematical description of behaviour: behaviour which, in principle, is observable. The
sorts of observation are not always carefully examined, but in CSP that is usually taken
seriously, and can also be regarded as one of the roots of its power and simplicity. The
companion paper, [13], is an examination of the observational model unde@i$g.

The scrutiny of the observational basisG#PP has been fruitful: the scope of the lan-
guage has been extended far beyond systems that exhibit priority or neutrality. The language
can now describe almost any system that can be understood to communicate what events it
is prepared to perform in any given situation as described in [13]. One might question the
relevance of this power in the context of the original design aim&###: a foundation for
concrete language design. The answer is that the aims have been widened: CSP is probably
used mainly to describe and explore the properties of systems which have not themselves

158 A.E.Lawrence Triples

been designed with CSBSPP may eventually be able to play the same role for a wider
class of behaviour.
The explicit examination of the observational model also helped elucidate the various
denotational approaches that have been exploradS6¥. It shows how much detail should
be recorded in order to achieve a particular level of abstraction in the resulting dialect. Some
readers will see the analogy with, say, the traces and failures models for standard CSP.
This paper presents the most abstract versi@S#fP based on these developments. The
main components of the underlying theoretical model are included.

1.1 The basic ideas

Readers familiar witlCSP# may wish to omit this introductory material. There are three
elementary processes in CSP and so alsa9f#. Stopis the process which does nothing
at all, not even terminate. It is usually an error such as deadlock, but as will be abundantly
apparent below, it appears very frequently in examples because it so simple.

Skipis the second of the elementary processes and represents termination. In the seman-
tics of CSPSkipis treated as a process which autonomously performs a special evVent
But in the semantics afSPP, v is treated as a ‘token’ rather than as a first class event: it
is never ‘performed’ by a process, instead it is regarded as a signal to the external world. In
CSPP, itis rather appropriate to say th&Kipdoes nothing, but does it successfully’.

The last process is written @é/ in CSP and in all except the most recent presentations
of CSPP. We have recently taken to callingSpinbecause there are technical connotations
of div as the most undefined process which are inappropria&S#¥. But whatever it
is called, it represents livelock, a process that is in an uncontrollable sequence of internal
actions, usually a loop. In the companion paper, [13], it is explained that in the semantics of
CSPP, but notin CSP, we introduce a second ‘token’, which we writelaghich we pretend
can be ‘seen’ by an external observer in an ideal infinite experiment.

Stop does nothing at all, not even terminate.
Skip terminates: hands control on to successor.

Spin does nothing at all externally: but it is active internally. Caliiadin CSP.

Prefixing provides a simple way to build more complex processes 8topg Skipand
Spin So

e a — Stopis a process that performs the evartefore stopping;
e a — Skipperforms the everd before terminating; and
e a — Spindoesa before typically looping internally for ever.

Another simple way to define a process using prefixing is to WRite a — P. It is easy

to see that this defines a process that will engage in an endless sequeneesafs. It is

also pretty clear tha) = a — Q must define the same process. But can we be sure? We
may wonder exactly how we might establish that. What alBoatP? This does not impose

any constraint of? except the implied assumption tHats a process: it is evident thavery
process is a solution. These recursive definitions are at two extremes of a spectrum: one
clearly defines a unique process, and the other is satisfied by any process. One may worry
about intermediate cases, especially when the recursive equations get complicated. How do
we know when there are solutions? Is there some special solution that we should pick when

A.E.Lawrence Triples 159

there are several? We can’t answer such questions properly without some sort of underlying
theory: the more technical later parts of this paper describe one approach.

Note that our examples of recursion above could all be written in the Roed (P) where
f is a function from processes to processes. In the conta388%, we might write its type
asf : CSPP — CSPP. So thatP = a —» P matched (P) = a — P. Solutions td (P) = P are
fixed points

There is a standard mathematical notation for a fixed point of a fun€tiagnis uf or
u P e f(P). CSP andCSPP use the same notation. Thus the solutiofPef a — P is written
uP e a —» P. Perhaps the most important task in building a theory for any sort of CSP is
establishing that fixed points exist with the right properties. Almost all non trivial uses of
CSP involve recursion.

Abstraction in the sense of being able to ignore irrelevant or internal detail is a crucial
tool for humans. CSP and its derivatives have the powerful notidmdihg, examined at
length in [12]. The notation i® \ H representing a proce§swhere events in the sét are
hidden: events from H performed Bybecome internal, invisible to, and thus uncontrollable
by, the outside world. It should be no surprise then that

(uPea—P)\{a} = Spin,

which shows how these operations interlock.

There are only 4 basic operations of CSP left. The first is a generalisation of prefixing.
(a — Py) (b — Pyp) is a process which is prepared either to perform the exemd then
behave likeP, or to performb and then behave d%,. This is where the nature of events
as joint actions between partners must be covered. A prétesanderstood as interacting
with its environmentprimarily by engaging in events which require the cooperation of both
parties. Thusa — Stopcannot perform the everdt until such time as the environment
cooperates. This single concept covers a typical outermost passive observer who is willing
to observe any event as well as parallel partners who may block certain events. The idea
of blocking, that is synchronised, communication enters into the semantics of the parallel
operators in a crucial way. The real point however is to capture the meaning of a process by
external interaction with an agent as in [13].

The choice betweeamandbin Q = (a — P,)[d(b — Py) is controlled by the environment
in the sense that if it chooses one or the other that fixes the subsequent the beha@iddf of
courseQ blocks the environment if that onlyfiers another evertinitially. For these reasons
[is called external choice. The next operation arises from hiding and external choice and
demonstrates more interlocking:

(@—c— Stopd(b— d— Stop) \ {a,b} = (c — Stog m (d — Stop .

Mis called internal choice. The environment of the process above has no control over whether
the process is prepared to perfooor d: that was determined by whether the evarmtr b
happened internally. In generd?; M P, may behave like eithelP; or like P,, but the
environment has no influence over the choice.

The remaining ways of composing processes are to place them in parallel, or run them
in sequenceP,||P, is the parallel composition where any events in theEsetust be jointly
E

performed byP; and byP,: any other events are interleaveld, s P, is the process which
behaves likd?; until such time, if ever, that it terminates.Rf does terminate, subsequently
P, s P, behaves likd>,. Thus @ — Skip 3 (b — Stop = a — b — Stop

160 A.E.Lawrence Triples

a — P performsa when the environment is willing, and then behaves kke
u P e f(P) covers recursion.

P\ H has the events iH hidden, internalised.

P, OO P, is external choice: controlled by the environment.

P; m P, is internal choice.

P1|IP, is parallel composition with synchronisation &t
E

P15 P, is sequential composition.

1.2 CSPP and acceptances

CanN = (a — Stop O (b — Stop favour a rather tharb? Ordinary CSP abstracts away
from such issues. The observations on which its semantics are based do not cfilldensu
information to answer the question. Both Fidge’s approach in [14] and Lowe’s in [15] use
order relations which can determine tladtas greater priority thai.

CSPP is based on a more fundamental observational approach called acceptances. It
examines environmentalfers and their consequences as described in [13]. But the idea
is extremely simple: if we want to know whethbkr prefersa rather thanb, we dfer the
process both simultaneously, and see which it chooses. ffeeis thus{a, b} and if the
implementation oN is biased in favour o4, it will reply with {a}. ConsequentlgSPP has
a prioritised version of external choice and

AB = (a — Stop) U (b — Stop)

is the process that always gives prioritydo The semantics is captured in the response
to offers as{a, b} ~ {a}, {a} ~ {a}, {b} ~ {b}, and® ~~ ® which we can summarise as
X~ {a} 4a€ Xp» XN {b}. There is really only this one simple idea@®## and its defin-

ing acceptance semantics. Everything else is just following through the consequences.

Notice thatAB is a possible implementation &f in that it is natural to think olN as
defined by{a} ~~ {a}, {b} ~ {b} and® ~~ 0. The response ta, b} is left partially open: we
know that at least one or other afandb is possible, and\B is one way of satisfying that
requirement. ThuéB is better defined thaN and its behaviour we suppose is one of those
of N. That isAB refines Nwhich is writtenN C AB. N might be regarded as a specification
andAB a possible implementation.

We must now come clean and say that there is more than one way of interpxeiting
CSPP. But to understand that, we need to introduce neutrabampliantprocesses. As first
pointed out by Bill Roscoe, most CSP practitioners who do notagsamthink of N as a
neutral process. So far we have only produced a biased versian ©his is whereCSPP
begins to show that it has a far wider scope than just priority. What is the response of a neutral
version ofN to the dfer{a, b}? The answer iga, b} again: it is happy to do either. StSPP

—>
also has] which can be used to write

-
S=(a— Stop O (b — Stop

with {a, b} ~ {a, b}, {a} ~ {a&}, {b} ~ {b}, and® ~~ 0. As noted in [13], it isincoherentto
have a theory of priority which does not also cover compliance. This is because priority is

A.E.Lawrence Triples 161

only of relevance when an environmetfeys more than one choice of event simultaneously.
But what is it that can fier several events? In a theory that only includes biased processes,
the answer is nothing. 16SPP, the simple answer is, of course, a compliant process. Since
the theory extends beyond simple compliance and simple priority, a more correct answer is a
process which is at least partially compliant.

The idea of compliance carries with it the notionesfvironmentabr externalnondeter-
minism. If an environmentfbers a choice ofa, b}, it is nondeterministic about which is to
be performed. Just as a compliant process is nondeterministic about which event the envi-
ronment selects from its respong&SPP thus distinguishemternal nondeterminisrwhich
arises mainly fronm andexternal nondeterminismvhich is necessary in order for priority to
be meaningful. Indeed, priority is precisely a means of resolving external nondeterminism.

These ideas percolate through many other operators. Although we have not introduced it
above, standard CSP has a more general form of prefixing in vehi€h— P(€) is a process
which is prepared to do any of the events in theEsahd then behave like the corresponding
procesd$>(e) matching the particular eveatelected. This is really a form of external choice,
so there is a variety of possibilities for preference and lack of preference among the members
of E. A simple and useful case is when all the members afe available compliantly. That
is writtene : E — P(e).

We take a simple exampl® = e E - Stop to illustrate how we define the semantics
precisely. As in [13]X represents a universe of all events that we may wish to consider. We
assume here th&t C %, thatis,E does not contain the tokerSor [1 In CSPP it is sometimes
convenient to permit those tokens to appear in a prefix set. B€dnas performed any
events, the only trace {3. Then an @fer X C X evokes the respon3é E which is compliant
when more than one memberBfis in X. We write that ag) : X ~~ X N E. The only traces
that can be performed thereafter are of the égrand then the process refuses everything:

(e) : X~ 0. We specify all this precisely as the set

B@:E ->Stop= (O, X, XNE)XCx}
U (1)
{((e),X,0)lee EAXCX}.

$ is the mapping from syntax to a set of behaviours, here triples: this is a denotational

semantics. It completely specifies the meaning ofE — Stop All the definitions later in
this paper follow this style.

The other place where priority has a majdieet is in the definition of the parallel op-
erations. InP,||P,, P, andP, may themselves express priority, but we are more concerned

E
here with the parallel constructor itself. Synchronised evenEsare joint actions oP; and
P, and their selection involves the preferences of the partners. But external nondeterminism
arises when botR; andP, offer unsynchronised events: the situation is exactly the same as

for external choice. A parallel operator might always favBur so CSPP includesW. One
E
can think of || as behaving liké] on unsynchronised interleaved events, but on every event
E

rather just the initials. The compliant versiot,, is likely to match the intuition of most

E
CSP practitioners. But notice that because CSP abstracts away from preferences, one should
really always make the most nondeterministic identification. ThusCSP® can have any

E
sort of bias or lack thereof and behave quit&atently in that respect from event to event.
This is in the spirit of CSP as an abstraction, but in practical applicatioGS®P one nearly

always chooses the simpler versions Iiﬁa It should be mentioned that Lowe in [15] uses
E

162 A.E.Lawrence Triples

a very restricted set of parallel operators with a veiffedent semantics fro@SP® on the
synchronised events.

, o —
To summariseP; || P, is simple and the most used parallel operata@$PP. P, || P,
E E
is occasionally useful P4||P, is extremely chaotic in the sense that it permits any sort of
E

resolution or lack of resolution of external nondeterminism. When soft priority, see below in
section 3, is in force| can be identified with the corresponding CSP operator.
E

1.3 Internal and external nondeterminism

The major insight ilCSPP and acceptances is in distinguishing external from internal nonde-
terminism. We have seen that external nondeterminism is captured in multiple events present
in either an &er or a response (in the paiXs+ Y).

Internal nondeterminism is captured in the usual way: by recording multiple behaviours.

ThusEx = (a — Stop E) (b — Stop andIn = (a — Stop r ((b — Stop are represented by
the sets
BEXY = {((-X,Xn{ab})XcZ}
U
{((x),X,0)|x e {a,b} A X C X}

and

{(O. X, Xn{a}) X X}
U
BIn)= {((LXXN{YIXCZ} = B(a— StopuB(b— Stop .
U
{((x),X,0)[x € {a,b} A XC X}

In general, internal nondeterminism is represented by the union of behaviours:
B (P11 P) = B(P1) UB(Py).

1.4 Fixed points: the heart of a denotational semantics.

We have seen that CSP is elegant and sparse with very few oper@s#$ aims for the
same qualities, but the inclusion of priority means that some variant decorated versions of
the standard operators are needed. In both cases, recursion is the only way to produce non
trivial programs: all the other syntax only gives us finite length traces.

Accordingly recursion is at the heart of both theories. It is essentialtRa# f(P) is
well defined, and any restrictions on the functiowhich may be used are identified. Let
P =a — b — P. Successively unwinding this recursionRs=a - b - a—- b - P,
P=a—->b—-a—->b-a—-b- P,... can be thought of a sequence of more precise
specifications for PP = a — b — P might potentially be satisfied by any process that at
least starts b like a — b — Next we admit the subset of those processes that start with
a—b—-a—- b— ... Butthese are successixinements Each unwinding is getting
nearerto the final fixed point (if there is one). We are ‘converging’ towards a solution.
We can think of this as a succession of successive approximakpnosA; C A,.... So
it is no surprise to discover that we use the refinement partial order as a way to establish
that recursions are properly defined. Indeed this is usually the major task in setting up any
denotational semantics.

In ordinary convergence, there must be limit points available to which a sequence can
converge: that is the space is complete. In partial order theory, the corresponding property of

A.E.Lawrence Triples 163

the space is that it be a Complete Partial Order (CPO). Refinement is a partial order, and we
prove in section 8.15 that the variant@sP# below is a CPO under a certain condition. It
then follows from standard theorems that functions that are monotone in the refinement order
have a least fixed point. We show below that all @&# operators are indeed monotone.

If a function is in addition continuous (a partial order analogue of ordinary continuity), then
the fixed point of a function can be calculated in a simple way which is essentially the same
as we did above with the sequentg A, A, Background can be found in [16] and [2]
among other places.

1.5 Differences from earlier versions @Q6PP

Earlier versions of the semantics allowedand[Jto appear in a response mixed in with
ordinary events. So this appeared fteo an environment the possibility of making a choice

that might in €fect steer a process either towards or away from termination or livelock. Both
tokens represent situations that are normally regarded as being outside environmental control,
so in the current versions, these tokens may only appear as singletonedt external
nondeterminism in these tokens is converted into internal nondeterminism by this change. It
only affects some rather obscure situations.

As a result of the examination of the observational status documented in [13], the axioms
have been significantly weakened, and the scope of the language very considerably extended.
There are now no preconceived notions of how a ‘good’ process should behave: there is an
exception in section 8.16.4. The language is now based simply on observing what a system,
however bizarre, does. We only require that responses are reliable. There is some cost in
extra complexity of some of the semantic definitions, at least in the most abstract version
below.

There is a little freedom left in two areas: how much detail should be recorded in observa-
tions which determines the level of abstraction of the resulting dialect; and whether priority
conflict results in deadlock or is resolved nondeterministically.

For this paper, both choices have been made on the grounds of simplicity of the under-
lying semantics. That implies maximum abstraction and hard priority: conflict results in
deadlock. The first choice leads to a dialect which is arguably in the spirit of the Failures
models for standard CSP, but is a little too abstract for the author’s taste. The second is in the
spirit of occam but complicates the congruence with standard CSP.

2 An abstract variant of CSPP

The companion paper, [13], examines the sorts of observations which can be made of pro-
cesses that can usefully participate in systems that employ priority. Any process that can
be regarded as capable of reacting to an environmefil with a declaration of which
events can be accepted, and then reliably and jointly performing one of the accepted events
is included. This is a far wider class then just those that employ a straightforward notion of
priority.

This version of the language includes

P = Stop| Sk|p| Spin| a—> Ple:E— P(e) le:(a) > P(e)|PsP
|P|‘|P|PDP|PD PIP || PIP || PIP\H|uPef(P)|P[R].
e : (a) — P(e) is a relational form of prefixing, and provides a syntax for capturing some

very irregular processes that are not described by either a priority or absence of a priority:
a is a relation. There is no process in this version @SPP: it is useful in less abstract

164 A.E.Lawrence Triples

versions of the languag&pinis usually calleddiv in standard CSP: it is not the bottom of
the refinement order here, so the name has been changed to avoid confusion.

The theory below usdsard priority for simplicity. The price to be paid is that there is no
unique identification of standard external chdi¢evhich accordingly does not appear in the
syntax above. There are two maximal, but incompatible, identificatioris:for

— — — -
POQ=POQNPOQ or POQ=POQNPOQ.

Both, of course, are compatible witltccam Similarly, there is no unique identification ftpr
E
However & is defined below but it should not normally be identified with the corresponding
E

standard operator. In most circumstances, the standard operator would be identified with the
. R
compliant version|| .

E

The semantics below is all straightforward but because some very irregular processes are
admitted few assumptions can be made. It becomes necessary to spell out some conditions in
detail. Hiding is by far the most flicult and subtle operator, and the possibility of irregular
behaviour needs careful consideration. The existence of least fixed points to define recursion
is established for a finite alphabet by showing tA&P# is a Complete Partial Order (CPO)
under refinement. All operators are monotone, and most distributerov&here is also a
metric so the usual Unigue Fixed Point (UFP) theorems hold.

The purpose of this paper is to demonstrate that there is a very abstract verSisfof
with a semantics closely analogous to the standard Failures-Divergences model for CSP.

3 Hard and Soft priority.

Consider
((a _ Stop I (b — Stop)) I ((a = Stop O (b — Stop) .

What happens when the environmeffeos{a, b}? Soft priority somehow resolves the con-
flict: some versions afSPP allow the system to ‘search’ for the largest subeos on which
the two processes can agree. When there is more than one suclesulthere is a non
deterministic choice between the options.

However, hard priority is simpler, and arguably more in the spirb@fam In this case,

— -
if the two processes cannot agree, the result is deadlock ffisudiy is that(] and[J can-
not simultaneously refinel since((a — Stop O (b — Stop) || ((a — Stop O (b — Stop)
cannot deadlock.

4 Alphabets and traces

There is a global alphab&tof ordinary events: this will be large enough to include all the
visible events of any process that we need to describe. Later we will need to restrict it to be
finite. We add the pseudo eventsandJwhich only occur as singleton responses.

Traces are simply sequences, empty or finite, of events drawn3roth is the empty
sequence. The set of all finite traces drawn frBris written asX . Because we neeg,
it is convenient to label the elements of the other traces from 1: such attize® type
t:{1,2,...,n} - X and we can writé¢ = (t(1),t(2),...,t(n)). In this context, it is sometimes
useful to implicitly identify() with the empty functior®: this is used below, for example in
definition 4 on page 166.

A.E.Lawrence Triples 165

t~ srepresents the concatenation of two sequence&, &~ (c,d) = ()" (a,b,c,d) =
(a, b, c,d) = (abcd: we may omit commas when there is no ambiguity.

We also make use of infinite traces which are of the sol; — X, but only to express
certain properties dinite traces.

5 Acceptances

As described in the companion paper, we specify the meaning of a process by describing
its responses after it has performed some trace of events. Traces are menibeiGioén

such a trace, we record the respon&éto an dfer X. We sometimes write that a6~ Y or

s: X~ Y as an equivalent way of expressing the trieX(Y). The dfer X is some subset

of the alphabek: that isX C X. And a respons¥ is a subset ok or {v'} or {[}.

Definition 1

When Xc %, X¥ denotes XU {v'} and X' denotes XU {v/, [J.

The lone sets of X arg(X) ={{v}|v eXju{{Q | Oe X}.

v v
SX)={0} «X=0p LX)UXNZ|XNZ +0}

0 /0
P X denoteP(X N X) U L (X).

vO v
M (X) denoteq0} « X =0 » (IP’(X) - {Q)}).

* \/D - . - - -
Acceptances have type x PX x P 25, which we occasionally identify with
VO
Zx(MxPE“D). (2)
More specifically, acceptances are members of

ﬂ:{(ax,v)|sez*AngAYeﬁE(xm)} (3)

Thus we have a description which is a & of such acceptance®(P) € A. [P] is the
usual notation for the semantic function describing the behaviour of the plBcbhssB P is
more intuitive here and avoids confusion with the renaming of equation (23) on page 178.

The set of traces of the process is

tracegP) = {s|dX,Ye (s X,Y) e BP} or tracegP)=domBP

when the type o8 P is taken from (2).
We identify a process directly with its acceptances where the context warrants.

166 A.E.Lawrence Triples

5.1 Acceptances determine traces

There are often simple patterns for triplesX, Y) representing a proce$sfor a generak.
That is, whers € traces(P) then the patterns(X, Y) € 8(P). It is sometimes intricate, error
prone and laborious to spell out explicitly whigtis a trace ofP. But that information is
already implicit in the acceptances, determined by the events in

Thus, takeéB € A and define

Bo
Bn+1

((0,X.Y) € B @
(ST, X, Y)eB|AX,Y o (SX,Y)eB,AeeY]) forneN.

The we define the inductive cord3| by
Bl = U{B, | neN}. (5)
Since all traces are finite, whe®(P) C B, then8 (P) = |B]. In this context we can say that

acceptances determine the traces.

6 Some definitions

#sis the length of s: § = 0 and #{™ (e)) = #t + 1. We extend this notation to acceptances:
#A = max#s| s € traces(A)} which is well defined when the lengths are bounded. Otherwise
#A = oo.

s | njust truncates a trace to a length no more than n whettsdfinite or infinite:

Definition2 s|0=¢() and s|n=n<s wheren={i|1<i<n}

Here <« is domain restriction: if : X — Y is a function therD <«f : XN D — Y is the
restriction offip,x with domainX N D. So#6 | n) < n.
If Sis a set of traceS | n contains only the truncated versions:

Definition3 S| n={s| n|se S}
We extend prefixing to allow comparison of a finite with an infinite trace:

Definition 4 Letse X* and te £“. Then

(s<t) & (s=(¢ vIneNes=n<t)
< above is domain restriction as before: the leadir¢ements of match a non-nulsabove.
Definition 5 s\ H is a trace composed of those elements not in the set H:

O\H = S (X)\H=s\H4xeH®» (s\H) x
We can extend trace hiding to infinite traces.
Definition 6 If w € X then we write w, H = s when

YneNe(w|n\H<s and YneNedmeNes|n=(w|m)\H.

Definition 7 The down-sejs = {t | t < s} is a standard notion from partial order theory.

v
If A:P|Z xPXx Pxv"]is a set of acceptances th&n|| n just represents the accep-

tances no longer tham

A.E.Lawrence Triples 167
Definition 8
Aln={sXY)eAl#s<n}. (6)
The notatiorR(X) means the relational image of a 3etSo:
R(X) ={y|xe X A xRYy.

Definition 9 Let(S <) be a partial orderm¢ : PS — P S is the function that produces the
set of maximal elements:

m<(®):0)
Mmc(X) ={xeX|VyeXex£yl (X#0).

Usually the order is implied and we write : PS— P S.

Definition 10 An atomicprocess is one represented by a minimal non empty set of accep-
tances: any smaller non empty set cannot represent a process. Such processes have a unique
response to anyffer: they areinternally deterministic

7 Axioms

The axioms here were briefly described in the companion paper and shown to encompass a
very large class of processes. For a8& C A to describe a process, it must conform to
these simple constraints.

Every process performs events only after it has started:

H1: () € tracegP)

There is at least one acceptance for every possibde: o

v
H2: Vsetraces(P) e Y XCXedY e P(X'D) e (sX,Y) e B(P)
The traces of a process are prefix closed, and match the responses:
H3: VseX eVxeXe s (x)etracegP) & A(SX,Y)eB(P)excYNX

One may regardBP C A and properties like/ # DandX N {v/,[} = 0 as implicit
axioms.

8 Semantics

The main purpose of this paper is to present the details of the semantics of the principal
operators oCSPP.

8.1 Stop SkipandSpin

Stop SkipandSpinare all similar:

BStop = {({),X,0) | X C X}
BSkip = {((. X, {v})|XcZ} (7)
BSpin = {(O, X, {) | Xc X}

168 A.E.Lawrence Triples

82 1

1 is the most unpredictable of all processes: it can behave in any fashion at all.
BL=A (8)
See equation 3 on page 165 for the definitiot/bf

8.3 Prefix choice

Considere : E — P(e) with E ¢ =¥". In general there are many possible initial acceptances
O X~»0<4«X" NE=0» U

\/D -
whereU € P (X*Pn E) is not empty.

Ble:E — P(@) = {(<>, X.Y)

v
XQZAYem(x/DmE)}

U
{(e) s X, Y)lee ENZ A (sX,Y) € B(P(e))}

(9)

v

M (X) was defined in definition 1 on page 165: the acceptances include all ways of assigning
or refraining from assigning priority among the event€ofSubsequent behaviour, if any,
depends on the initial evertand matches one of those4hP(e). Clearly,P(e) is defined on

ENZX, atleast.

Example 1 Usually E in e: E — P(e) is a set of real events. More general cases include
1. x:{v'} - Stop=x: {V'} - P = Skip for any P.
2. x: {0} —» Stop= x: {3 - P = Spin for any P.
3. x: {v/, 0} - P = Skipr1 Spin for any P.

4. x:{a v} — Stop= (a— Stop [Skip 1 Skip.

When subsequent behaviour does not depend on the choice of event as in the examples above,
it is natural to omit X :” as in{a, b} — {b,c} — Stop

8.4 Relational Prefix choice

It does not take much experience us§PP syntax to see the utility of notations lilee:
— «— —

(S[{a, b} > {c} > {d}]) — P(e) to stand for((a — P(a)) (I (b — P(b)))d(c — P(c))O(d —

P(d)). More generallye : (S <) — P(e) is a process which initially gives priority to events

according to the partial ordet and then behaves like(e). One might expect that we can

always find such a partial order to describe the initial acceptances, but this is not true.

Example 2

((a— Stop I (b - Stop) O ((c — Stop L1 (b — Stop 11 (a — Stop)

has initial acceptances that do not match any partial order:

{a,b,c}~{a,c},{b,c}~ {b,c},{a c}~{ac},{a b}~ {ab},.... Insuchan ordera b, c} ~
{a, c} would give b< a, but that does not matda, b} ~~ {a, b} which would require that a
and b are incomparable.

A.E.Lawrence Triples 169

This suggests that a more general form of prefixing may be desirable. The obvious, simple
and natural approach is to directly specify an initial acceptance relation, although an accep-
tance function would be adequate. Relations used in practice are nearly always functions:
such prefixes can be called atomic.

B(e: (a) > P(e) =
{(0, X, Y) e AXaYIU{((e) s X, V)[AX ., Y)eaeoecY NZA(SXY)eB(PeE)}
(10)

v
wherea : P[P X x P(Z¥") | is an acceptance relation with dam= P £ matching the axioms

and respectingA. P(e) is understood to be defined for all the events that can be accepted by
.

The most common use of this notation is atomic. It is when the initial acceptances match
a partial order relation§ <) on events in which every nonempty subseBdfas a maximal
element and” or Jmay be present only as bottom elements. In such cases

Be: (S<) — Pe) =
(0. X, m(SN X)X c =}
Y (11)
{(<e>AsX,Y) |3ZcZeeem(SNZ)NZA(SX,Y) e z;(P(e))}

m : PXvY — Pxv5is the function which selects the maximal elements of a set: see defini-
tion 9 on page 167.

Many orders of interest can be expressed in termayadrsas in [p} > {qg,r} > {s}]: the
elements of the component sets are strictly ordered only with respect to members of other
sets. This notation is used in some of the examples below:

Example 3 x: ({a, b},=) — Stop=a — StopE) b — Stop.

Example 4 x: ([{a} > {b}]) — Stop=a — StopEb — Stop.

Example 5
—> — «—
x : ([{a, b} > {c} > {d}]) — Stop= (a — Stop b — Stop [(c — Stop1 d — Stop.

Example 6 x: ([{a,b} > {v'}]) — Stop= (a — StopE) b — Stop <5Skip.

All the examples above are cases when the might have been omitted for brevitk was
not explicitly bound in the bodies, which means tR&) is a constant function.

8.5 Compliant prefixing

e: E - P(e), is defined a&: (E, =) — P(e).

170 A.E.Lawrence Triples

8.6 Internal choice
BPLnPy)=8P,UBP, (12)
We extend the definition to suitable non empty sets of proceRsesiting
s8(Me)=| JiBPIPep). (13)

To avoid foundational issues, we need to impose a suitable limit on the size of the sets ad-
mitted by (13) to ensure the behaviours form a set rather than a proper class. It is then
immediately clear thati # satisfies the axioms of section 7:

Lemma 1 B(|JP) represents a process whéhis a suitable non empty set of processes.
The following lemmas are not hard to prove:

Lemma?2 Let{P; : ¥ — CSPP} be an indexed nonempty set of process functions. Then
e:E-TIPe)|icl)=TNHe:E—-Pi(e)|icl)

Lemma 3 Let{P;, : £ — CSPP} be an indexed nonempty set of process functions. Then
el(a)>THRi(e) |iel}=TNe: (a) > Pi(e)|iel}

Lemma4 Let{P, : T — CSPP} be an indexed nonempty set of process functions. Then
e:(SY)-THR@Eiel}=TNHe: (SL) - Pi(e)|iel}

8.7 Compliant external choice

>
BP0 Py) =
v
HY]_, Y2 S]P)(E‘/D))

vO
(<>, X, Yl) €EB Pl A (<>, X, Yz) €EB P2 AYeS (Yl U Yz) (14)
U

(O TsX N[0 TSX V) eB(P) Vv (WX Y) € B(Po)}

{(O,X, Y)

v
S (X) is defined in definition 1 on page 165. It ensures thanddcan be returned only as
singletons if they are present.

Example 7 (a — Py) E) @a-Py)=(a—P)n(a— Py,).

— —
Example 8 Skip O (a— P) = Skip n (a — P) O Skip.

—>
Although Skip [J (a — P) looks as if it ought to be compliant af), an environment cannot
choose/, sov’ cannot be fiered as a legitimatehoice only as a singleton. m[8]

—>
Itis clear from the definition thaf] is associative:

«—>

L d L L
P, O (P2 0 Pg):(Pl 0 Pz) 0 P,

A.E.Lawrence Triples 171

> L d
¢, From standard CSP, we might expect fhat (Pz O P3) = (P, n Py) O (P, M P3) but
this cannot be true in the presence of priority. The reason becomes clear when we regard the
«—> L d
processes as specificationB; (1 P,) (I (Py M P3) has a refinement &?; [0 P; which is not
«—>
an implementation o, 11 (PZ O Pg). The correct result is
—> >
P M (P2 O P3) 3(P,MP,) O (P11 Py) (15)
It is again not hard to establish:
—>
Lemmab5 Let{P; : £ — CSPP} be an indexed nonempty set of processes. Theh[Q{P; |

iel}:I_I{QE)Piliel}

8.8 Prioritised external choice

B(P: Epz) =
B Yl, Y2 - Z‘/D ° (<>, X, Yl) eB Pl A\ (<>, X, Yz) eB Pz
(0. X,Y) A
Y:(Y2<Y1:@>Y1)
Y (16)
(e"sX,Y) e B(P1)
(®7sX.Y) '

AX CT e ((0,X,00 € BP)AIY,C 3 e
(O, X, Y2) e B(P) AeeYanZ A (S X, Y) e B(P,)

Equation (16) simply says that the process always behave®jikmlessP; refuses in
which case it behaves lik&,. It allows P, to perform any event, terminate or livelock if it is
capable of so doing. Whe®y is active in any sense, it is let loose:

O X~U if Pru(:X~U apartfromld =0
P, is only allowed to be active whd?y is not. If P, shows any sign of life, even pathological

life, it executes. Even iP, can performyv” or signall] it is ignored until all events fron®;
are positively blocked.

(_
Example 9 (a — Stog [0 (a —» b — Stop = a — Stop

In general, & — P;) E(a - P)=a—-P;. m9]

Example 10 SKIP guards.
(_
Skip (a — Stop only has acceptances of the sort:

O X V)

-
because Skip never refuses, so Skifa — Stop = Skip. And

172 A.E.Lawrence Triples

PRI ALT
B & SKIP
P
a?

Q

P
is (Skips P «B» Stop U (a — Q) = P «B» (a — Q) as we would wish. This gives a
denotational semantics for, and so defines, SKIP guards. However,

PRI ALT
a?
P
SKIP

Q

-
is notnormally implemented with the semanticd df The reason is that wherPas checked
for availability, the process which outputs a is not necessarily involved. This is qffeéeedit
from the semantics of equati¢b6) which requires P to positively refuse before,is allowed
to execute.

%
Example 11 Skip and Spin are left multiplicative zeroesaf while Stop is a unit:

. F . . P . H P
Skipd P = Skip Spirnid P = Spin Stop 1P =P P Stop= P

P
Like its compliant counterpart, is associative:

—

— — —
P, O (P2 0 P3) - (Pl 0 Pz) 0 Ps
Notice however that

— —
P, (Pz 0 P3) 5 (P, 1 P,) 0 (P, 1 Ps) (17)

— —
becausé>, [1 Pz andP, [1 P, are refinements of the right hand side, but not of the left.

Lemma 6 Let{P; : £ — CSPP} be an indexed nonempty set of processes. ThEﬂE{Pi |
iel}= |—|{QEPi liel}andM{P |ic€ I}EQ: M{P, EQH ell.

8.9 Parallels

8.9.1 |Interleaving

When P4||P, executes and performs a tragethen the parallel processes have performed
E

matching tracess{, s,). If E = X, then all events are synchronised and performed jointly by
P, andP,. Inthat cases; = s, = s.
The other extreme is whel = (0, so no events are synchronised. That is just standard
interleaving:P4||P, = Py ||| P,. True concurrency is not part of the present theory.
0

In general a trace can arise from more than one pair of traces<$). We call this way
of picking events from the, ands, to form s generalised interleaving and wrises s,||S,.
E

CIearIy()!() ={Oh
The following abbreviation captures this:

A.E.Lawrence Triples 173

Definition 11 Letse X'. Then

Interleaves(Py, P2, S, E) =

f(0) = (. 0)
A
Yt (X) € [se dt; € traces(P,) o At € traces(P,) o f(t) = (i1, o)
A
XeE=
B X, Yl, Y2 ®
f: ls— 2*2 (tl, X, Yl) eB (Pl) A (tz, X, Y2) eB (Pz) AXeYiNY,
A
fAT0) =t X, (X))
AN X¢E=
fAT0) =t (X, t2) A ti™ (x) € traces(Py)
v
f (X)) = (t, 127 (X)) At~ (X) € traces(P,)

The projections of £ Interleaves(Py, P,, s, E) are written as f and £ so f(t) = (f1(t), f2(t)).

Definition 11 has to include a number of details to ensure that irregular processes are handled
properly.

8.9.2 General parallel

Ve
3f € Interleaves(P1, P, S E) e AY;, Yo e PXY @
(f1(9), X, Y1) € B(P1) A (f2(9), X, Y2) € B(P2)

A

v
YeM((anYznEY) U (YU Yy) - EY))

B(PulIP2) =1 (s X.Y) (18)

v
M (X) was defined on page 165: see definition 1. In equation {&gn be any available
nonempty subset or available singleton token.

The dfficulty with hard priority here is just the same as that which arisesiitthere can

be ‘unexpected’ deadlocks. SBy(||| P2) Il (P [l| P2) can behave IikelePz)W(lePz) at

any point and create a deadlock which would not arise in standard CSP. As a consequence,

P,]IP, should not be identified with the corresponding operator of standard CSP. In most
E

circumstances?; T) P, will be the right identification, although just as far
E

CSP «— «—
Pl Po=P1 || P 1 Pyl P2
E E E

and

CcsP — —
PillPo=P1 || P01 Py || P2
E E E

are more abstract possibilities as well as variants that are not consistent at each step.

Lemma 7 Equation(18)defines a process.

174 A.E.Lawrence Triples

Proof. Supposef((s), X, Y1) € B(P1) A (f2(9),X,Y2) € B(P,). Then acceptances of the
form (fi(s), X, Y}) exist for all otherX’ C X, so all X", Y’) triples are present.

The set of acceptances must also satit3y Takes (x) € traces(P1||P2). That means that
E

A(s (x), X,Y) e B (P1||P2). Suppos« € E. Then there is ah € Interleaves(Py, P,, S (X), E)
E

with (fi(s7 (X)), X, Y1) € B(P1) and (s~ (X)), X, Y2) € B(P,). ¢From definition 11, there
are some set®’, Y; andY; for which (f(s), X', Y]) € 8(P1) and (=(s), X', Y;) € B(P>) with

x € Y; N'Y;. This shows that there is\awith (s, X', Y) € 8 (P1||P2) andx € Y so the forward
E

implication of H3 is satisfied whem € E.

Whenx ¢ E the result is even easier to establish because only one parallel partner is
involved.

The converse implication dfi3 is obviously satisfied4

Example 12 Take R, P, and Q to be processes with acceptances which include

Q:¢: {ab}~{a} Prii(): {abl~{a Paii(): {ab}~ {b}
{a,c} ~ {c} {a,c} ~ {a} {a,c} ~ {a}
{b, c} ~ {c} {b,c} ~ 0 {b, c} ~~ {b}
{a}~0 {a} ~ {a} {a} ~ {a}
{b} ~ {b} {b}~~ 0 {b} ~ {b}
{c} ~ {c} {c}~0 {c}~0
Q:(@: X~Xn{ahb,c} Pii(@: X~0 P, (@ : X~ Xn{b}
Q:(by: X~ Xn{ab,c} Py:i(by: X~0
Q:(cy: X~Xn{ab,c}

Then Q|| P; :: {) : {a,b}~~{a}, so it has a tracéa) after which it stops. Q P, :: () : {b}~~{b}

provides the only nonempty tracggy, after which it stops. In particular, this process cannot

perform the trac€ab). However Q| (P, n P,) canperform the trac€ab). This shows that
QI(P1MP) QP 1 QIP:.

The various responses in equation (18) allow, for example, a scheduler to make arbi-
trary decisions about which events to select in preference to others, perhaps for reasons of
efficiency. P, T P, does not permit that freedom:

E

Ve
3f € Interleaves(Py, P2, SE) e Y, Yo e PX Ve
(f(9), X, Y1) € B(P1) A (f2(s), X, Y2) € B(Py)

A

v
YeS5((anY:nEY) U (LU Y) - EY))

B (P, E P2) =1(s X.Y) (19)

v
S (X) was defined on page 165.

8.9.3 Derived Parallels
As usual there are derived versions.

PxvQ = P || Q

XNY
whereP’ = P||Runy, Q = Q||Run, and Rug = e : E —» Run:. And of course interleaving:
z z
Pl Q = PJ|Qand fully synchronised parallel:=||.
0 z

A.E.Lawrence Triples 175

8.10 Prioritised parallel

For the form of parallel composition that always favours one partner, we have to refine the
notion of interleaving to match because triples lige¥, Y) only record a very limited history
in the trace componest

Definition 12 Letse X'. Then

(_
Interleaves(Py, P,, S E) =

f(0) = (0. 0)
A
Yt (X) € [se dt; € traces(P,) e At € traces(P,) o f(t) = (t1, o)
A
XeE=
d X, Yl, Y2 ®
(tl, X, Yl) €EB (Pl) A (tz, X, Y2) €EB (Pz) AXeYiNY,
A
f:ls— x? fET (X)) =Mt X, 27 (X))
A
X¢E=
f(tT(0) = (1™ (X, t2) A 1™ (X) € traces(P,)
v
f (T 00) = (L, 2™ (X))
A
3 X, Y2 L
(tl, X, @) eB (Pl) A (tz, X, Yz) eB (Pz) A XE Y2

The projections of fe Interleaves(P,, P,, S, E) are again written as fand % so f(t) =

(f1(1), f2(1)).

< _ VO
3f ¢ Interleaves(S,E) e AY;, Yo, c P X" Ve
(fi(9), X, Y1) € B(P1) A (f2(9), X, Y2) € B(P2)

P
B(Pl ” PZ) = (S»X,Y) A
E

Y e ém((Ylesz“) U (Y2« (\a-E")=0» Y1) -EY))

(20)
A less explicit way to defind, T P, would just use the ordinarinterleaves and the| B
E

notation of section 5.1 on page 166 to eliminate the excess traces.

8.11 Sequential Composition

B(P1sPo) =
{8 X,Y) e B(P)IY # {V}}
U
{8 X, V)8 X Av}) € B(P1) A ((), X, Y) € B(P2)}
)]
AX,Y e (11, X, {(v}) € B(P) A (), X,Y)eB(P) AxeY
{(tlA(X>At2, X,Y) A
(X1, X,Y) € B(Py)

(21)

176 A.E.Lawrence Triples

The reference to two triples from (P,) in the last set in equation (21) means that distri-
bution overm is unlikely to hold in all cases, and this proves to be the case.

Example 13 TakeX = {a, b} and let Q be the rather artificial process that terminates on the
offer {a, b} and refuses all otherffers. Thatis Q: () : {a,b}~{v'}and Q:: () : X~~0 for all
«— —

other X. Write R =(a—a— Stop (b —>a— Stopand R =(b - b — Stop 0 (a —
b — Stop. Notice that (¢ P, has traceg(), (a), (aa)} and Qs P, has traceq(), (b), (bb)}.
However (¢ (P, M P,) has a trace(ab) so this shows that @P; M1 Qs P, # Q¢ (P, M Py).

Distribution acros$] does work in the other direction:

Lemma 8 Let{P; : ¥ — CSPP} be an indexed nonempty set of processes. Thgh | i €
11sQ=THPisQliel}

The failure to distribute oven in every case arises from the multiple references to triples
from 8 (P,) in equation (21). In ffect, the present semantics is too fine grained to guar-
antee the distribution. The failure is repaired in a more coarse grained semantics in which
behaviours representing the histories of experiments are recorded. This yields a slightly less
abstract version afSPP, but is not examined further here. The same phenomenon occurs in
hiding below.

Notice that we cover processes lik@ o (Skipri a — p) ¢ Q. And also that it is trivial to
check thaSkipg P = P ¢ Skip= P.

8.12 Hiding

ConceptuallyP \ H is a process with the internal behaviouRfyet with external ‘visible’
behaviour which excludes any ’internal’ events from thet$eT he internal events dfl are
no longer subject to direct environmental control. Often there are several possibilities for the
internal dynamics: the proceBs\ H models them by nondeterminism.

The most natural form of hidingfters the internal hidden events in a compliant way. The
version below also allows external hesitaffecs.

B(P\H)=
Accessible(P, s, H)
A
(S\ H.XA0H) JweH®eVneNe
AY ew(n+1)eY A(S (W] n),XUH,Y) e B(P)
U
Accessible(P, s,H)
A
Jues<uAs\H=u\H
A
v ’
(S\H.X.Y\H)| Ye 5|U{Y (LXUH,Y) e B(F)
VYne[#s#u) e Y e
ulnNXUH,Y)eB(P)Aun+1)eY”

AN
(Y \ H = 0) = Stable(P, s, X, H)

(22)

A.E.Lawrence Triples 177

where
Accessible(P,s,H) =V ne [0,#s) e AX, Y o (s| N X UH,Y)eB(P)Asn+1)eY

means that there is some way tRatan perform the tracewhen the events dfl are always
included compliantly in anyfber.

Stable(P,s,X,H) = duges< Uy AS\H=up \ H A (Up, XUH,0) € B(P) A
Yne[#s#u) e AY e (Ug | N XUH,Y)eB(P) Aug(n+1)eY

is used to ensure that external refusals are genuine rather than as @aideiehiding
internal events.

The first set in equation (22) captures livelock. The second set references more than
one triple in8B (P) and this is why it does not distribute over It is however manifestly
monotone.

Example 14 Let

P, ={a,h} - {b,h} — {c,h} — Stop

P, ={e h} — {d,h} — {f,h} — Stop
and

Ps; ={a h} — {d,h} — {c,h} — Stop

Then

P:\ {h}:{ab,cdef}~ {ab,c}
P,\ {h}:{ab,cdef}~~ {def}
and

Ps\ {h}:{a,b,c,def}~ {ac,d}

Since R r P, can behave like R it follows that(P, 1 P,) \ {h} # Py \ {h} 1 P, \ {h}.
Lemma 9 Hiding is monotone: EQ=P\HLC Q\ H.

Proof. Obvious by inspection of equations (12) and (22).

It does not appear that there can be any sensible definition of hiding using the present fine
grained semantics which can distribute omeiSliding requires that we access more than one
unit of information to determine responses, and this is incompatible with the distribution. It
is interesting to notice how the problem is neatly side-stepped in standard CSP semantics
based on Failures by employing ‘inverted logic’.

8.13 Renaming

Renaming needs careful definition because one-many renaming introduces additional non
determinism. IfR is the renaming relation we write R S’ to mean that the tracg is a
pointwise renamed version ef And it is useful to extend it t&v":

Definition 13 RVP=R U{v' — v/,0~ .

178 A.E.Lawrence Triples

X R(R(X))

Figure 1: Renaming with R

If Pis a processP[R] is the renamed process.

BP[R] =
dtet RsAAY e (t,R™ (X),Y)eB(P)AY =RVI(Y) nXT
A
VYnel0,#s) e dte X' Y o
tR(s|n)A (LR (X),Y)eB(P)As(n+1)e RE(Y)nXYE

(s, X,Y) (23)

R~ is the reverse relation: the notation is similar to that used in Z. Rrj) = {y | x R
y} is the relational image of the s¥t The second predicate in equation (23) ensuresHBat
is obeyed: it is needed because the axioms admit some very irregular processes.
Renaming is clearly monotone.

Lemma 10 Renaming is monotone: PQ = P[R] C Q[R].

8.14 InterruptionP, (_A) P,
1,r

A variant of the usual sort of interrupt operator is defined here with one eye on the evolution
of the Honeysuckle language: see [17], [18] and [19].

Let P, andP; be two processes am@ndr two distinguished events.will represent an
interruption, and can be regarded as a ‘return from interrupt’. The intention here is¢hat
is something like a standard interrupt service routine. Denote the alphaldetaoné P, by
aP; andaP, in the sense that these are the sets of events that the processes can perform. We
require that these alphabets be disjoint, and ithatin neither of them. However € aP,
since we wanP; to be able to complete its processing by executing

Two standard notations that have not been needed abogg a#hich is the number of
occurrences of the evealin the traces, ands| E which is the subsequence tonsisting of
members of the sé. Sos | i = s | r will determine whether the tracecontains matching
pairs ofi andr, and so whether we are 'background processingPjror in the interrupt
service routind®,. And s | (aP,) will be the portion ofs executed byP; and similarly forP,.

A.E.Lawrence Triples 179

Then
Se (cyPlLJa/PzU{i})*
A
B(Pl A P2) = REXY)| (Y={i}dieXp(s|(aP1),X,Y) € B(P1)) (24)
n «sli=s|r»

(S f (ap2)7 X’ Y) € B(PZ)

Recall that B] was defined in section 5.1 on page 166. It avoids the need to be explicit about
the set of traces: only the traces that can be ‘accepted’, starting(fr@re included.

8.15 Refinement

Refinement is as usual
P1§P2 = P2:P2|_|P1 (25)

which simply maps onto set inclusion on the acceptances:
P.2P, & BP,CBP, (26)

Proof. AssumeP; 2 P, or P, = P, 1 P, from (25) above. The®BP, = 8P, U 8P; which
givesB (P,) € 8 (P,) immediately. The converse is equally obvious.

8151 1

The most nondeterministic process which has all possible behaviours is evidently below any
other process in this order: it is the least elememtf 1.

There is no top process in this version based on triples, although it appears in versions
based on behaviours.

8.15.2 Meets and joins

Let Sbe a nonempty set of processé¢s.Sis the obvious candidate to be the meRtoof.
First,[1Sis a lower bound o&. If P € S thenBP C 8(n S is an immediate consequence
of the definition. But this i2 m Sson Sis a lower bound of.

Second, it is clear that Sis the supremum of all lower bounds, for any lower bound
must contain{BP | P € S}. 4

If Shas a join, then it must match the intersection of the behaviqufgP | P € S}.
Unfortunately, this can fail to define a process, as in the @ai(Stop and p — Stop.
With X = {a,b,c}, B(a — Stop N B(b — Stop = {) : {c} ~ 0,¢) : O ~ 0} which is not a
processH2 is violated.

Theorem 1 (CSPP,C) is a Complete Partial Order when is finite.

Proof. Let D be a directed set of processes. It is necessary to show that

B(U)={8(D)|D e D}

represents a process. Wheis finite, so also ar® X and fEEZJD. So the number of choices
of (s, X,Y) for a fixeds is finite. This observation is used to establish thasatisfies the
axiomsH1, H2 andH3 of section 7.

For H1 suppose that there is no instance gf X,Y) € 8(U). There is only a finite
number of such possibilities, so it is possible to construct a finite subgetvath an upper

180 A.E.Lawrence Triples

bound which has no instance &f,(X, Y) for someX andY. This is a contradiction in that
the bound is itself a process satisfyidd. ThusU satisfiedH1.

U must satisfyH2 by a very similar argument noting that there are only a finite number
of choices forY in (s, X, Y) whensandX are fixed.

Suppose (x) € traces(U): we need to show that there is some comnoX(Y) € B (U)
with x € Y N . If we assume the contrary and note the finite number of choice&fof)(
once again we can construct a finite subseDodvith an upper bound which will faiH3.
Thus

s (X)etraces(U) = A(sX,Y)eB(U)exeYNX.

The converse is obviously satisfied, dsatisfiesH3.
_|

8.16 Recursion

8.16.1 Fixed points from the refinement partial order.

up e f(p) denotes a fixed point of the functidn This is often the least fixed point with
respect to the refinement order in standard untimed CSP. Theorem 1 estafifgiesas a
CPO. Standard theorems now ensure that every monotone fumdiema least fixed point,
and soup e f(p) is well defined. All the ordinary operators GfSP# are monotone with
respect to the refinement orderin most cases this follows from the fact that they distribute
overr.

If f is continuousthat is for every directed séd of processeq, | f (D) exists and is the
same as the image of the join 8f. | |f (D) = f (UD), then another theorem gives a more
useful formula:

upef(p)=| [(f"(1)IneNo}. (27)

Often there is a unique fixed point, but the results above do not help directly in identifying
such cases. A metric exists which is useful in such cases.

8.16.2 Monotone properties

All of the standard operators are monotoneZinthis was shown as each was introduced
above. In most cases, the result follows from the the fact that the operators distribute over
but that is a stronger property. Hiding in particular does not so distribute, but is nevertheless
monotone.

Lemma A.1.8 on page 484 of [2] shows that (CSPP 5 CSPP) — CSPP is mono-

tone. CSPP - CSPP denotes the space of monotone function®C&#P processes. The
monotone relation 0GSPP —> CSPPis defined pointwise:

fIf @ VPeCSPP e f(P)2f'(P).

Hence ifh(Q, P) is monotone in both arguments, the@ e h(P, Q) € (CSPP 5 CSPB so
AP e 1 Q e h(Q, P) is also monotone. And similar arguments apply for other forms of which
AP e 1 Q e fp(Q) is perhaps the most general.

In the case of mutual recursion, that is a recursion involving a sequence of functions
(fi | i e I') wherel is an indexing set, then the standard treatment in [2] applies. So mutual
recursion is also monotone and the fixed points are well defined. In applicdtisnsearly
always a subset af.

A.E.Lawrence Triples 181

All the elementary functions o£SP# have now been shown to be monotone. Since
the composition of monotone functions is itself monotone, this means that all the compound
functions inCSPP have least fixed points.

Example 15 u P o Skips P = L because P= Skips P for every process P.

8.16.3 Continuity

Once a function is known to be monotone, a least fixed point is guaranteed. If in addition,
it is continuous in the partial order, then the constructive equation (27) on page 180 can be
used.

When, as inCSPP, we have a metric and the function is contracting, then we have the
stronger result that iterating frommny starting point, not just from, will converge into a
unique fixed point. Given the power of the metric approach, it is not oftencthrainuity
with respect to refinement is particularly useful.

It is easy to check thdt(D) is directed wheri is monotone and is itself directed. So
LI f(D) always exists for any : CSPP — CSPP and directed seD. And by definition,

f (U D) = (D) for f continuous. Iff is monotonef (| | D) 3| |f(D), because otherwise
f(UD) C (D), which would entail som® € D for which f (| | D) C f(D) which is a
contradiction for monotonge

So itis only necessary to prove the reverse containBédr(t | ©) 2 B | |f (D) to estab-
lish continuity.

Lemmalle:E— _=P~ e: E — Piscontinuous.
Proof. We need to show
e:E-||D=|](e:E-> D),

for each directed se. As we have noted above, it is only necessary to show gt)
N{BEe:E—->D)|DeD}=>(sX,Y)eB(e:E—||D).

¢ From equation (9) on page 168, it is clear that both sets of behaviours coincide when
s = (), so we need only consider the cased (s, X,Y) € N{B(e: E— D) | D € D}. This
means thatg X, Y) is common to every membé& € 9. But that gives (€)™ s, X,Y) €
B(e: E — | | D) which establishes the continuity.

> >
Lemmal2 P— P [0 Q= Q O P is continuous wheh is finite.
>
Proof. Let ((),X,Y) e N {B(D U Q)‘ De Z)}. ¢,From equation (14) on page 170,

v
A((), X, Y1) € B(D) and3({), X, Y,) € B(Q) with Y € P(Y, U Y,).
Consider first the case whé&hC X soY = Y; U Y,. SinceY is fixed andX is finite, there
is only a finite number of pairsyg, Y;) with Y = Y; U Y5, so this is certainly true when the
possibilities forY, are restricted to those available from initialsQn

—>
Now suppose(f, X,Y) ¢ B(|_| DO Q). Then there must be a finite subset/fwith a

join which does not contair(), X, Y), for we can choose a member®fwhich excludes each
possible (), X, Y1) in turn. SinceD is directed, the join, which contains none of the possible

(O, X, Yp) triples, is a member ab. But that contradicts(, X, Y) € N {B(D E) Q) D e D},
so there is some commo (X, Y;) triple, and (), X, Y) € B(|_| D E) Q).

182 A.E.Lawrence Triples

Next suppose (§, X,{v'}) € ﬂ{B(DE)Q)lD eZ)}. If (O),X,{v}) € B(Q) then
(O, X, {v}) € B(UZ) E) Q) follows immediately. Otherwise(), X, {v'}) € 8(D) for each

L d
D e Dand (), X,{v}) € B(|_|Z) O Q) again. The same is true for triples of the sort

(O, X, {03).
Otherwise, when(™s, X, Y) € N {B(D g Q)‘ De z)} then either (s, X, Y) € B(Q)

in which case () s, X,Y) € B(|_| D E) Q) follows immediately, or(x) s, X,Y) € 8(D)

for everyD. Again, (X} s, X,Y) € B(|_| D E) Q) is an immediate consequence. $[12]

We omit the proofs of the following lemmas in order to keep this paper within reasonable
bounds.

&
Lemma 13 P — P [Q is continuous whek is finite.

%
Lemma 14 P — Q[P is continuous wheh is finite.

Lemma 15 P — PJ|Q is continuous wheh is finite.
E
— . e
Lemma 16 P~ P || Q is continuous wheh is finite.
E

Lemmal7 P— P WQ and P— Q TP are both continuous whexis finite.
E E

Lemma 18 P— P Q and P— Q¢ P are both continuous.

Hiding is not in general continuous:

Example 16 Let B,, = h™ — Stop be the process that performs m copies of h before stopping.
Write D, = N'l{P, | m > n} and note that @ \ {h} = Stopr Spin.D = {D, | n€ N}is a
directed set with | D = uP ¢ h —» P. Sincel | D \ {h} = Spin and_|{D, \ {h}} = Stopm

Spin, hiding is not continuous.

Lemma 19 P — P[R] is continuous wheR is finite.

8.16.4 A Stronger Order

The refinement order works well for finilebut there is another stronger order:

Definition 14 P = Q = B(P) € B(Q) A clear(Q) c clear(P)
where clea(P) = {(s, X, Y) € B(P) | (s, X, {[})) ¢ B(P)).

Throughout this paper, we have emphasised that the model is based on pure observation
without any notion of what a ‘reasonable’ process should do. But now we have a reason to
restrict our consideration to processes that are not too bizarre: only then-doesome a
Complete Partial Order for arbitra®y, The additional axiom is light weight: if an event that

can be performed isftered on its own, then it may be accepted.

H4: X, Y)eB((P) = VxeYNZe(s{x{x})eB(P)

A.E.Lawrence Triples 183

> has the same bottom element as refinement and all the ordi&PfPoperators are
»=-monotone. This order is stronger in that it relates fewer processes: this is exactly the
reason why it is a Complete Partial Order when refinement is not. The directed sets that are
problematical for refinement need not be considered because the members are not related by
»=. But for sets that are directed under both orders, the joins are identical=tlyislds
exactly the same fixed poiras does refinement for recursionsis an analogue of Roscoe’s
alternative order for the Failures-Divergences model described in [20]. It is interesting to
discover that= does not depend upon identifying livelock with the bottom element of the
order. More details of will be given elsewhere.

8.16.5 A Metric

Another approach to fixed points is via a metric. The big advantage is that it yirldae
fixed points: these are invaluable in constructing certain proofs. The disadvantage is that it is
of little help when there are several fixed points. So the metric and partial order treatments
are complementary.

The usual restriction space method is extended her@Se®. A metric is

Definition 15 d(P1,P2) =inf ({3 |neN A B(P1) L n = B(Py) || nfuU{3}).

Restriction metrics are generally defined using powers of 2. We depart from tradition
and use 3 for a technical reason that there is no room to consider here. We merely note that
this metric is complete, that prefixing and contracting recursions are contracting, and that the
other standard operators apart from hiding are in general non expanding.

9 Conclusions

It has been shown th&@SP# can be given a simple acceptance semantics which closely
mirrors the properties of the standard Failures-Divergences model, while incorporating pri-
ority as well as more irregular behaviour. The versiorC6%# involved is more abstract
than those that arise from observation in which records of the histories of experiments are
recorded.

I would like to thank Bill Roscoe for a variety of comments which have helped shape
CSPP, for Jeremy Matrtin for his initial support, to the referees for spotting a slip and to the
CSP and WoTUG communities in general for their interest and input.

References

[1] C.A.R Hoare.Communicating Sequential ProcessBsentice Hall International, 1985.
[2] A.W. Roscoe.The Theory and Practice of Concurrendrentice Hall, 1998.
[3] Steve SchneideConcurrent and Real-time Systendshn Wiley & Sons, Ltd., 2000.

[4] A.E. Lawrence. Extending CSP. In P. H. Welch & A. P. Bakkers, edRooceedings of WoTUG 21:
Architectures, Languages and Pattermslume 52 ofConcurrent Systems Engineerjngages 111-131,
Amsterdam, April 1998. WoTUG, IOS Press.

[5] A. E. Lawrence. CSPP and event priority. @@mmunicating Process Architectures — 20Gbncurrent
Systems Engineering, pages 67-92, Amsterdam, Sept 2001. IOS Press.

[6] A.E.Lawrence. Infinite traces, Acceptances and CSPEommunicating Process Architectures — 2001
Concurrent Systems Engineering, pages 93-102, Amsterdam, Sept 2001. I0S Press.

[7]1 A. E. Lawrence. Successes and Failures: Extending CSEZEommunicating Process Architectures —
2001, Concurrent Systems Engineering, pages 49-65, Amsterdam, Sept 2001. IOS Press.

184 A.E.Lawrence Triples

[8] A.E.Lawrence. HCSP: Extending CSP for codesign and shared memdpyodeedings of WoTUG 21
Architectures, Languages and Patterpages 133-156. WoTUG, 1998.

[9] A.E. Lawrence. Extending CSP - even further. Communicating Process Architectures—2000, 2000.
WoTUG.

[10] A. E. Lawrence. Acceptances, Behaviours and infinite activity in CSPPCommunicating Process
Architectures — 2002 oncurrent Systems Engineering, pages 17-38, Amsterdam, Sept 2002. IOS Press.

[11] A. E. Lawrence. HCSP, imperative state and true concurrenc@ommunicating Process Architectures
— 2002 Concurrent Systems Engineering, pages 39-55, Amsterdam, Sept 2002. 10S Press.

[12] A.E.Lawrence. Overtures and hesitaffess: hiding inCSPP. In Communicating Process Architectures
— 2003 volume 61 ofConcurrent Systems Engineerjqages 97—-105, Amsterdam, Sept 2003. IOS Press.

[13] A. E. Lawrence. Observing processes.dammunicating Process Architectures — 200dlume 62 of
Concurrent Systems Engineerjmages 147-156, Amsterdam, Sept 2004. |10S Press.

[14] C.J. Fidge. A formal definition of priority in CSPACM Transactions on Programming Languages and
Systems15(4):681-705, September 1993.

[15] Gavin Lowe.Probabilities and Priorities in Timed CSH. Phil thesis, Oxford, 1993.

[16] B.A. Davey and H.A. PriestleyIntroduction to Lattices and Order Cambridge University Press"®
edition, 2002.

[17] lan R. East. Towards a semantics for prioritised alternation. In East and Martin et al., €ddonguni-
cating Process Architectures 200¢blume 62 ofConcurrent Systems Engineerjmages 253—-263. 10S
Press, 2004.

[18] lan R. East. Programming prioritized alternation. In H. R. Arabnia, edRarallel and Distributed
Processing: Techniques and Applications 208&ges 531-537, Las Vegas, Nevada, USA, 2002. CSREA
Press.

[19] lan R. East. The Honeysuckle programming language: An ovenligivSoftware 150(2):95-107, 2003.
[20] A.W. Roscoe. An alternative order for the failures modelTiwp Papers on CSR7].

[21] Andrew Butterfield and Jim Woodcock. Semantics of prialt in Handel-CCdmmunicating Process
Architectures — 2002Concurrent Systems Engineering, pages 1-16, Amsterdam, Sept 2002. IOS Press.

[22] Jeremy Malcolm Randolph Martit.he Design and Construction of Deadlock—Free Concurrent Systems
PhD thesis, University of Buckingham, 1996.

[23] A.W. Roscoe, editorA Classical Mind Prentice Hall Series in Computer Science. Prentice Hall, 1994.
Essays in Honour of C.A.R. Hoare.

[24] Gavin Lowe. Prioritized and probabilistic models of Timed CSP. Technical Report PRG-TR-24-91,
OUCL, 1991.

[25] Gavin Lowe. Prioritized and probabilistic models of timed CSReoretical Computer Scienck38(1),
1994. Special Issue on Mathematical Foundations of Programming Semantics conference.

[26] A.W. Roscoe. Unbounded nondeterminism in CSPTWo Papers on CSR7].

[27] Oxford University Computing Laboratorywo Papers on CSPiumber PRG-67 in PRG Technical Mono-
graphs, July 1988.

