
Conclusions and Directions for Future
Work

Because of problems like deadlock and livelock, parallel programs are significantly
more difficult to design than serial ones. Perhaps for this reason concurrent program-
ming has been slow to take off. Our hunger for computing power is largely being sat-
isfied by the continual development of ever faster serial processors. However there are
limits to serial hardware technology that are likely to be approached within the next
twenty years. Explicit parallelism will then become the only means of extending the
performance of computers and the field of concurrent programming will finally have
come of age.

This thesis has described a collection of simple design rules for constructing large
scale parallel systems that can never deadlock. We have also detailed efficient tech-
niques for the machine verification of adherence to these rules. More interestingly,
a technique for efficiently proving deadlock-freedom was discovered which, despite
having no intelligence regarding the design rules, was found to be capable of proving
deadlock-freedom for networks constructed according to the majority of them. How-
ever it is important to note that this algorithm, which is called CSDD, is far from a com-
plete proof technique for deadlock-freedom. There are many deadlock-free networks
which it cannot prove to be so. It works by checking a stronger property than deadlock-
freedom – one that can be established in

���������
time complexity for networks of finite-

state processes, being based purely on local analysis. This compares favourably with
the exponential complexity of using FDR for deadlock analysis. On the other hand, the
FDR approach is complete for finite-state networks.

The CSDD algorithm is sufficiently simple that it seems suitable for inclusion in
compilers for high-level parallel languages such as occam. However to make this fea-
sible, we need to look at methods to restrict the size of the state-spaces to be analysed.

A tool to verify the validity of an abstraction, or indeed to perform abstraction auto-
matically would be very useful. Recall that abstraction is the act of replacing detailed
communication events by their channel names in CSP networks. In effect, this means
‘throwing away the data’. This technique has been used throughout the thesis to sim-
plify CSP expressions to be analysed for deadlock-freedom. In this way, infinite-state
networks may be proven deadlock-free by the analysis of finite state abstractions. A
formal statement of the property is given in [Roscoe 1995].

124

CONCLUSIONS 125

Without the use of abstraction, the operational representation of even a very sim-
ple occam process might be vast. A technique for conversion from occam to CSP is
described in [Scattergood and Seidel 1994] which addresses this problem.

The deadlock analysis techniques that we have described are based on a static net-
work of non-terminating processes grouped together by a single level of parallelism.
We rely on each process having a relatively small number of states. Efficient deadlock
analysis is then possible because we avoid constructing the state transition system for
the network as a whole. However if there were a large degree of embedded parallelism
in any component process of the network, we would still need to analyse some unwieldy
operational representations.

A good illustration of this problem is a program from [Jones and Goldsmith 1988]
which implements Conway’s Game of Life using an array of I/O-PAR processes, each
with 16 channels. The fact is that the abstract operational form of each of these harmless
looking processes has 65536 states. This would certainly make the pairwise process
checking performed by the CSDD algorithm impractical.

It should be possible to develop transformational techniques to cope with networks
like this which remove all the embedded parallelism to the outer layer. For instance,
consider the I/O-SEQ process

��� �����
SKIP ���	��
 � SKIP

�
� �����
SKIP ������� � SKIP

�
� �
We transform this process into a subnetwork of five purely sequential processes as

follows.

����� ��� � � � ��� � ��� � � ��� � ��� ��� � ��� � � ���
��� � � ��� ���

SKIP
����� � ���

� � � � � �
 � SKIP
��� � � � �� � � ��� � �!�

SKIP
�"� � � � �

�#� � � �$� � � SKIP
���%�&� �#�

Events
��'

and
� '

are ‘start’ and ‘finish’ commands for each subprocess
� '

, sent out
by the master process

� �
. The following equivalence may be shown (using FDR).

�(�
PAR

��) � �+*,�-�.*/� � *,���,*,�0�/1 �02&3 ��' *4� ' �65 �87 *:9;*=<>*�?A@
We could use this as follows. First we could prove divergence-freedom for

�
by

using Deadlock Checker to prove livelock-freedom for

PAR
��) � �B*/� � */� � *,� � *,� � 1 �

That would allow us to substitute
3 � � *,���,*,� � */�C�/*,�#�D@ for

�
into any network to be

tested for deadlock-freedom.

126 CONCLUSIONS

Similarly transforming an I/O-PAR process with 16 channels, such as used in the
Jones and Goldsmith program, would result in a subnetwork with seventeen processes,
each one being a purely sequential cyclic process with just a handful of states. This
would provide a representation suitable for analysis by Deadlock-Checker.

It would be very useful to explore general situations where such transformations
might be applied. This approach ought to be particularly applicable to occam pro-
grams, where it is common to have several layers of embedded parallelism.

Deadlock-freedom is only the tip of the iceberg when it comes to proving desirable
properties of concurrent systems. If we were to design a signalling system for trains
based on these methods it would certainly be a good idea to prove the system deadlock-
free, but it would be somewhat more important to ensure that no two trains could ever
collide. The FDR tool can be used to do proofs like this by exhaustive state analysis.
But due to the exponential state explosion as a network grows in size this method cannot
be used for very large networks. Certainly not the Great Western Railway network.

Specifications which prohibit undesirable actions are known as safety conditions,
and are generally expressed purely in terms of traces, refusal sets being irrelevant. One
approach to proving safety properties of large systems is to factorise the proofs into
smaller manageable parts. In order to prove that no two trains can ever collide we might
attempt to prove separately a large number of statements of the form: “TRAINA and
TRAINB will never collide on the track section governed by SIGNAL1”. If we could
show that this statement held true for the subnetwork

)
TRAINA

*
TRAINB

*
SIGNAL1

1
then clearly it would hold for the the network as a whole. This could be done using the
refinement checker FDR as the number of states of the subnetwork ought to be man-
ageable. There is scope for developing a logical inference tool to assist with proofs of
this kind.

It is also common to write specifications which insist that some desirable form of
behaviour should occur. For instance, we might specify that the electric doors of a
train’s carriages should never refuse to be opened when the train is standing at a plat-
form. Specifications such as this are called liveness conditions and they require the full
expressive power of the failures model.

Dathi’s thesis [Dathi 1990] contains the attractive idea of transforming a general
failures specification problem into a proof of deadlock-freedom. Given a concurrent
system � �) �C� *�����* ��� 1 and a specification � we want to show the refinement relation

failures
� � ��� failures

�
PAR

� � �C2 �
	 ��� 	 � ���

Dathi defines a process transformation function
 so that proving the refinement reduces
to showing that the network)
 � � ��* �C� *���� * ��� 1
is deadlock-free. Basically
 � � � is a ‘testing’ process which guarantees to deadlock
the network whenever PAR

� � � 2 �
	 ��� 	 � � exhibits any behaviour which is illegal

CONCLUSIONS 127

for � . Unfortunately the process
 � � � is not itself deadlock-free so we cannot use any
of the local analysis techniques described in this thesis to prove the refinement. How-
ever Dathi defines a similar transformation function
�� which produces better behaved
processes
 � � � � . It this case it is first necessary to prove, by other means, that

traces
� � � � traces

�
PAR

� � �02 � 	 � � 	 � ���
We may then show that the failures specification is satisfied by proving the network)
 � � � ��* � �.*�����* � �,1
to be deadlock-free. It should be straightforward to automate this technique for inclu-
sion in a tool like Deadlock Checker. Design rules might then be formulated for the
type of specifications that could be checked.

A different approach is likely to be required when dealing with issues relating to
the correctness of computation rather than communication. Recalling the program to
solve Laplace’s equation in chapter 4, we have proven that this program cannot dead-
lock, but we are yet to show that it accurately calculates a solution to the problem. The
prototype CSP code does not contain enough information to do this. We need to con-
sider the refinement into the final occam version. For this program, any conventional
operational representation would be vast. In order to construct it we would effectively
have to perform the entire computation for every single possible variety of initial con-
ditions. Ideally what is required is a two-tiered form of operational semantics so that
information regarding computation is represented on a separate level from information
regarding communication.

Another important issue that has not been considered in this thesis is time. A major
motivation for parallel computation is speed of results. Therefore we are likely to have
hard real-time requirements for the systems that we design. If an airman presses the
button to switch off the autopilot he should not have to wait for half an hour for any-
thing to happen. The state of the art regarding the use of timed CSP is described in
[Davies 1993]. A complete method for proving adherence to timed specifications is
presented, but the author recognises that the large number of proofs required for appli-
cations of a significant size is likely to be infeasible. Therefore it would seem that there
is a need for design rules to be discovered which would facilitate the development of
real-time systems. Perhaps the most promising of the design rules considered here,
from this point of view, is the cyclic paradigm. The processes could be synchronised
to operate with a computation phase and a communication phase of fixed time, say
 � .
The time for various external operations to be effective should then be easy to predict
as a multiple of
 � . This idea is similar to the BSP paradigm of L. Valiant (documented
in [Oxford Parallel 1995]).

A Vision for the Future

It would seem that there is still some work to be done before the construction of large-
scale parallel programs can be regarded as a thoroughly safe engineering discipline.

128 CONCLUSIONS

Hopefully this thesis has outlined an approach to one of the major problems which is
of clear practical use. Ease of use and simplicity of presentation have to be major goals
in developing tools for engineers.

In the near future, there is the exciting prospect of an integrated CSP development
environment, such as illustrated in figure 4.6. Programs could be systematically refined
from their abstract specifications making use of a number of tools, to perform such func-
tions as refinement checking, abstraction checking, real-time specification checking,
conversion to and from high-level programming languages, and, of course, deadlock
and livelock analysis. In the event of a potential deadlock being detected the tool would
be able to point back to the exact position in the source of each process involved in it.

CSP is a most elegant language and it would be nice if it could be used directly for
actual programming, rather than having to convert to another language such as occam.
Then we could use the same notation all the way through from specification to imple-
mentation. In order to make an efficient CSP compiler, one would need to enforce
certain restrictions, such as the restriction in occam that external choice can only be
applied to input channels. There would also need to be some thought applied over the
treatment of the state of variables and their scope. Probably the language that we would
finally arrive at would be functionally very similar to occam, but it would look like
CSP. Of course some people might not consider the CSP notation to provide the most
readable presentation style for concurrent software, preferring the use of words to sym-
bols. There is no reason why a verbose isomorphism of CSP should not be provided
for such people, rather than a different language.

By making life easier for engineers we might reduce the potential for software-
precipitated catastrophes. But it is very important that we always maintain a clear view
of the limitations of formal methods. For instance, they cannot guard against a leaky
specification which fails to incorporate vital safety information. There will always be a
human decision-making aspect to software construction. By making the programming
environment helpful, intuitive and secure we can help to ensure that the right decisions
are made.

CONCLUSIONS 129

Figure 4.6: CSP Toolkit – A Vision for the Future

File Edit Run Compile Tools
CSP TOOLKIT

PHIL.CSP
FORK.CSP

Translate CSP -> occam
Translate CSP -> Ada
Refinement Check
Deadlock Analysis
Communication Diagram

FORK(i) = takes.i.i -> drops.i.i -> FORK(i)

 takes.((i+1)%5).i -> drops.((i+1)%5).i ->

 FORK(i)

FORK(0) PHIL(0)

FORK(3)

PHIL(3)

PHIL(4)

FORK(4)

