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✤ Embedded system design more complicated

✤ Increase in number of requirements

✤ Model-Driven Design (MDD)
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CLaSH

✤ Functional Hardware Description Language (Haskell)

✤ Structural description of hardware

✤ Components based on Mealy-machine
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mealy s i = (s’, o)
where

(o, s’) = f s i
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descriptions with di�erent hardware characteristics. Using the CλaSH compiler,
these HOFs can directly bemapped onto hardware without �rst translatingHOFs to
more primitive components. For furter information about the compilation process
and language characteristics, the user is referred to [��].

�.�.� H������� ������ ����� Cλ�SH

Currently, CλaSH supports two machine abstractions to de�ne hardware: a Mealy
machine and signals. In this thesis, all descriptions are de�ned using a Mealy
machine perspective as this corresponds concisely to combinatorial hardware. A
Mealy machine describes hardware in terms of a function where the output and
the new state is a function of the input and the current state. Mathematically, this
is formulated as (s′ , o) = f (s, i) as shown graphically in �gure �.�, where s is the
current state, i is the input, o is the output and s′ is the new state.

i f o

s s′

F����� �.� – Mealy machine

An application is implemented by de�ning a function f that is speci�c for that
application. As an example of such a function f , we de�ne a commonly used
function in DSP called multiply accumulate (MAC).�e MAC operator multiplies
two arguments and adds the results to the previously stored result. Mathematically,
this is de�ned as s′ = a × b + s where s is the previous result, a and b the operands
to be multiplied and s′ the result of the calculation. In the CλaSH language, a MAC
operation can be de�ned as shown in listing �.�¹,².

� type Value = Signed 16
�
� mac :: Value -> (Value, Value) -> (Value, Value)
� mac s (a, b) = (s’, o)
� where

� s’ = a * b + s
� o = s’
�
� macL = mac <^> 0

L������ �.� – MAC implemented in CλaSH

As shown on the �rst line of listing �.�, the type of all values is de�ned as a �� bits
signed integer. �is is also re�ected in the type annotation ofmac (line �). Note that

�All CλaSH code in this thesis can be compiled with CλaSH version �.�.�
�CλaSH is also available on http://www.clash-lang.org/
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mac s (a, b) = (s’, out)
where

output = s’
s’     = s + a * b
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the result, the output and the new state, are shown at the end of the line in contrast
to the mathematical de�nition of the Mealy machine. �is is because the result is
in Haskell is always de�ned last. Line � shows thatmac accepts two arguments, one
for the current state s and a tuple containing the inputs (a, b). �e resulting tuple
contains the new state s′ and the output o of which the values are determined in the
where-clause. In the where-clause, the actual MAC operation is performed and the
result is assigned to the output (line � and �). Finally, the initial state (�) is assigned
to theMAC circuit using the <^> operator resulting in the componentmacL. A�er a
reset of the circuit, the initial state of s is �. Note that the reset circuitry is generated
by the CλaSH compiler but not used during simulation. �e circuit corresponding
to listing �.� is shown in �gure �.�.

a

b
× + c

s s′

F����� �.� – Multiply accumulate circuit

To verify the functionality, the MAC circuit can be simulated using the prede�ned
CλaSH function simulateP. Note that simulation can be performed in an interactive
CλaSH environment similar to GHCI. simulateP takes two arguments: a li�ed func-
tion representing the circuit (in this casemacL) and a list of values acting as inputs.
Since CλaSH code is valid Haskell code, simulating the architecture is equivalent
to executing a Haskell program. �is is also advantageous for simulation speed
since no separate simulator is needed. Listing �.� shows the syntax to simulate the
MAC circuit and the result a�er simulation. Note that take is added to stop the
simulation a�er � clock-cycles since simulateP runs inde�nitely.

� res :: [Value]
� res = take 3 (simulateP macL [(1, 2), (1,3), (2,2)])
�
� [2,5,9]

L������ �.� – simulation of MAC

To represent array-like data structures in CλaSH, prede�ned typeconstructors are
used to de�ne vectors. Vectors are lists with a constant length which is encoded in
the type. Commonly used higher-order functions for lists have been de�ned in the
CλaSH languages for vectors. Examples are vmap, vzipWith and vfoldl.

To show the use of vectors and accompanying higher-order functions, a �nite im-
pulse response (FIR) �lter is implemented. A FIR �lter is a commonly used op-
eration in the �eld of DSP. �e operation determines a weighted sum of current
and previous samples in a stream. �e mathematical formulation is given in equa-
tion �.�.



CSP constructs in CLaSH

✤ Components with trigger tokens

✤ Three basic CSP constructs

✤ Parallel

✤ Sequential

✤ Channels
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parallel’ (te, ti1, ti2) (tei, tii1, tii2) = 
((tei, ti1r, ti2r), (teo, tio1, tio2))
  where
    -- Return token when both are received

teo = ti1 && ti2

  -- Only consume token one when both received
  ti1r = ti1 && ti2
  ti2r = ti1 && ti2

    -- Return token to both structures in parallel
    tio1 = te
    tio2 = te
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arbitrarily interleaved in time while on an FPGA, both processes can be executed completely
parallel.

P |||Q
Figure 1. Interleaving operator. The process behaves as process P and Q simultaneously.

CSP also has a sequential operator for sequencing two processes denoted by a semi-
colon, shown in Figure 2. The process initially behaves as P, after P has finished it behaves
as Q.

P ;Q

Figure 2. Sequential operator. This process behaves first as process P. When P is finished it behaves as Q.

The sequential and parallel structure data flow diagrams are shown in Figure 3. The
sequential operation is achieved by pipelining processes. When a sequential block receives a
token, the token is forwarded to process P thereby activating it. When process P is finished
it forwards the token to the next process in sequence, process Q. Finally, the last process
returns its token to the sequential structure. The sequential structure then returns its token to
its parent.

The parallel operator produces as much tokens as the amount of processes in parallel.
This way all processes are activated simultaneously. After all processes in parallel have fin-
ished the parallel structure returns its token. This means the parallel structure has to collect
all the tokens and return its own token only when all internal tokens are received.

PAR P Q

tio1
tio2

tii1
tii2

tei

teo SEQ

Q

Ptio

tii

tei

teo

Figure 3. Data flow graphs of the parallel and sequential composition. Lines carry tokens. Processes are de-
noted as boxes.

The Haskell description of the parallel structure is shown in Listing 3. It conforms to the
Mealy function format and has three state variables, (te,ti1,ti2). These state variables
store respectively the input token, the returned token of process P (tii1), and the returned
token of process Q (tii2). The structure updates the states and the outputs. Tokens are sent
immediately to P and Q when the parallel structure receives a token. These structures return
their token when finished. The parallel structure returns its token to the outside when both
tokens have been received. Analogously, both tokens are removed from the state when the
token is returned from the structure.
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sequential tei tii = (teo, tio)
  where
    teo = register False tii
    tio = register False tei
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circuit (val_in, tkn_in_writer, tkn_in_reader) = (val_out, tkn_out_writer, tkn_out_reader)
where
  (value, writer_ready, tkn_out_)   = writer (val_in, success, tkn_in_writer)
  (success, value, writer_ready)    = channel (success, value, writer_ready)
  (val_out, tkn_out_reader, succes) = reader (value, writer_ready, tkn_in_reader)

F.P. Kuipers et al. / Mapping CSP Models to hardware using C�aSH 7

PAR PARPQ PARRS

tio1
tio2

tii1
tii2

tei

teo PAR PARPQ R

tio1
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teo

Figure 4. Three or more parallel CSP structures can be parallelised by using compositions of parallel structures
and processes.

2.4. Channel Communication

Communication between processes works through channels. A process can output its data
using a writer, while another process can input data using a reader. These operations are
denoted in CSP by respectively an exclamation mark and question mark. Transfer of data
can not proceed until the other end is ready to offer or accept data. Handshake signals are
introduced to facilitate the communication. The order of execution in CSP is therefore not
only determined by CSP relational structures, but also by (rendezvous) channels.

Although channels have one-way data communication, their synchronisation is bi-
directional. A channel has bi-directional communication to ensure proper functionality. For
example, a writer block may only finish (return its token) when its value is received. A chan-
nel “block” in this description is always active and does not need a token.

! channel ?

token

t

token

token

t

token

vivalue value

s
success success

value value

viwriter ready writer ready

Figure 5. Channel communication and synchronisation.

In Figure 5, the communication and synchronisation of a channel in a producer-consumer
example is shown using three signals. One of them, value, contains the value written by the
writer, denoting the data communication. The writer ready signal indicates the writer is active
and the reader is receiving valid data. This signal is combined with the value signal using the
Maybe type. A Maybe type can be in state Nothing or Just with a corresponding value. As
soon as the reader has accepted the data it returns a success signal. This way the writer knows
the communication has finished and it can return its token.

The reader and writer functions are displayed in Listing 5 and 6. Both are implemented
using pattern matching and conform to the Mealy function structure (see Listing 1).

The writer has three state variables: (haveToken, success, value). haveToken stores the
token of the writer and will be returned when channel communication has finished. success
stores the success value returned from the reader. value stores the value the writer intends to
send. When the token is available and there is no success, the writer component reads a new
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can generated. In this work, LUNA is extended with C�aSH code generation. This section
describes the MDD work-flow using this approach. The current MDD work-flow is displayed
in Figure 6. The design starts by defining a CSP model in the TERRA tool suite. Currently,
the diagram needs to be translated by hand by drawing a data-flow diagram and writing the
C�aSH description by hand. However, the TERRA toolchain is extended with Model-to-
Text (M2T) code generation. This code generation uses the CSP model defined in TERRA
and directly generates a C�aSH description. Subsequently, this C�aSH description can be
simulated by using an Haskell interpreter, for instance, GHC [13]. This simulation shows the
output of the defined structures per clock tick. A test input and expected output can be defined
to test the CSP model, using the functions: testInput and expectedOutput.

The C�aSH description can be transformed to a HDL description (either VHDL or Ver-
ilog) using the C�aSH compiler. The C�aSH compiler uses the previously defined testIn-
put and expectedOutput to generate a test-bench. This test bench inputs the values defined
in testInput and asserts the expectedOutput. The VHDL description including the test-bench
VHDL can be tested using Modelsim2. During the simulation the assertions are checked,
when all succeed the model works as expected. Finally, the VHDL description can be syn-
thesized using for instance Altera Quartus2.

CSP model

Data-flow diagram

C�aSH Description

VHDL

Realisation (RaMstix)

Timing diagram

Timing diagram

Translation by hand

TERRA M2T

Translation by hand

C�aSH compiler

Quartus synthesis

GHC simulation

Modelsim

Figure 6. The current MDD work-flow from CSP models to hardware realization.

In current implementations, FPGAs are mostly used as I/O boards. The FPGA descrip-
tion is pre-defined and not part of the model. The first goal of this work is to be able to
describe I/O in CSP Models, making simulations and editing of I/O functions more simple.
This opens the possibility to move more functionality from embedded control software to
the FPGA platform, see Figure 7. For instance the safety layer can be moved to the FPGA
hardware, which makes the system more robust and the safety layer does not rely on context
switching anymore. Finally, it is possible to move the loop controller to the FPGA platform,
eliminating delays and jitter between I/O and loop control, see for instance [14]. This re-
quires some challenges to be overcome. For instance, most controllers require floating point
operations, which are not (yet) supported in the C�aSH compiler.

2https://www.altera.com/products/design-software/



Results

✤ Two examples implemented

✤ Single reader and writer 

✤ Double reader and writer
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Double reader/writer
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prod_cons (ti, vi) = (rOut, discard)
where

(tii1, wOut) = writer vi s tio1 -- writer connected to channel
(cOut, s) = channel wOut rr -- channel
(tii2, rOut, rr) = reader cOut tio2 -- reader connected to channel
(discard, tio1, tio2) = parallel ti tii1 tii2 -- reader and writer in parallel

Algorithm 8. C�aSH code of producer consumer example.

Using the C�aSH compiler, the description of Listing 8 is compiled and simulated. Dur-
ing simulation, the output is calculated for every input value. The simulation results are con-
verted into a timing diagram as shown in Figure 11.

First, the token is injected to trigger the execution of the parallel construct. Subsequently,
the writer and reader are activated in the next clock-cycle. The writer and the reader are now
ready for communication. The writer sets its value on the channel followed by the reader
setting the success signal. One clock-cycle later the value is set on the output of the reader.

clock

Injected token - ti

Input writer - vi 1

Channel value - cOut Nothing 1 Nothing

Success - s

Output value - rOut Nothing 1

Figure 11. Timing diagram of the producer consumer example.

4.2. Multiple Producer Consumer

The second example is composed of two writers, two readers and two channels for commu-
nication. Figure 12 shows the structure of and relations among processes. Both the writers
and readers are in sequential relationship. Therefore, data is first sent through one channel
(the lower one in the figure) followed by the second. The structure of the circuit is basically
a doubling of the components from the first example and omitted.

Figure 12. Multiple producer consumer example. Two writers sequential in parallel with two readers sequential
communicating over separate channels. The orderings within the sequential constructs are indicated by the thick
vertical arrows.
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clock

Injected token - ti

Input writer 0 - vi 1

Input writer 1 - vi 2

Channel 0 value - cOut0 Nothing 1 Nothing

Channel 1 value - cOut1 Nothing 2 Nothing

Success 0 - s0

Success 1 - s1

Output value 0 - rOut0 Nothing 1

Output value 1 - rOut1 Nothing 2

Figure 13. Timing diagram of the multiple producer consumer example.

Figure 14. Multiple producer consumer example in a dead-locking configuration.

clock

Injected token - ti

Input writer 0 - vi 1

Input writer 1 - vi 2

Channel 0 value - cOut0 Nothing

Channel 1 value - cOut1 Nothing

Success 0 - s0

Success 1 - s1

Output value 0 - rOut0 Nothing

Output value 1 - rOut1 Nothing

Figure 15. Timing diagram of the deadlocking multiple producer consumer example.
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4.4. Resource Usage

An indication of costs of a circuit on an FPGA is expressed in logic elements (LEs), the
basic building blocks on an FPGA. Obviously, more CSP components result in more logic
element usage. Additionally, the number of LE is also determined by the data types used for
the messages that are sent using the channels. Since these messages are first kept in a writer
and then consumed by a reader, additional memory is required in both the reader and the
writer. Table 2 shows how many logic elements are required when using 8-bit signed integer
as datatype for the aforementioned messages.

Table 2. Logic element usage of the different examples.

Example Logic Elements
Producer consumer 23
Double producer consumer 37
Double producer consumer deadlock 37

5. Conclusions

In this paper, a way to map CSP to hardware using C�aSH is proposed, and tested using
simulation. This mapping enables the execution of a (currently restricted set of) CSP models
on an FPGA. The implementation is made scalable and reusable for future applications. The
CSP mapping is a first step toward a model-driven design process to generate VHDL code.

C�aSH code can be generated from the CSP model in TERRA, which can be used to
generate hardware description code. This code can then can be synthesized and realized on a
FPGA.

The generated code can be simulated at two levels. The first being a interpreted C�aSH
simulation using a Haskell interpreter, for instance, GHC. This provides a per-clock-cycle
simulation, testing for functionality. The second is a simulation of the generated VHDL de-
scription in Modelsim. Next to functionality, this simulation also gives insight on the timing.

The modular token-flow approach makes extending this mapping possible. Therefore,
this mapping is suitable for all kinds of MDD purposes.

6. Future Work

This paper only provides a mapping and generation for some CSP constructs to C�aSH in
a basic setting. To allow the user to create real-life control software specifications, nesting
of presented structures is needed. Nesting can be a part of the CSP structure as long as it
conforms to the data-flow structure proposed in this paper, i.e., it consumes and produces
tokens.

Robotic systems, the target of this mapping, consists often of some reusable components,
e.g. motor drivers and sensor reads. This CSP mapping could be extended in the TERRA
tool with support for these building blocks. Re-using a set of blocks makes the developed
software more reliable. These building blocks should have some parameters, that can be set
by the user for their specific purpose. These parameters are used to make a generic block
application specific. Examples are mass and length of a specific robot arm.

6.1. Alternative Operator

This paper only provides a mapping for the parallel and the sequential construct. The alter-
native operator is also often used. A possible data-flow structure for the alternative construct



Conclusion

✤ Mapping for CSP to FPGA developed

✤ Feasibility illustrated using examples
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Future work

✤ Integration in TERRA tool

✤ Support for alt construct
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