Windows Server Package 95

Programmer’s Reference

Volume 2 - Structures and Messages

ABC

Contains the width of a character in a TrueType font.

typedef struct _ABC {

 int abcA;

 UINT abcB;

 int abcC;

} ABC;

Members

abcA			Specifies the "A" spacing of the character. The "A"

spacing is the distance to add to the current position before drawing the character glyph.

abcB			Specifies the "B" spacing of the character. The "B"

spacing is the width of the drawn portion of the character glyph.

abcC			Specifies the "C" spacing of the character. The "C"

spacing is the distance to add to the current position to provide white space to the right of the character glyph.

Remarks

The total width of a character is the summation of the "A," "B," and "C" spaces. Either the "A" or the "C" space can be negative to indicate underhangs or overhangs.

BITMAP

Defines the type, width, height, color format, and bit values of a bitmap.

typedef struct tagBITMAP {

 LONG bmType;

 LONG bmWidth;

 LONG bmHeight;

 LONG bmWidthBytes;

 WORD bmPlanes;

 WORD bmBitsPixel;

 LPVOID bmBits;

} BITMAP;

Members

bmType		Specifies the bitmap type. This member must be

zero.

bmWidth		Specifies the width, in pixels, of the bitmap. The

width must be greater than zero.

bmHeight		Specifies the height, in pixels, of the bitmap. The

height must be greater than zero.

bmWidthBytes	Specifies the number of bytes in each scan line.

This value must be divisible by 2, because Windows assumes that the bit values of a bitmap form an array that is word aligned.

bmPlanes		Specifies the count of color planes.

bmBitsPixel		Specifies the number of bits required to indicate

the color of a pixel.

bmBits		Points to the location of the bit values for the

bitmap. The bmBits member must be a long pointer to an array of character (1-byte) values.

Remarks

The bitmap formats currently used are monochrome and color. The monochrome bitmap uses a one-bit, one-plane format. Each scan is a multiple of 32 bits.

Scans are organized as follows for a monochrome bitmap of height n:

 Scan 0

 Scan 1

 .

 .

 .

 Scan n-2

 Scan n-1

The pixels on a monochrome device are either black or white. If the corresponding bit in the bitmap is 1, the pixel is set to the foreground color; if the corresponding bit in the bitmap is zero, the pixel is set to the background color.

All devices that have the RC_BITBLT device capability support bitmaps. For more information, see GetDeviceCaps .

BITMAPCOREHEADER

Contains information about the dimensions and color format of a device-independent bitmap (DIB).

typedef struct tagBITMAPCOREHEADER {

 DWORD bcSize;

 WORD bcWidth;

 WORD bcHeight;

 WORD bcPlanes;

 WORD bcBitCount;

} BITMAPCOREHEADER;

Members

bcSize		Specifies the number of bytes required by the

structure.

bcWidth		Specifies the width of the bitmap, in pixels.

bcHeight		Specifies the height of the bitmap, in pixels.

bcPlanes		Specifies the number of planes for the target

device. This value must be 1.

bcBitCount		Specifies the number of bits per pixel. This value

must be 1, 4, 8, or 24.

Remarks

The BITMAPCOREINFO structure combines the BITMAPCOREHEADER structure and a color table to provide a complete definition of the dimensions and colors of a DIB. For more information about specifying a device-independent bitmap, see BITMAPCOREINFO structure.

BITMAPCOREINFO

Defines the dimensions and color information for a device-independent bitmap (DIB).

typedef struct _BITMAPCOREINFO {

 BITMAPCOREHEADER bmciHeader;

 RGBTRIPLE bmciColors[1];

} BITMAPCOREINFO;

Members

bmciHeader		Specifies a BITMAPCOREHEADER structure that

contains information about the dimensions and color format of a DIB.

bmciColors		Specifies an array of RGBTRIPLE structures that

define the colors in the bitmap.

Remarks

A DIB consists of two parts: a BITMAPCOREINFO structure describing the dimensions and colors of the bitmap, and an array of bytes defining the pixels of the bitmap. The bits in the array are packed together, but each scan line must be padded with zeroes to end on a LONG boundary. The origin of the bitmap is the lower left corner.

The bcBitCount member of the BITMAPCOREHEADER structure determines the number of bits that define each pixel and the maximum number of colors in the bitmap. This member can be one of the following values:

1			The bitmap is monochrome, and the bmciColors member

contains two entries. Each bit in the bitmap array represents a pixel. If the bit is clear, the pixel is displayed with the color of the first entry in the bmciColors table; if the bit is set, the pixel has the color of the second entry in the table.

4			The bitmap has a maximum of 16 colors, and the

bmciColors member contains up to 16 entries. Each pixel in the bitmap is represented by a 4-bit index into the color table. For example, if the first byte in the bitmap is 0x1F, the byte represents two pixels. The first pixel contains the color in the second table entry, and the second pixel contains the color in the sixteenth table entry.

8			The bitmap has a maximum of 256 colors, and the

bmciColors member contains up to 256 entries. In this case, each byte in the array represents a single pixel.

24			The bitmap has a maximum of 2 (24) colors, and the

bmciColors member is NULL. Each three-byte triplet in the bitmap array represents the relative intensities of red, green, and blue, respectively, for a pixel.

The colors in the bmciColors table should appear in order of importance.

Alternatively, for functions that use DIBs, the bmciColors member can be an array of 16-bit unsigned integers that specify indices into the currently realized logical palette, instead of explicit RGB values.

The bmciColors member should not contain palette indices if the bitmap is to be stored in a file or transferred to another application. Unless the application has exclusive use and control of the bitmap, the bitmap color table should contain explicit RGB values.

BITMAPFILEHEADER

Contains information about the type, size, and layout of a file that contains a device-independent bitmap (DIB).

typedef struct tagBITMAPFILEHEADER {

 WORD bfType;

 DWORD bfSize;

 WORD bfReserved1;

 WORD bfReserved2;

 DWORD bfOffBits;

} BITMAPFILEHEADER;

Members

bfType		Specifies the file type. It must be BM.

bfSize		Specifies the size of the file, in a doubleword

value. This value can be obtained by dividing the length of the file, in bytes, by 4.

bfReserved1		Reserved; must be zero.

bfReserved2		Reserved; must be zero.

bfOffBits		Specifies the offset, in bytes, from the

BITMAPFILEHEADER structure to the bitmap bits.

Remarks

A BITMAPINFO or BITMAPCOREINFO structure immediately follows the BITMAPFILEHEADER structure in the DIB file.

BITMAPINFO

Defines the dimensions and color information for a Windows device-independent bitmap (DIB).

typedef struct tagBITMAPINFO {

 BITMAPINFOHEADER bmiHeader;

 RGBQUAD bmiColors[1];

} BITMAPINFO;

Members

bmiHeader		Specifies a BITMAPINFOHEADER structure that

contains information about the dimensions and color format of a DIB.

bmiColors		Specifies an array of RGBQUAD or doubleword data

types that define the colors in the bitmap.

Remarks

A device-independent bitmap consists of two distinct parts: a BITMAPINFO structure describing the dimensions and colors of the bitmap, and an array of bytes defining the pixels of the bitmap. The bits in the array are packed together, but each scan line must be padded with zeroes to end on a LONG data-type boundary. If the height is positive, the bitmap is a bottom-up DIB and its origin is the lower left corner. If the height is negative, the bitmap is a top-down DIB and its origin is the upper left corner.

The biBitCount member of the BITMAPINFOHEADER structure determines the number of bits that define each pixel and the maximum number of colors in the bitmap. This member can be one of the following values:

1			The bitmap is monochrome, and the bmiColors member

contains two entries. Each bit in the bitmap array represents a pixel. If the bit is clear, the pixel is displayed with the color of the first entry in the bmiColors table; if the bit is set, the pixel has the color of the second entry in the table.

4			The bitmap has a maximum of 16 colors, and the

bmiColors member contains up to 16 entries. Each pixel in the bitmap is represented by a 4-bit index into the color table. For example, if the first byte in the bitmap is 0x1F, the byte represents two pixels. The first pixel contains the color in the second table entry, and the second pixel contains the color in the sixteenth table entry.

8			The bitmap has a maximum of 256 colors, and the

bmiColors member contains up to 256 entries. In this case, each byte in the array represents a single pixel.

16			The bitmap has a maximum of 2 (16) colors. The

biCompression member of the BITMAPINFOHEADER must be BI_BITFIELDS. The bmiColors member contains three doubleword color masks that specify the red, green, and blue components, respectively, of each pixel. Bits set in the doubleword mask must be contiguous and should not overlap the bits of another mask. All the bits in the pixel do not have to be used. Each word in the array represents a single pixel.

24			The bitmap has a maximum of 2 (24) colors, and the

bmiColors member is NULL. Each three-byte triplet in the bitmap array represents the relative intensities of blue, green, and red, respectively, for a pixel.

32			The bitmap has a maximum of 2 (32) colors. The

biCompression member of the BITMAPINFOHEADER must be BI_BITFIELDS. The bmiColors member contains three doubleword color masks that specify the red, green, and blue components, respectively, of each pixel. Bits set in the doubleword mask must be contiguous and should not overlap the bits of another mask. All the bits in the pixel do not have to be used. Each doubleword in the array represents a single pixel.

The biClrUsed member of the BITMAPINFOHEADER structure specifies the number of color indices in the color table that are actually used by the bitmap. If the biClrUsed member is set to zero, the bitmap uses the maximum number of colors corresponding to the value of the biBitCount member.

The colors in the bmiColors table should appear in order of importance.

Alternatively, for functions that use DIBs, the bmiColors member can be an array of 16-bit unsigned integers that specify indices into the currently realized logical palette, instead of explicit RGB values.

If the bitmap is a packed bitmap (a bitmap in which the bitmap array immediately follows the BITMAPINFO header and which is referenced by a single pointer), the biClrUsed member must be set to an even number when using the DIB_PAL_COLORS mode so the DIB bitmap array starts on a doubleword boundary.

The bmiColors member should not contain palette indices if the bitmap is to be stored in a file or transferred to another application. Unless the application has exclusive use and control of the bitmap, the bitmap color table should contain explicit RGB values.

BITMAPINFOHEADER

Contains information about the dimensions and color format of a device-independent bitmap (DIB).

typedef struct tagBITMAPINFOHEADER {

 DWORD biSize;

 LONG biWidth;

 LONG biHeight;

 WORD biPlanes;

 WORD biBitCount

 DWORD biCompression;

 DWORD biSizeImage;

 LONG biXPelsPerMeter;

 LONG biYPelsPerMeter;

 DWORD biClrUsed;

 DWORD biClrImportant;

} BITMAPINFOHEADER;

Members

biSize		Specifies the number of bytes required by the

structure.

biWidth		Specifies the width of the bitmap, in pixels.

biHeight		Specifies the height of the bitmap, in pixels. If

biHeight is positive, the bitmap is a bottom-up DIB and its origin is the lower left corner. If biHeight is negative, the bitmap is a top-down DIB and its origin is the upper left corner.

biPlanes		Specifies the number of planes for the target

device. This value must be set to 1.

biBitCount		Specifies the number of bits per pixel. This value

must be 1, 4, 8, 16, 24, or 32.

biCompression	Specifies the type of compression for a compressed

bottom-up bitmap (top-down DIBs cannot be compressed). It can be one of the following values:

BI_RGB		An uncompressed format.

BI_RLE8		A run-length encoded (RLE) format

for bitmaps with 8 bits per pixel. The compression format is a two-byte format consisting of a count byte followed by a byte containing a color index. For more information, see the following Remarks section.

BI_RLE4		An RLE format for bitmaps with 4

bits per pixel. The compression format is a two-byte format consisting of a count byte followed by two word-length color indices. For more information, see the following Remarks section.

BI_BITFIELDS	Specifies that the bitmap is not

compressed and that the color table consists of three doubleword color masks that specify the red, green, and blue components, respectively, of each pixel. This is valid when used with 16- and 32-bits-per-pixel bitmaps.

biSizeImage		Specifies the size, in bytes, of the image. This

may be set to 0 for BI_RGB bitmaps.

biXPelsPerMeter	Specifies the horizontal resolution, in pixels per

meter, of the target device for the bitmap. An application can use this value to select a bitmap from a resource group that best matches the characteristics of the current device.

biYPelsPerMeter	Specifies the vertical resolution, in pixels per

meter, of the target device for the bitmap.

bBiClrUsed		Specifies the number of color indices in the color

table that are actually used by the bitmap. If this value is zero, the bitmap uses the maximum number of colors corresponding to the value of the biBitCount member for the compression mode specified by biCompression.

If biClrUsed is nonzero and the biBitCount member is less than 16, the biClrUsed member specifies the actual number of colors the graphics engine or device driver accesses. If biBitCount is 16 or greater, then biClrUsed member specifies the size of the color table used to optimize performance of Windows color palettes. If biBitCount equals 16 or 32, the optimal color palette starts immediately following the three doubleword masks.

If the bitmap is a packed bitmap (a bitmap in which the bitmap array immediately follows the BITMAPINFO header and which is referenced by a single pointer), the biClrUsed member must be either 0 or the actual size of the color table.

biClrImportant	Specifies the number of color indices that are

considered important for displaying the bitmap. If this value is zero, all colors are important.

Remarks

The BITMAPINFO structure combines the BITMAPINFOHEADER structure and a color table to provide a complete definition of the dimensions and colors of a DIB. For more information about DIBs, see the description of the BITMAPINFO data structure.

Windows supports formats for compressing bitmaps that define their colors with eight or four bits per pixel. Compression reduces the disk and memory storage required for the bitmap. The following paragraphs describe these formats.

When the biCompression member is BI_RLE8, the bitmap is compressed by using a run-length encoding (RLE) format for an 8-bit bitmap. This format can be compressed in encoded or absolute modes. Both modes can occur anywhere in the same bitmap.

·	Encoded mode consists of two bytes: the first byte specifies

the number of consecutive pixels to be drawn using the color index contained in the second byte. In addition, the first byte of the pair can be set to zero to indicate an escape that denotes an end of line, end of bitmap, or delta. The interpretation of the escape depends on the value of the second byte of the pair, which can be one of the following:

0	End of line.

1	End of bitmap.

2	Delta. The two bytes following the escape contain

unsigned values indicating the horizontal and vertical offsets of the next pixel from the current position.

·	In absolute mode, the first byte is zero and the second byte is

a value in the range 03H through FFH. The second byte represents the number of bytes that follow, each of which contains the color index of a single pixel. When the second byte is 2 or less, the escape has the same meaning as in encoded mode. In absolute mode, each run must be aligned on a word boundary.

The following example shows the hexadecimal values of an 8-bit compressed bitmap.

03 04 05 06 00 03 45 56 67 00 02 78 00 02 05 01

02 78 00 00 09 1E 00 01

This bitmap would expand as follows (two-digit values represent a color index for a single pixel):

04 04 04

06 06 06 06 06

45 56 67

78 78

move current position 5 right and 1 down

78 78

end of line

1E 1E 1E 1E 1E 1E 1E 1E 1E

end of RLE bitmap

When the biCompression member is BI_RLE4, the bitmap is compressed by using a run-length encoding format for a 4-bit bitmap, which also uses encoded and absolute modes:

·	In encoded mode, the first byte of the pair contains the number

of pixels to be drawn using the color indices in the second byte. The second byte contains two color indices, one in its high-order four bits and one in its low-order four bits. The first of the pixels is drawn using the color specified by the high-order four bits, the second is drawn using the color in the low-order four bits, the third is drawn using the color in the high-order four bits, and so on, until all the pixels specified by the first byte have been drawn.

·	In absolute mode, the first byte is zero, the second byte

contains the number of color indices that follow, and subsequent bytes contain color indices in their high- and low-order four bits, one color index for each pixel. In absolute mode, each run must be aligned on a word boundary. The end-of-line, end-of-bitmap, and delta escapes described for BI_RLE8 also apply to BI_RLE4 compression.

The following example shows the hexadecimal values of a 4-bit compressed bitmap.

03 04 05 06 00 06 45 56 67 00 04 78 00 02 05 01

04 78 00 00 09 1E 00 01

This bitmap would expand as follows (single-digit values represent a color index for a single pixel):

0 4 0

0 6 0 6 0

4 5 5 6 6 7

7 8 7 8

move current position 5 right and 1 down

7 8 7 8

end of line

1 E 1 E 1 E 1 E 1

end of RLE bitmap

If biHeight is negative, indicating a top-down DIB, biCompression must be either BI_RGB or BI_BITFIELDS. Top-down DIBs cannot be compressed.

CLIENTCREATESTRUCT

Contains information about the menu and first multiple document interface (MDI) child window of an MDI client window.

typedef struct tagCLIENTCREATESTRUCT {

 HANDLE hWindowMenu;

 UINT idFirstChild;

} CLIENTCREATESTRUCT;

Members

hWindowMenu		Identifies the handle of the MDI application's

Window menu. An MDI application can retrieve this handle from the menu of the MDI frame window by using the GetSubMenu function.

idFirstChild	Specifies the child window identifier of the first

MDI child window created. Windows increments the identifier for each additional MDI child window the application creates, and reassigns identifiers when the application destroys a window to keep the range of identifiers contiguous. These identifiers are used in WM_COMMAND messages sent to the application's MDI frame window when a child window is chosen from the Window menu; they should not conflict with any other command identifiers.

LOGPALETTE

Defines a logical color palette.

typedef struct tagLOGPALETTE {

 WORD palVersion;

 WORD palNumEntries;

 PALETTEENTRY palPalEntry[1];

} LOGPALETTE;

Members

palVersion		Specifies the Windows version number for the

structure (currently 0x300).

palNumEntries	Specifies the number of entries in the logical

color palette.

palPalEntry		Specifies an array of PALETTEENTRY structures that

define the color and usage of each entry in the logical palette.

Remarks

The colors in the palette-entry table should appear in order of importance because entries earlier in the logical palette are most likely to be placed in the system palette.

MEMORYSTATUS

Contains information about current memory availability. The GlobalMemoryStatus function uses this structure.

typedef struct _MEMORYSTATUS {

 DWORD dwLength;

 DWORD dwMemoryLoad;

 DWORD dwTotalPhys;

 DWORD dwAvailPhys;

 DWORD dwTotalPageFile;

 DWORD dwAvailPageFile;

 DWORD dwTotalVirtual;

 DWORD dwAvailVirtual;

} MEMORYSTATUS;

Members

dwLength		Indicates the size of the structure. The calling

process should set this member prior to calling GlobalMemoryStatus.

dwMemoryLoad	Specifies a number between 0 and 100 that gives a

general idea of current memory utilization, in which 0 indicates no memory use and 100 indicates full memory use.

dwTotalPhys		Indicates the total number of bytes of physical

memory.

dwAvailPhys		Indicates the number of bytes of physical memory

available.

dwTotalPageFile	Indicates the total number of bytes that can be

stored in the paging file. Note that this number does not represent the actual physical size of the paging file on disk.

dwAvailPageFile	Indicates the number of bytes available in the

paging file.

dwTotalVirtual	Indicates the total number of bytes that can be

described in the user mode portion of the virtual address space of the calling process.

dwAvailVirtual	Indicates the number of bytes of unreserved and

uncommitted memory in the user mode portion of the virtual address space of the calling process.

PALETTEENTRY

Specifies the color and usage of an entry in a logical color palette. A logical palette is defined by a LOGPALETTE structure.

typedef struct _PALETTEENTRY {

 BYTE peRed;

 BYTE peGreen;

 BYTE peBlue;

 BYTE peFlags;

} PALETTEENTRY;

Members

peRed			Specifies a red intensity value for the palette

entry.

peGreen		Specifies a green intensity value for the palette

entry.

peBlue		Specifies a blue intensity value for the palette

entry.

peFlags		Specifies how the palette entry is to be used. The

peFlags member may be set to NULL or one of these values:

PC_EXPLICIT		Specifies that the low-order word

of the logical palette entry designates a hardware palette index. This flag allows the application to show the contents of the display device palette.

PC_NOCOLLAPSE	Specifies that the color be

placed in an unused entry in the system palette instead of being matched to an existing color in the system palette. If there are no unused entries in the system palette, the color is matched normally. Once this color is in the system palette, colors in other logical palettes can be matched to this color.

PC_RESERVED		Specifies that the logical

palette entry be used for palette animation; this prevents other windows from matching colors to the palette entry since the color frequently changes. If an unused system-palette entry is available, this color is placed in that entry. Otherwise, the color is available for animation.

PANOSE

Describes the PANOSE font-classification values for a TrueType font. These characteristics are then used to associate the font with other fonts of similar appearance but different names.

typedef struct _PANOSE {

 BYTE bFamilyType;

 BYTE bSerifStyle;

 BYTE bWeight;

 BYTE bProportion;

 BYTE bContrast;

 BYTE bStrokeVariation;

 BYTE bArmStyle;

 BYTE bLetterform;

 BYTE bMidline;

 BYTE bXHeight;

} PANOSE;

Members

bFamilyType		For Latin fonts, bFamilyType can have one of the

following values:

PAN_ANY				Any

PAN_NO_FIT				No fit

PAN_FAMILY_TEXT_DISPLAY		Text and display

PAN_FAMILY_SCRIPT			Script

PAN_FAMILY_DECORATIVE		Decorative

PAN_FAMILY_PICTORIAL		Pictorial

bSerifStyle		Specifies the serif style. For Latin fonts,

bSerifStyle can have one of the following values:

PAN_ANY				Any

PAN_NO_FIT				No fit

PAN_SERIF_COVE			Cove

PAN_SERIF_OBTUSE_COVE		Obtuse cove

PAN_SERIF_SQUARE_COVE		Square cove

PAN_SERIF_OBTUSE_SQUARE_COVE	Obtuse square cove

PAN_SERIF_SQUARE			Square

PAN_SERIF_THIN			Thin

PAN_SERIF_BONE			Bone

PAN_SERIF_EXAGGERATED		Exaggerated

PAN_SERIF_TRIANGLE		Triangle

PAN_SERIF_NORMAL_SANS		Normal sans serif

PAN_SERIF_OBTUSE_SANS		Obtuse sans serif

PAN_SERIF_PERP_SANS		Perp sans serif

PAN_SERIF_FLARED			Flared

PAN_SERIF_ROUNDED			Rounded

bWeight		For Latin fonts, bWeight can have one of the

following values:

PAN_ANY				Any

PAN_NO_FIT				No fit

PAN_WEIGHT_VERY_LIGHT		Very light

PAN_WEIGHT_LIGHT			Light

PAN_WEIGHT_THIN			Thin

PAN_WEIGHT_BOOK			Book

PAN_WEIGHT_MEDIUM			Medium

PAN_WEIGHT_DEMI			Demibold

PAN_WEIGHT_BOLD			Bold

PAN_WEIGHT_HEAVY			Heavy

PAN_WEIGHT_BLACK			Black

PAN_WEIGHT_NORD			Nord

bProportion		For Latin fonts, bProportion can have one of the

following values:

PAN_ANY				Any

PAN_NO_FIT				No fit

PAN_PROP_OLD_STYLE		Old style

PAN_PROP_MODERN			Modern

PAN_PROP_EVEN_WIDTH		Even width

PAN_PROP_EXPANDED			Expanded

PAN_PROP_CONDENSED		Condensed

PAN_PROP_VERY_EXPANDED		Very expanded

PAN_PROP_VERY_CONDENSED		Very condensed

PAN_PROP_MONOSPACED		Monospaced

bContrast		For Latin fonts, bContrast can have one of the

following values:

PAN_ANY				Any

PAN_NO_FIT				No fit

PAN_CONTRAST_NONE			None

PAN_CONTRAST_VERY_LOW		Very low

PAN_CONTRAST_LOW			Low

PAN_CONTRAST_MEDIUM_LOW		Medium low

PAN_CONTRAST_MEDIUM		Medium

PAN_CONTRAST_MEDIUM_HIGH	Medium high

PAN_CONTRAST_HIGH			High

PAN_CONTRAST_VERY_HIGH		Very high

bStrokeVariation	For Latin fonts, bStrokeVariation can have one of

the following values:

PAN_ANY				Any

PAN_NO_FIT				No fit

PAN_STROKE_GRADUAL_DIAG		Gradual/diagonal

PAN_STROKE_GRADUAL_TRAN		Gradual/transitional

PAN_STROKE_GRADUAL_VERT		Gradual/vertical

PAN_STROKE_GRADUAL_HORZ		Gradual/horizontal

PAN_STROKE_RAPID_VERT		Rapid/vertical

PAN_STROKE_RAPID_HORZ		Rapid/horizontal

PAN_STROKE_INSTANT_VERT		Instant/vertical

bArmStyle		For Latin fonts, bArmStyle can have one of the

following values:

PAN_ANY				Any

PAN_NO_FIT				No fit

PAN_STRAIGHT_ARMS_HORZ		Straight

arms/horizontal

PAN_STRAIGHT_ARMS_WEDGE		Straight arms/wedge

PAN_STRAIGHT_ARMS_VERT		Straight

arms/vertical

PAN_STRAIGHT_ARMS_SINGLE_SERIFStraight arms/single-

serif

PAN_STRAIGHT_ARMS_DOUBLE_SERIFStraight arms/double-

serif

PAN_BENT_ARMS_HORZ		Non-straight

arms/horizontal

PAN_BENT_ARMS_WEDGE		Non-straight

arms/wedge

PAN_BENT_ARMS_VERT		Non-straight

arms/vertical

PAN_BENT_ARMS_SINGLE_SERIF	Non-straight

arms/single-serif

PAN_BENT_ARMS_DOUBLE_SERIF	Non-straight

arms/double-serif

bLetterform		For Latin fonts, bLetterform can have one of the

following values:

PAN_ANY				Any

PAN_NO_FIT				No fit

PAN_LETT_NORMAL_CONTACT		Normal/contact

PAN_LETT_NORMAL_WEIGHTED	Normal/weighted

PAN_LETT_NORMAL_BOXED		Normal/boxed

PAN_LETT_NORMAL_FLATTENED	Normal/flattened

PAN_LETT_NORMAL_ROUNDED		Normal/rounded

PAN_LETT_NORMAL_OFF_CENTER	Normal/off center

PAN_LETT_NORMAL_SQUARE		Normal/square

PAN_LETT_OBLIQUE_CONTACT	Oblique/contact

PAN_LETT_OBLIQUE_WEIGHTED	Oblique/weighted

PAN_LETT_OBLIQUE_BOXED		Oblique/boxed

PAN_LETT_OBLIQUE_FLATTENED	Oblique/flattened

PAN_LETT_OBLIQUE_ROUNDED	Oblique/rounded

PAN_LETT_OBLIQUE_OFF_CENTER	Oblique/off center

PAN_LETT_OBLIQUE_SQUARE		Oblique/square

bMidline		For Latin fonts, bMidline can have one of the

following values:

PAN_ANY				Any

PAN_NO_FIT				No fit

PAN_MIDLINE_STANDARD_TRIMMED	Standard/trimmed

PAN_MIDLINE_STANDARD_POINTED	Standard/pointed

PAN_MIDLINE_STANDARD_SERIFED	Standard/serifed

PAN_MIDLINE_HIGH_TRIMMED	High/trimmed

PAN_MIDLINE_HIGH_POINTED	High/pointed

PAN_MIDLINE_HIGH_SERIFED	High/serifed

PAN_MIDLINE_CONSTANT_TRIMMED	Constant/trimmed

PAN_MIDLINE_CONSTANT_POINTED	Constant/pointed

PAN_MIDLINE_CONSTANT_SERIFED	Constant/serifed

PAN_MIDLINE_LOW_TRIMMED		Low/trimmed

PAN_MIDLINE_LOW_POINTED		Low/pointed

PAN_MIDLINE_LOW_SERIFED		Low/serifed

bXHeight		For Latin fonts, bXHeight can have one of the

following values:

PAN_ANY	Any

PAN_NO_FIT	No fit

PAN_XHEIGHT_CONSTANT_SMALL	Constant/small

PAN_XHEIGHT_CONSTANT_STD	Constant/standard

PAN_XHEIGHT_CONSTANT_LARGE	Constant/large

PAN_XHEIGHT_DUCKING_SMALL	Ducking/small

PAN_XHEIGHT_DUCKING_STD		Ducking/standard

PAN_XHEIGHT_DUCKING_LARGE	Ducking/large

POINT

Defines the x- and y- coordinates of a point.

typedef struct _POINT {

 LONG x;

 LONG y;

} POINT;

Members

x			Specifies the x-coordinate of the point.

y			Specifies the y-coordinate of the point.

POINTFX

Contains the coordinates of points that describe the outline of a character in a TrueType font.

typedef struct _POINTFX {

 FIXED x;

 FIXED y;

} POINTFX;

Members

x			Specifies the x-component of a point on the outline

of a TrueType character.

y			Specifies the y-component of a point on the outline

of a TrueType character.

RECT

Defines the coordinates of the upper left and lower right corners of a rectangle.

typedef struct _RECT {

 LONG left;

 LONG top;

 LONG right;

 LONG bottom;

} RECT;

Members

left			Specifies the x-coordinate of the upper left corner

of the rectangle.

top			Specifies the y-coordinate of the upper left corner

of the rectangle.

right			Specifies the x-coordinate of the lower right

corner of the rectangle.

bottom		Specifies the y-coordinate of the lower right

corner of the rectangle.

RGBQUAD

Describes a color consisting of relative intensities of red, green, and blue.

typedef struct _RGBQUAD {

 BYTE rgbBlue;

 BYTE rgbGreen;

 BYTE rgbRed;

 BYTE rgbReserved;

} RGBQUAD;

Members

rgbBlue		Specifies the intensity of blue in the color.

rgbGreen		Specifies the intensity of green in the color.

rgbRed		Specifies the intensity of red in the color.

rgbReserved		Reserved; must be zero.

RGBTRIPLE

Describes a color consisting of relative intensities of red, green, and blue.

typedef struct _RGBTRIPLE {

 BYTE rgbtBlue;

 BYTE rgbtGreen;

 BYTE rgbtRed;

} RGBTRIPLE;

Members

rgbtBlue		Specifies the intensity of blue in the color.

rgbtGreen		Specifies the intensity of green in the color.

rgbtRed		Specifies the intensity of red in the color.

SIZE

The SIZE structure specifies the width and height of a rectangle.

typedef struct _SIZE {

 LONG cx;

 LONG cy;

} SIZE;

Members

cx			Specifies the rectangle's width.

cy			Specifies the rectangle's height.

Remarks

The rectangle dimensions stored in this structure may correspond to viewport extents, window extents, text extents, bitmap dimensions, or the aspect-ratio filter for some extended functions.

TDDEACK

Contains status flags that a DDE application passes to its partner as part of the WM_DDE_ACK message. The flags provide details about the application's response to the messages WM_DDE_DATA, WM_DDE_POKE, WM_DDE_EXECUTE, WM_DDE_ADVISE, WM_DDE_UNADVISE, and WM_DDE_REQUEST.

typedef struct {

 UINT bAppReturnCode:8,

 reserved1:6,

 fBusy:1,

 fAck:1,

 reserved2:16;

} TDDEACK;

Members

bAppReturnCode	Specifies an application-defined return code.

fBusy			Indicates whether the application was busy and

unable to respond to the partner's message at the time the message was received. A nonzero value indicates the partner was busy and unable to respond. The fBusy member is defined only when the fAck member is zero.

fAck			Indicates whether the application accepted the

message from its partner. A nonzero value indicates the partner accepted the message.

TDDEADVISE

Contains flags that specify how a DDE server application should send data to a client application during an advise loop. A client passes the handle of a DDEADVISE structure to a server as part of a WM_DDE_ADVISE message.

typedef struct tagTDDEADVISE

{

 UINT cfFormat:16,

 reserved:14,

 fDeferUpd:1,

 fAckReq:1;

} TDDEADVISE;

Members

fDeferUpd		Indicates whether the server should defer sending

updated data to the client. If this value is nonzero, the server should send a WM_DDE_DATA message with a NULL data handle whenever the data item changes. In response, the client can post a WM_DDE_REQUEST message to the server to get a handle of the updated data.

fAckReq		Indicates whether the server should set the fAckReq

flag in the WM_DDE_DATA messages it posts to the client. If this value is nonzero, the server should set the fAckReq bit.

cfFormat		Specifies the client application's preferred data

format. The format must be a standard or registered clipboard format. The following standard clipboard formats can be used:

CF_BITMAP

CF_DIB

CF_DIF

CF_ENHMETAFILE

CF_METAFILEPICT

CF_OEMTEXT

CF_PALETTE

CF_PENDATA

CF_RIFF

CF_SYLK

CF_TEXT

CF_TIFF

CF_WAVE

CF_UNICODETEXT

TDDEDATA

Contains the data, and information about the data, sent as part of a WM_DDE_DATA message.

typedef struct tagTDDEDATA

{

 UINT uSize;

 UINT cfFormat:16,

 reserved1:12,

 fResponse:1,

 fRelease:1,

 reserved2:1,

 fAckReq:1;

 BYTE Value[1];

} TDDEDATA;

Members

fResponse		Indicates whether the application receiving the

WM_DDE_DATA message should acknowledge receipt of the data by sending a WM_DDE_ACK message. If this value is nonzero, the application should send the acknowledgment.

fRelease		Indicates whether the application receiving the

WM_DDE_POKE message should free the data. If this value is nonzero, the application should free the data.

fAckReq		Indicates whether the data was sent in response to

a WM_DDE_REQUEST message or a WM_DDE_ADVISE message. If this value is nonzero, the data was sent in response to a WM_DDE_REQUEST message.

cfFormat		Specifies the format of the data. The format should

be a standard or registered clipboard format. The following standard clipboard formats can be used:

CF_BITMAP

CF_DIB

CF_DIF

CF_ENHMETAFILE

CF_METAFILEPICT

CF_OEMTEXT

CF_PALETTE

CF_PENDATA

CF_RIFF

CF_SYLK

CF_TEXT

CF_TIFF

CF_WAVE

CF_UNICODETEXT

Value			Contains the data. The length and type of data

depend on the cfFormat member.

TDDEPOKE

Contains the data, and information about the data, sent as part of a WM_DDE_POKE message.

typedef struct tagTDDEPOKE

{

 UINT uSize;

 UINT cfFormat:16,

 reserved:13,

 fRelease:1,

 fReserved:2;

 BYTE Value[1];

} TDDEPOKE;

Members

fRelease		Indicates whether the application receiving the

WM_DDE_POKE message should free the data. If this value is nonzero, the application should free the data.

cfFormat		Specifies the format of the data. The format should

be a standard or registered clipboard format. The following standard clipboard formats can be used:

CF_BITMAP

CF_DIB

CF_DIF

CF_ENHMETAFILE

CF_METAFILEPICT

CF_OEMTEXT

CF_PALETTE

CF_PENDATA

CF_RIFF

CF_SYLK

CF_TEXT

CF_TIFF

CF_WAVE

CF_UNICODETEXT

Value			Contains the data. The length and type of data

depend on the value of the cfFormat member.

TEXTMETRIC

Contains basic information about a physical font. All sizes are given in logical units; that is, they depend on the current mapping mode of the display context.

typedef struct _TEXTMETRIC {

 LONG tmHeight;

 LONG tmAscent;

 LONG tmDescent;

 LONG tmInternalLeading;

 LONG tmExternalLeading;

 LONG tmAveCharWidth;

 LONG tmMaxCharWidth;

 LONG tmWeight;

 LONG tmOverhang;

 LONG tmDigitizedAspectX;

 LONG tmDigitizedAspectY;

 BCHAR tmFirstChar;

 BCHAR tmLastChar;

 BCHAR tmDefaultChar;

 BCHAR tmBreakChar;

 BYTE tmItalic;

 BYTE tmUnderlined;

 BYTE tmStruckOut;

 BYTE tmPitchAndFamily;

 BYTE tmCharSet;

} TEXTMETRIC;

Members

tmHeight		Specifies the height (ascent + descent) of

characters.

tmAscent		Specifies the ascent (units above the base line) of

characters.

tmDescent		Specifies the descent (units below the base line)

of characters.

tmInternalLeading	Specifies the amount of leading (space) inside the

bounds set by the tmHeight member. Accent marks and other diacritical characters may occur in this area. The designer may set this member to zero.

tmExternalLeading	Specifies the amount of extra leading (space) that

the application adds between rows. Since this area is outside the font, it contains no marks and is not altered by text output calls in either OPAQUE or TRANSPARENT mode. The designer may set this member to zero.

tmAveCharWidth	Specifies the average width of characters in the

font (generally defined as the width of the letter x). This value does not include overhang required for bold or italic characters.

tmMaxCharWidth	Specifies the width of the widest character in the

font.

tmWeight		Specifies the weight of the font.

tmOverhang		Specifies the extra width per string that may be

added to some synthesized fonts. When synthesizing some attributes, such as bold or italic, graphics device interface (GDI) or a device may have to add width to a string on both a per-character and per-string basis. For example, GDI makes a string bold by expanding the spacing of each character and overstriking by an offset value; it italicizes a font by shearing the string. In either case, there is an overhang past the basic string. For bold strings, the overhang is the distance by which the overstrike is offset. For italic strings, the overhang is the amount the top of the font is sheared past the bottom of the font.

tmDigitizedAspectX	Specifies the horizontal aspect of the device

for which the font was designed.

tmDigitizedAspectY	Specifies the vertical aspect of the device

for which the font was designed. The ratio of the tmDigitizedAspectX and tmDigitizedAspectY members is the aspect ratio of the device for which the font was designed.

tmFirstChar		Specifies the value of the first character defined

in the font.

tmLastChar		Specifies the value of the last character defined

in the font.

tmDefaultChar	Specifies the value of the character to be

substituted for characters not in the font.

tmBreakChar		Specifies the value of the character that will be

used to define word breaks for text justification.

TmItalic		Specifies an italic font if it is nonzero.

tmUnderlined	Specifies an underlined font if it is nonzero.

tmStruckOut		Specifies a strikeout font if it is nonzero.

tmPitchAndFamily	Specifies information about the pitch, the

technology, and the family of a physical font.

The four low-order bits of this member specify information about the pitch and the technology of the font. A constant is defined for each of the four bits:

TMPF_FIXED_PITCH	If this bit is set the font is a

variable pitch font. If this bit is clear the font is a fixed pitch font. Note very carefully that those meanings are the opposite of what the constant name implies.

TMPF_VECTOR		If this bit is set the font is a

vector font.

TMPF_TRUETYPE	If this bit is set the font is a

TrueType font.

TMPF_DEVICE		If this bit is set the font is a

device font.

An application should carefully test for qualities

encoded in these low-order bits, making no arbitrary assumptions. For example, besides having their own bits set, TrueType and PostScript fonts set the TMPF_VECTOR bit. A monospace bitmap font has all of these low-order bits clear; a proportional bitmap font sets the TMPF_FIXED_PITCH bit. A Postscript printer device font sets the TMPF_DEVICE, TMPF_VECTOR, and TMPF_FIXED_PITCH bits.

The four high-order bits of tmPitchAndFamily designate the font's font family. An application can use the value 0xF0 and the bitwise AND operator to mask out the four low-order bits of tmPitchAndFamily, thus obtaining a value that can be directly compared with font family names to find an identical match.

tmCharSet		Specifies the character set of the font.

TMSG

Contains message information from an application's message queue.

typedef struct tagTMSG {

 HWND Receiver;

 UINT Message;

 WPARAM WParam;

 LPARAM LParam;

 BOOL (*WindowProc)(UINT, WPARAM, LPARAM);

} TMSG;

Members

Receiver		Identifies the window whose window procedure

receives the message.

Message		Specifies the message number.

WParam		Specifies additional information about the message.

The exact meaning depends on the value of the message member.

LParam		Specifies additional information about the message.

The exact meaning depends on the value of the message member.

WindowProc		Specifies the window message procedure.

WINDOWPLACEMENT

Contains information about the placement of a window on the screen.

typedef struct _WINDOWPLACEMENT {

 UINT length;

 UINT flags;

 UINT showCmd;

 POINT ptMinPosition;

 POINT ptMaxPosition;

 RECT rcNormalPosition;

} WINDOWPLACEMENT;

Members

length		Specifies the length, in bytes, of the structure.

flags			Specifies flags that control the position of the

minimized window and the method by which the window is restored. This member can be one or both of the following values:

WPF_RESTORETOMAXIMIZED	Specifies that the restored

window will be maximized, regardless of whether it was maximized before it was minimized. This setting is only valid the next time the window is restored. It does not change the default restoration behavior. This flag is only valid when the SW_SHOWMINIMIZED value is specified for the showCmd member.

WPF_SETMINPOSITION	Specifies that the

coordinates of the minimized window may be specified. This flag must be specified if the coordinates are set in the ptMinPosition member.

ShowCmd		Specifies the current show state of the window.

This member can be one of the following values:

SW_HIDE			Hides the window and

activates another window.

SW_MINIMIZE			Minimizes the specified

window and activates the top-level window in the system's list.

SW_RESTORE			Activates and displays a

window. If the window is minimized or maximized, Windows restores it to its original size and position (same as SW_SHOWNORMAL).

SW_SHOW			Activates a window and

displays it in its current size and position.

SW_SHOWMAXIMIZED		Activates a window and

displays it as a maximized window.

SW_SHOWMINIMIZED		Activates a window and

displays it as an icon.

SW_SHOWMINNOACTIVE	Displays a window as an

icon. The active window remains active.

SW_SHOWNA			Displays a window in its

current state. The active window remains active.

SW_SHOWNOACTIVATE		Displays a window in its

most recent size and position. The active window remains active.

SW_SHOWNORMAL		Activates and displays a

window. If the window is minimized or maximized, Windows restores it to its original size and position (same as SW_RESTORE).

ptMinPosition	Specifies the coordinates of the window’s upper

left corner when the window is minimized.

ptMaxPosition	Specifies the coordinates of the window's upper

left corner when the window is maximized.

rcNormalPosition	Specifies the window's coordinates when the window

is in the restored position.

WM_ACTIVATE

fActive = LOWORD(wParam); // activation flag

fMinimized = (BOOL) HIWORD(wParam); // minimized flag

hwnd = (HWND) lParam; // window handle

The WM_ACTIVATE message is sent when a window is being activated or deactivated. This message is sent first to the window procedure of the top-level window being deactivated; it is then sent to the window procedure of the top-level window being activated.

Parameters

fActive		Value of the low-order word of wParam. Specifies

whether the window is being activated or deactivated. This parameter can be one of the following values:

WA_ACTIVE		Activated by some method other

than a mouse click.

WA_CLICKACTIVE	Activated by a mouse click.

WA_INACTIVE	Deactivated.

fMinimized		Value of the high-order word of wParam. Specifies

the minimized state of the window being activated or deactivated. A nonzero value indicates the window is minimized.

hWnd			Value of lParam. Identifies the window being

activated or deactivated, depending on the value of the fActive parameter. If the value of fActive is WA_INACTIVE, hwnd is the handle of the window being activated. If the value of fActive is WA_ACTIVE or WA_CLICKACTIVE, hwnd is the handle of the window being deactivated. This handle can be NULL.

WM_ACTIVATEAPP

fActive = (BOOL) wParam; // activation flag

dwThreadID = (DWORD) lParam: // thread identifier

The WM_ACTIVATEAPP message is sent when a window belonging to a different application than the active window is about to be activated. The message is sent to the application whose window is being activated and to the application whose window is being deactivated.

Parameters

fActive		Value of wParam. Specifies whether the window is

being activated or deactivated. This parameter is TRUE if the window is being activated; it is FALSE if the window is being deactivated.

dwThreadID		Value of lParam. Specifies a thread identifier. If

the fActive parameter is TRUE, dwThreadID is the identifier of the thread that owns the window being deactivated. If fActive is FALSE, dwThreadID is the identifier of the thread that owns the window being activated.

WM_ASKCBFORMATNAME

cchName = (DWORD) wParam // size of buffer

lpszFormatName = (LPTSTR) lParam // buffer to receive format name

The WM_ASKCBFORMATNAME message is sent to the clipboard owner by a clipboard viewer window to request the name of a CF_OWNERDISPLAY clipboard format.

Parameters

cchName		Value of wParam. Specifies the size, in characters,

of the buffer pointed to by the lpszFormatName parameter.

lpszFormatName	Value of lParam. Points to the buffer that is to

receive the clipboard format name.

WM_CANCELMODE

The WM_CANCELMODE message is sent to the focus window when a dialog box or message box is displayed; this enables the focus window to cancel modes, such as mouse capture.

WM_CHANGECBCHAIN

hwndRemove = (HWND) wParam; // handle of window being removed

hwndNext = (HWND) lParam; // handle of next window in chain

The WM_CHANGECBCHAIN message is sent to the first window in the clipboard viewer chain when a window is being removed from the chain.

Parameters

hwndRemove		Value of wParam. Identifies the window being

removed from the clipboard viewer chain.

hwndNext		Value of lParam. Identifies the next window in the

chain following the window being removed. This parameter is NULL if the window being removed is the last window in the chain.

WM_CHAR

chCharCode = (TCHAR) wParam; // character code

lKeyData = lParam; // key data

The WM_CHAR message is posted to the window with the keyboard focus when a WM_KEYDOWN message is translated. WM_CHAR contains the character code of the key that was pressed.

Parameters

chCharCode		Value of wParam. Specifies the character code of

the key.

lKeyData		Value of lParam. Specifies the repeat count, scan

code, extended-key flag, context code, previous key-state flag, and transition-state flag, as shown in the following table:

0-15	Specifies the repeat count. The value is the

number of times the keystroke is repeated as a result of the user holding down the key.

16-23	Specifies the scan code. The value depends on

the original equipment manufacturer (OEM).

24	Specifies whether the key is an extended key,

such as the right-hand ALT and CTRL keys that appear on an enhanced 101- or 102-key keyboard. The value is 1 if it is an extended key; otherwise, it is 0.

25-28	Reserved; do not use.

29	Specifies the context code. The value is 1 if

the ALT key is held down while the key is pressed; otherwise, the value is 0.

30	Specifies the previous key state. The value

is 1 if the key is down before the message is sent, or it is 0 if the key is up.

31	Specifies the transition state. The value is

1 if the key is being released, or it is 0 if the key is being pressed.

WM_CHILDACTIVATE

The WM_CHILDACTIVATE message is sent to a multiple document interface (MDI) child window when the user clicks the window's title bar or when the window is activated, moved, or sized.

WM_CLEAR

wParam = 0; // not used; must be zero

lParam = 0; // not used; must be zero

An application sends a WM_CLEAR message to an edit control or combo box to delete (clear) the current selection, if any, from the edit control.

WM_CLOSE

The WM_CLOSE message is sent as a signal that a window or an application should terminate.

M_COMMAND

wNotifyCode = HIWORD(wParam); // notification code

wID = LOWORD(wParam); // item, control, or accelerator id

hwndCtl = (HWND) lParam; // handle of control

The WM_COMMAND message is sent when the user selects a command item from a menu, when a control sends a notification message to its parent window, or when an accelerator keystroke is translated.

Parameters

wNotifyCode		Value of the high-order word of wParam. Specifies

the notification code if the message is from a control. If the message is from an accelerator, this parameter is 1. If the message is from a menu, this parameter is 0.

wID			Value of the low-order word of wParam. Specifies

the identifier of the menu item, control, or accelerator.

hwndCtl		Value of lParam. Identifies the control sending the

message if the message is from a control. Otherwise, this parameter is NULL.

WM_COPY

wParam = 0; // not used; must be zero

lParam = 0; // not used; must be zero

An application sends the WM_COPY message to an edit control or combo box to copy the current selection to the clipboard in CF_TEXT format.

WM_CUT

wParam = 0; // not used; must be zero

lParam = 0; // not used; must be zero

An application sends a WM_CUT message to an edit control or combo box to delete (cut) the current selection, if any, in the edit control and copy the deleted text to the clipboard in CF_TEXT format.

WM_DDE_ACK

// Response to WM_DDE_INITIATE

wParam = (WPARAM) hwnd; // handle of posting application

lParam = MAKELPARAM(aApp, aTopic) // application and topic atoms

// Response to WM_DDE_EXECUTE

wParam = (WPARAM) hwnd; // handle of posting application

lParam = (LPARAM) lPackedVal; // packed status flags and data handle

// Response to all other messages

wParam = (WPARAM) hwnd; // handle of posting application

lParam = (LPARAM) lPackedVal; // packed status flags and item

The WM_DDE_ACK message notifies a DDE application of the receipt and processing of a WM_DDE_POKE, WM_DDE_EXECUTE, WM_DDE_DATA, WM_DDE_ADVISE, WM_DDE_UNADVISE, or WM_DDE_INITIATE message, and in some cases, of a WM_DDE_REQUEST message.

Parameters

When responding to WM_DDE_INITIATE:

hwnd			Value of wParam. Identifies the server window

posting the message.

aApp			Value of the low-order word of lParam. Contains an

atom that identifies the replying application.

aTopic		Value of the high-order word of lParam. Contains an

atom that identifies the topic for which a conversation is being established.

When responding to WM_DDE_EXECUTE:

hwnd			Value of wParam. Identifies the server window

posting the message.

lPackedVal		Value of lParam. The component parameters that are

packed into lPackedVal are extracted by calling the UnpackDDElParam function. The low-order word is wStatus. The high-order word is the same hCommands that was received in the WM_DDE_EXECUTE message.

wStatus	Specifies a DDEACK structure containing

a series of flags that indicate the status of the response.

hCommands	Identifies a global memory object that

contains the command string.

When replying to all other messages:

hwnd			Value of wParam. Identifies the client or server

window posting the message.

lPackedVal		Value of lParam. The component parameters that are

packed into lPackedVal are extracted by calling the UnpackDDElParam function. The low-order word is wStatus. The high-order word is aItem.

aItem		Contains a global atom that identifies

the name of the data item for which the response is sent.

WM_DDE_ADVISE

wParam = (WPARAM) hwnd; // handle of posting application

lParam = (LPARAM) lPackedVal; // packed DDEADVISE and item atom

A DDE client application posts the WM_DDE_ADVISE message to a DDE server application to request the server to supply an update for a data item whenever the item changes.

Parameters

hwnd			Value of wParam. Identifies the client window

posting the message.

lPackedVal		Value of lParam. The component parameters packed

into lPackedVal are extracted by calling the UnpackDDElParam function. The low-order word is hOptions. The high-order word is aItem.

aItem		Contains an atom that identifies the

requested data item.

WM_DDE_DATA

wParam = (WPARAM) hwnd; // handle of posting application

lParam = (LPARAM) lPackedVal; // packed DDEDATA and item atom

A DDE server application posts a WM_DDE_DATA message to a DDE client application to pass a data item to the client or to notify the client of the availability of a data item.

Parameters

hwnd			Value of wParam. Identifies the server window

posting the message.

lPackedVal		Value of lParam. The component parameters that are

packed into lPackedVal are extracted by calling the UnpackDDElParam function. The low-order word is hData or NULL. The high-order word is aItem.

aItem		Contains an atom that identifies the

data item for which the data or notification is sent.

WM_DDE_EXECUTE

wParam = (WPARAM) hwnd; // handle of posting application

lParam = (LPARAM) hCommands; // handle to global object

A DDE client application posts a WM_DDE_EXECUTE message to a DDE server application to send a string to the server to be processed as a series of commands. The server application is expected to post a WM_DDE_ACK message in response.

Parameters

hwnd			Value of wParam. Identifies the client window

posting the message.

hCommands		Value of lParam. Contains a global memory object

that references an ANSI or Unicode command string, depending on the types of windows involved in the conversation.

WM_DDE_INITIATE

wParam = (WPARAM) hwnd; // handle of posting appl.

lParam = MAKELPARAM(aApp, aTopic); // appl. and topic atoms

A DDE client application sends a WM_DDE_INITIATE message to initiate a conversation with a server application responding to the specified application and topic names. Upon receiving this message, all server applications with names that match the specified application and that support the specified topic are expected to acknowledge it. (For more information, see the WM_DDE_ACK message.)

Parameters

hwnd			Value of wParam. Identifies the client window

sending the message.

aApp			Value of the low-order word of lParam. Contains an

atom that identifies the application with which a conversation is requested. The application name cannot contain slashes (/) or backslashes (\). These characters are reserved for network implementations. If aApp is NULL, a conversation with all applications is requested.

aTopic		Value of the high-order word of lParam. Contains an

atom that identifies the topic for which a conversation is requested. If the topic is NULL, conversations for all available topics are requested.

WM_DDE_POKE

wParam = (WPARAM) hwnd; // handle of posting application

lParam = (LPARAM) lPackedVal; // packed DDEPOKE and item atom

A DDE client application posts a WM_DDE_POKE message to a DDE server application. A client uses this message to request the server to accept an unsolicited data item. The server is expected to reply with a WM_DDE_ACK message indicating whether it accepted the data item.

Parameters

hwnd			Value of wParam. Identifies the client window

posting the message.

lPackedVal		Value of lParam. The component parameters that are

packed into lPackedVal are extracted by calling the UnpackDDElParam function. The low-order word is hData. The high-order word is aItem.

aItem		Contains a global atom that identifies

the data item for which the data or notification is being sent.

WM_DDE_REQUEST

wParam = (WPARAM) hwnd; // handle of posting application

lParam = (LPARAM) lParam; // holds cfFormat and aItem

A DDE client application posts a WM_DDE_REQUEST message to a DDE server application to request the value of a data item.

Parameters

hwnd			Value of wParam. Identifies the client window

sending the message.

lParam		Holds the cfFormat and aItem parameters.

cfFormat	This is the LOWORD of lParam. Specifies

a standard or registered clipboard format.

aItem		This is the HIWORD of lParam. Contains

an atom that identifies the data item requested from the server.

WM_DDE_TERMINATE

wParam = (WPARAM) hwnd; // handle of posting window

lParam = 0; // not used, must be zero

A DDE application (client or server) posts a WM_DDE_TERMINATE message to terminate a conversation.

Parameters

hwnd			Value of wParam. Identifies the client or server

window posting the message.

WM_DDE_UNADVISE

wParam = (WPARAM) hwnd; // handle of posting application

lParam = (LPARAM) lParam; // format and item atom

A DDE client application posts a WM_DDE_UNADVISE message to inform a DDE server application that the specified item or a particular clipboard format for the item should no longer be updated. This terminates the warm or hot data link for the specified item.

Parameters

hwnd			Value of wParam. Identifies the client window

sending the message.

lParam		Holds the cfFormat and aItem parameters.

cfFormat	This is the LOWORD of lParam. Specifies

the clipboard format of the item for which the update request is being retracted. If cfFormat is NULL, all active WM_DDE_ADVISE conversations for the item are to be terminated.

aItem		This is the HIWORD of lParam. Contains

a global atom that identifies the item for which the update request is being retracted. When aItem is NULL, all active WM_DDE_ADVISE links associated with the conversation are to be terminated.

WM_DESTROY

The WM_DESTROY message is sent when a window is being destroyed. It is sent to the window procedure of the window being destroyed after the window is removed from the screen.

This message is sent first to the window being destroyed and then to the child windows (if any) as they are destroyed. During the processing of the message, it can be assumed that all child windows still exist.

WM_DESTROYCLIPBOARD

The WM_DESTROYCLIPBOARD message is sent to the clipboard owner when a call to the EmptyClipboard function empties the clipboard.

WM_DRAWCLIPBOARD

The WM_DRAWCLIPBOARD message is sent to the first window in the clipboard viewer chain when the content of the clipboard changes. This enables a clipboard viewer window to display the new content of the clipboard.

WM_DROPFILES

hDrop = (HANDLE) wParam; // handle of internal drop structure

The WM_DROPFILES message is sent when the user releases the left mouse button while the cursor is in the window of an application that has registered itself as a recipient of dropped files.

Parameters

hDrop			Value of wParam. Identifies an internal structure

describing the dropped files.

WM_ENABLE

fEnabled = (BOOL) wParam; // enabled/disabled flag

The WM_ENABLE message is sent when an application changes the enabled state of a window. It is sent to the window whose enabled state is changing. This message is sent before the EnableWindow function returns, but after the enabled state (WS_DISABLED style bit) of the window has changed.

Parameters

fEnabled		Value of wParam. Specifies whether the window has

been enabled or disabled. This parameter is TRUE if the window has been enabled or FALSE if the window has been disabled.

WM_ENDSESSION

fEndSession = (BOOL) wParam; // end-session flag

The WM_ENDSESSION message is sent to an application after Windows processes the results of the WM_QUERYENDSESSION message. The WM_ENDSESSION message informs the application whether the Windows session is ending.

Parameters

fEndSession		Value of wParam. Specifies whether the session is

being ended. If the session is being ended, this parameter is TRUE; otherwise, it is FALSE.

WM_ENTERIDLE

fuSource = wParam; // idle-source flag

hwnd = (HWND) lParam; // handle of dialog box or owner window

The WM_ENTERIDLE message is sent to the owner window of a modal dialog box or menu that is entering an idle state. A modal dialog box or menu enters an idle state when no messages are waiting in its queue after it has processed one or more previous messages.

Parameters

fuSource		Value of wParam. Specifies whether the message is

the result of a dialog box or a menu being displayed. This parameter can be one of the following values:

MSGF_DIALOGBOX	The system is idle because a

dialog box is displayed.

MSGF_MENU		The system is idle because a menu

is displayed.

hwnd			Value of lParam. Contains the handle of the dialog

box (if fuSource is MSGF_DIALOGBOX) or of the window containing the displayed menu (if fuSource is MSGF_MENU).

WM_ERASEBKGND

hdc = (HDC) wParam; // handle of device context

An application sends the WM_ERASEBKGND message when the window background must be erased (for example, when a window is resized). The message is sent to prepare an invalidated portion of a window for painting.

Parameters

hdc			Value of wParam. Identifies the device context

(DC).

WM_FONTCHANGE

wParam = 0; // not used, must be zero

lParam = 0; // not used, must be zero

An application sends the WM_FONTCHANGE message to all top-level windows in the system after changing the pool of font resources.

WM_GETDLGCODE

The WM_GETDLGCODE message is sent to the dialog box procedure associated with a control. Normally, Windows handles all arrow-key and TAB-key input to the control. By responding to the WM_GETDLGCODE message, an application can take control of a particular type of input and process the input itself.

Return Value

The return value is one or more of the following values, indicating which type of input the application processes.

DLGC_BUTTON			Button.

DLGC_DEFPUSHBUTTON	Default push button.

DLGC_HASSETSEL		EM_SETSEL messages.

DLGC_RADIOBUTTON		Radio button.

DLGC_STATIC			Static control.

DLGC_UNDEFPUSHBUTTON	Nondefault push button.

DLGC_WANTALLKEYS		All keyboard input.

DLGC_WANTARROWS		Direction keys.

DLGC_WANTCHARS		WM_CHAR messages.

DLGC_WANTMESSAGE		All keyboard input (the application passes

this message on to a control).

DLGC_WANTTAB		TAB key.

WM_GETFONT

wParam = 0; // not used, must be zero

lParam = 0; // not used, must be zero

An application sends a WM_GETFONT message to a control to retrieve the font with which the control is currently drawing its text.

Return Value

The return value is the handle of the font used by the control, or NULL if the control is using the system font.

WM_GETTEXT

wParam = (WPARAM) cchTextMax; // number of characters to copy

lParam = (LPARAM) lpszText; // address of buffer for text

An application sends a WM_GETTEXT message to copy the text that corresponds to a window into a buffer provided by the caller.

Parameters

cchTextMax		Value of wParam. Specifies the maximum number of

characters to be copied, including the terminating null character.

lpszText		Value of lParam. Points to the buffer that is to

receive the text.

Return Value

The return value is the number of characters copied.

WM_GETTEXTLENGTH

wParam = 0; // not used; must be zero

lParam = 0; // not used; must be zero

An application sends a WM_GETTEXTLENGTH message to determine the length, in characters, of the text associated with a window. The length does not include the terminating null character.

Return Value

The return value is the length, in characters, of the text.

WM_HSCROLL

nScrollCode = (int) LOWORD(wParam); // scroll bar value

nPos = (short int) HIWORD(wParam); // scroll box position

hwndScrollBar = (HWND) lParam; // handle of scroll bar

The WM_HSCROLL message is sent to a window when a scroll event occurs in the window's standard horizontal scroll bar. This message is also sent to the owner of a horizontal scroll bar control when a scroll event occurs in the control.

Parameters

nScrollCode		Value of the low-order word of wParam. Specifies a

scroll bar value that indicates the user's scrolling request. This parameter can be one of the following values:

SB_BOTTOM		Scrolls to the lower right.

SB_ENDSCROLL	Ends scroll.

SB_LINELEFT		Scrolls left by one unit.

SB_LINERIGHT	Scrolls right by one unit.

SB_PAGELEFT		Scrolls left by the width of the

window.

SB_PAGERIGHT	Scrols right by the width of the

window.

SB_THUMBPOSITION	Scrolls to the absolute position.

The current position is specified by the nPos parameter.

SB_THUMBTRACK	Drags scroll box to the specified

position. The current position is specified by the nPos parameter.

SB_TOP		Scrolls to the upper left.

nPos			Value of the high-order word of wParam. Specifies

the current position of the scroll box if the nScrollCode parameter is SB_THUMBPOSITION or SB_THUMBTRACK; otherwise, nPos is not used.

hwndScrollBar	Value of lParam. Identifies the control if

WM_HSCROLL is sent by a scroll bar control. If WM_HSCROLL is sent by a window's standard scroll bar, hwndScrollBar is not used.

WM_HSCROLLCLIPBOARD

hwndViewer = (HWND) wParam; // handle of clipboard viewer

nScrollCode = (int) LOWORD(lParam); // scroll bar code

nPos = (int) HIWORD(lParam); // scroll box position

The WM_HSCROLLCLIPBOARD message is sent to the clipboard owner by a clipboard viewer window. This occurs when the clipboard contains data in the CF_OWNERDISPLAY format and an event occurs in the clipboard viewer's horizontal scroll bar. The owner should scroll the clipboard image and update the scroll bar values.

Parameters

hwndViewer		Value of wParam. Identifies the clipboard viewer

window.

nScrollCode		Value of the low-order word of lParam. Specifies a

scroll bar event. This parameter can be one of the following values:

SB_BOTTOM		Scroll to lower right.

SB_ENDSCROLL	End scroll.

SB_LINEDOWN		Scroll one line down.

SB_LINEUP		Scroll one line up.

SB_PAGEDOWN		Scroll one page down.

SB_PAGEUP		Scroll one page up.

SB_THUMBPOSITION	Scroll to absolute position. The

current position is specified by the nPos parameter.

SB_TOP		Scroll to upper left.

nPos			Value of the high-order word of lParam. Specifies

the current position of the scroll box if the nScrollCode parameter is SB_THUMBPOSITION; otherwise, the nPos parameter is not used.

WM_INITDIALOG

hwndFocus = (HWND) wParam; // handle of control to receive focus

lInitParam = lParam; // initialization parameter

The WM_INITDIALOG message is sent to the dialog box procedure immediately before a dialog box is displayed. Dialog box procedures typically use this message to initialize controls and carry out any other initialization tasks that affect the appearance of the dialog box.

Parameters

hwndFocus		Value of wParam. Identifies the control to receive

the default keyboard focus. Windows assigns the default keyboard focus only if the dialog box procedure returns TRUE.

lInitParam		Value of lParam. Specifies additional

initialization data. This data is passed to Windows as the lParamInit parameter in a call to the CreateDialogIndirectParam, CreateDialogParam, DialogBoxIndirectParam, or DialogBoxParam function used to create the dialog box. This parameter is zero if any other dialog box creation function is used.

Return Value

The dialog box procedure should return TRUE to direct Windows to set the keyboard focus to the control given by hwndFocus. Otherwise, it should return FALSE to prevent Windows from setting the default keyboard focus.

WM_INITMENU

hmenuInit = (HMENU) wParam; // handle of menu to initialize

The WM_INITMENU message is sent when a menu is about to become active. It occurs when the user clicks an item on the menu bar or presses a menu key. This allows the application to modify the menu before it is displayed.

Parameters

hmenuInit		Value of wParam. Identifies the menu to be

initialized.

WM_INITMENUPOPUP

hmenuPopup = (HMENU) wParam; // handle of pop-up menu

uPos = (UINT) LOWORD(lParam); // pop-up item position

fSystemMenu = (BOOL) HIWORD(lParam); // System menu flag

The WM_INITMENUPOPUP message is sent when a pop-up menu is about to become active. This allows an application to modify the pop-up menu before it is displayed, without changing the entire menu.

Parameters

hmenuPopup		Value of wParam. Identifies the pop-up menu.

uPos			Value of the low-order word of lParam. Specifies

the zero-based relative position of the menu item that invokes the pop-up menu.

fSystemMenu		Value of the high-order word of lParam. Specifies

whether the pop-up menu is the System menu. If the pop-up menu is the System menu (also known as Control menu), this parameter is TRUE; otherwise, it is FALSE.

WM_KEYDOWN

nVirtKey = (int) wParam; // virtual-key code

lKeyData = lParam; // key data

The WM_KEYDOWN message is posted to the window with the keyboard focus when a nonsystem key is pressed. A nonsystem key is a key that is pressed when the ALT key is not pressed.

Parameters

nVirtKey		Value of wParam. Specifies the virtual-key code of

the nonsystem key.

lKeyData		Value of lParam. Specifies the repeat count, scan

code, extended-key flag, context code, previous key-state flag, and transition-state flag, as shown in the following table:

0-15	Specifies the repeat count. The value is the

number of times the keystroke is repeated as a result of the user holding down the key.

16-23	Specifies the scan code. The value depends on

the original equipment manufacturer (OEM).

24	Specifies whether the key is an extended key,

such as the right-hand ALT and CTRL keys that appear on an enhanced 101- or 102-key keyboard. The value is 1 if it is an extended key; otherwise, it is 0.

25-28	Reserved; do not use.

29	Specifies the context code. The value is

always 0 for a WM_KEYDOWN message.

30	Specifies the previous key state. The value

is 1 if the key is down before the message is sent, or it is 0 if the key is up.

31	Specifies the transition state. The value is

always 0 for a WM_KEYDOWN message.

WM_KEYUP

nVirtKey = (int) wParam; // virtual-key code

lKeyData = lParam; // key data

The WM_KEYUP message is posted to the window with the keyboard focus when a nonsystem key is released. A nonsystem key is a key that is pressed when the ALT key is not pressed, or a keyboard key that is pressed when a window has the keyboard focus.

Parameters

nVirtKey		Value of wParam. Specifies the virtual-key code of

the nonsystem key.

lKeyData		Value of lParam. Specifies the repeat count, scan

code, extended-key flag, context code, previous key-state flag, and transition-state flag, as shown in the following table:

0-15	Specifies the repeat count. The value is the

number of times the keystroke is repeated as a result of the user holding down the key. The repeat count is always one for a WM_KEYUP message.

16-23	Specifies the scan code. The value depends on

the original equipment manufacturer (OEM).

24	Specifies whether the key is an extended key,

such as the right-hand ALT and CTRL keys that appear on an enhanced 101- or 102-key keyboard. The value is 1 if it is an extended key; otherwise, it is 0.

25-28	Reserved; do not use.

29	Specifies the context code. The value is

always 0 for a WM_KEYUP message.

30	Specifies the previous key state. The value

is always 1 for a WM_KEYUP message.

31	Specifies the transition state. The value is

always 1 for a WM_KEYUP message.

WM_KILLFOCUS

hwndGetFocus = (HWND) wParam; // handle of window receiving focus

The WM_KILLFOCUS message is sent to a window immediately before it loses the keyboard focus.

Parameters

hwndGetFocus	Value of wParam. Identifies the window that

receives the keyboard focus (may be NULL).

WM_LBUTTONDBLCLK

fwKeys = wParam; // key flags

xPos = LOWORD(lParam); // horizontal position of cursor

yPos = HIWORD(lParam); // vertical position of cursor

The WM_LBUTTONDBLCLK message is posted when the user double-clicks the left mouse button while the cursor is in the client area of a window. If the mouse is not captured, the message is posted to the window beneath the cursor. Otherwise, the message is posted to the window that has captured the mouse.

Parameters

fwKeys		Value of wParam. Indicates whether various virtual

keys are down. This parameter can be any combination of the following values:

MK_CONTROL	Set if the CTRL key is down.

MK_LBUTTON	Set if the left mouse button is down.

MK_MBUTTON	Set if the middle mouse button is down.

MK_RBUTTON	Set if the right mouse button is down.

MK_SHIFT	Set if the SHIFT key is down.

xPos			Value of the low-order word of lParam. Specifies

the x-coordinate of the cursor. The coordinate is relative to the upper left corner of the client area.

yPos			Value of the high-order word of lParam. Specifies

the y-coordinate of the cursor. The coordinate is relative to the upper left corner of the client area.

WM_LBUTTONDOWN

fwKeys = wParam; // key flags

xPos = LOWORD(lParam); // horizontal position of cursor

yPos = HIWORD(lParam); // vertical position of cursor

The WM_LBUTTONDOWN message is posted when the user presses the left mouse button while the cursor is in the client area of a window. If the mouse is not captured, the message is posted to the window beneath the cursor. Otherwise, the message is posted to the window that has captured the mouse.

Parameters

fwKeys		Value of wParam. Indicates whether various virtual

keys are down. This parameter can be any combination of the following values:

MK_CONTROL	Set if the CTRL key is down.

MK_MBUTTON	Set if the middle mouse button is down.

MK_RBUTTON	Set if the right mouse button is down.

MK_SHIFT	Set if the SHIFT key is down.

xPos			Value of the low-order word of lParam. Specifies

the x-coordinate of the cursor. The coordinate is relative to the upper left corner of the client area.

yPos			Value of the high-order word of lParam. Specifies

the y-coordinate of the cursor. The coordinate is relative to the upper left corner of the client area.

WM_LBUTTONUP

fwKeys = wParam; // key flags

xPos = LOWORD(lParam); // horizontal position of cursor

yPos = HIWORD(lParam); // vertical position of cursor

The WM_LBUTTONUP message is posted when the user releases the left mouse button while the cursor is in the client area of a window. If the mouse is not captured, the message is posted to the window beneath the cursor. Otherwise, the message is posted to the window that has captured the mouse.

Parameters

fwKeys		Value of wParam. Indicates whether various virtual

keys are down. This parameter can be any combination of the following values:

MK_CONTROL	Set if the CTRL key is down.

MK_MBUTTON	Set if the middle mouse button is down.

MK_RBUTTON	Set if the right mouse button is down.

MK_SHIFT	Set if the SHIFT key is down.

xPos			Value of the low-order word of lParam. Specifies

the x-coordinate of the cursor. The coordinate is relative to the upper left corner of the client area.

yPos			Value of the high-order word of lParam. Specifies

the y-coordinate of the cursor. The coordinate is relative to the upper left corner of the client area.

WM_MBUTTONDBLCLK

fwKeys = wParam; // key flags

xPos = LOWORD(lParam); // horizontal position of cursor

yPos = HIWORD(lParam); // vertical position of cursor

The WM_MBUTTONDBLCLK message is posted when the user double-clicks the middle mouse button while the cursor is in the client area of a window. If the mouse is not captured, the message is posted to the window beneath the cursor. Otherwise, the message is posted to the window that has captured the mouse.

Parameters

fwKeys		Value of wParam. Indicates whether various virtual

keys are down. This parameter can be any combination of the following values:

MK_CONTROL	Set if the CTRL key is down.

MK_LBUTTON	Set if the left mouse button is down.

MK_MBUTTON	Set if the middle mouse button is down.

MK_RBUTTON	Set if the right mouse button is down.

MK_SHIFT	Set if the SHIFT key is down.

xPos			Value of the low-order word of lParam. Specifies

the x-coordinate of the cursor. The coordinate is relative to the upper left corner of the client area.

yPos			Value of the high-order word of lParam. Specifies

the y-coordinate of the cursor. The coordinate is relative to the upper left corner of the client area.

WM_MBUTTONDOWN

fwKeys = wParam; // key flags

xPos = LOWORD(lParam); // horizontal position of cursor

yPos = HIWORD(lParam); // vertical position of cursor

The WM_MBUTTONDOWN message is posted when the user presses the middle mouse button while the cursor is in the client area of a window. If the mouse is not captured, the message is posted to the window beneath the cursor. Otherwise, the message is posted to the window that has captured the mouse.

Parameters

fwKeys		Value of wParam. Indicates whether various virtual

keys are down. This parameter can be any combination of the following values:

MK_CONTROL	Set if the CTRL key is down.

MK_LBUTTON	Set if the left mouse button is down.

MK_RBUTTON	Set if the right mouse button is down.

MK_SHIFT	Set if the SHIFT key is down.

xPos			Value of the low-order word of lParam. Specifies

the x-coordinate of the cursor. The coordinate is relative to the upper left corner of the client area.

yPos			Value of the high-order word of lParam. Specifies

the y-coordinate of the cursor. The coordinate is relative to the upper left corner of the client area.

WM_MBUTTONUP

fwKeys = wParam; // key flags

xPos = LOWORD(lParam); // horizontal position of cursor

yPos = HIWORD(lParam); // vertical position of cursor

The WM_MBUTTONUP message is posted when the user releases the middle mouse button while the cursor is in the client area of a window. If the mouse is not captured, the message is posted to the window beneath the cursor. Otherwise, the message is posted to the window that has captured the mouse.

Parameters

fwKeys		Value of wParam. Indicates whether various virtual

keys are down. This parameter can be any combination of the following values:

MK_CONTROL	Set if the CTRL key is down.

MK_LBUTTON	Set if the left mouse button is down.

MK_RBUTTON	Set if the right mouse button is down.

MK_SHIFT	Set if the SHIFT key is down.

xPos			Value of the low-order word of lParam. Specifies

the x-coordinate of the cursor. The coordinate is relative to the upper left corner of the client area.

yPos			Value of the high-order word of lParam. Specifies

the y-coordinate of the cursor. The coordinate is relative to the upper left corner of the client area.

WM_MDIACTIVATE

// Message sent to MDI client

wParam = (WPARAM) (HWND) hwndChildAct; // child to activate

lParam = 0; // not used; must be zero

// Message received by MDI child

hwndChildDeact = (HWND) wParam; // child being deactivated

hwndChildAct = (HWND) lParam; // child being activated

An application sends the WM_MDIACTIVATE message to a multiple document interface (MDI) client window to instruct the client window to activate a different MDI child window. As the client window processes this message, it sends WM_MDIACTIVATE to the child window being deactivated and to the child window being activated.

Parameters

In messages sent to an MDI client window:

hwndChildAct	Value of wParam. Identifies the MDI child window to

be activated.

In messages received by an MDI child window:

hwndChildDeact	Value of wParam. Identifies the MDI child window

being deactivated.

hwndChildAct	Value of lParam. Identifies the MDI child window

being activated.

WM_MDICASCADE

wParam = (WPARAM) (UINT) fuCascade; // cascade flag

lParam = 0; // not used; must be zero

An application sends the WM_MDICASCADE message to a multiple document interface (MDI) client window to arrange all its child windows in a cascade format.

Parameters

fuCascade		Value of wParam. Specifies a cascade flag. The only

flag currently available, MDITILE_SKIPDISABLED, prevents disabled MDI child windows from being cascaded.

Return Value

If the message succeeds, the return value is TRUE. If the message fails, the return value is FALSE.

WM_MDIDESTROY

wParam = (WPARAM) (HWND) hwndChild; // handle of child to close

lParam = 0; // not used; must be zero

An application sends the WM_MDIDESTROY message to a multiple document interface (MDI) client window to close an MDI child window.

Parameters

hwndChild		Value of wParam. Identifies the MDI child window to

be closed.

WM_MDIGETACTIVE

wParam = 0; // not used; must be zero

lParam = (LPBOOL)lpfMaximized; // pointer to maximized state flag

An application sends the WM_MDIGETACTIVE message to a multiple document interface (MDI) client window to retrieve the handle of the active MDI child window.

Parameters

lpfMaximized	Value of lparam. This is an optional pointer to a

maximized state flag variable. If lpfMaximized is non-NULL, the BOOL it points to is set to indicate the maximized state of the MDI child window. TRUE indicates that the window is maximized, FALSE indicates that it is not. This is equivalent to the indication supplied by the high-order word of the return value of the WM_MDIGETACTIVE message under Windows version 3.x. If lpfMaximized is NULL, the parameter is ignored.

WM_MDIICONARRANGE

wParam = 0; // not used; must be zero

lParam = 0; // not used; must be zero

An application sends the WM_MDIICONARRANGE message to a multiple document interface (MDI) client window to arrange all minimized MDI child windows. It does not affect child windows that are not minimized.

WM_MDIMAXIMIZE

wParam = (WPARAM) (HWND) hwndMax; // handle of child to maximize

lParam = 0; // not used; must be zero

An application sends the WM_MDIMAXIMIZE message to a multiple document interface (MDI) client window to maximize an MDI child window. Windows resizes the child window to make its client area fill the client window. Windows places the child window's System menu icon in the rightmost position of the frame window's menu bar, and places the child window's restore icon in the leftmost position. Windows also appends the title bar text of the child window to that of the frame window.

Parameters

hwndMax		Value of wParam. Identifies the MDI child window to

be maximized.

WM_MDINEXT

wParam = (WPARAM) (HWND) hwndChild; // handle of child

lParam = (LPARAM) fNext; // next or previous child

An application sends the WM_MDINEXT message to a multiple document interface (MDI) client window to activate the next or previous child window.

Parameters

hwndChild		Value of wParam. Identifies the MDI child window.

Windows activates the child window that is immediately before or after the given child window, depending on the value of the fNext parameter. If the hwndChild parameter is NULL, Windows activates the child window that is immediately before or after the currently active child window.

fNext			Value of lParam. If this parameter is zero, Windows

activates the next MDI child window and places the child window identified by the hwndChild parameter behind all other child windows. If this parameter is nonzero, Windows activates the previous child window, placing it in front of the child window identified by hwndChild.

WM_MDIREFRESHMENU

wParam = 0; // not used; must be zero

lParam = 0; // not used; must be zero

An application sends the WM_MDIREFRESHMENU message to a multiple document interface (MDI) client window to refresh the Window menu of the MDI frame window.

WM_MDIRESTORE

wParam = (WPARAM) (HWND) hwndRes; // handle of child to restore

lParam = 0; // not used; must be zero

An application sends the WM_MDIRESTORE message to a multiple document interface (MDI) client window to restore an MDI child window from maximized or minimized size.

Parameters

hwndRes		Value of wParam. Identifies the MDI child window to

be restored.

WM_MDISETMENU

wParam = (WPARAM) (HMENU) hmenuFrame; // handle of frame menu

lParam = (LPARAM) (HMENU) hmenuWindow; // handle of Window menu

An application sends the WM_MDISETMENU message to a multiple document interface (MDI) client window to replace the entire menu of an MDI frame window, to replace the Window menu of the frame window, or both.

Parameters

hmenuFrame		Value of wParam. Identifies the new frame window

menu. If this parameter is NULL, the frame window menu is not changed.

hmenuWindow		Value of lParam. Identifies the new Window menu. If

this parameter is NULL, the Window menu is not changed.

Return Value

If the message succeeds, the return value is the handle of the old frame window menu. If the message fails, the return value is zero.

WM_MDITILE

wParam = (WPARAM) (UINT) fuTile; // tiling flag

lParam = 0; // not used; must be zero

An application sends the WM_MDITILE message to a multiple document interface (MDI) client window to arrange all of its MDI child windows in a tile format.

Parameters

fuTile		Specifies a tiling flag. This parameter can be one

of the following values:

MDITILE_HORIZONTAL	Tiles MDI child windows so

that they are wide rather than tall.

MDITILE_SKIPDISABLED	Prevents disabled MDI child

windows from being tiled.

MDITILE_VERTICAL		Tiles MDI child windows so

that they are tall rather than wide.

Return Value

If the message succeeds, the return value is TRUE. If the message fails, the return value is FALSE.

WM_MENUCHAR

chUser = (char) LOWORD(wParam); // ASCII character

fuFlag = (UINT) HIWORD(wParam); // menu flag

hmenu = (HMENU) lParam; // handle of menu

The WM_MENUCHAR message is sent when a menu is active and the user presses a key that does not correspond to any mnemonic or accelerator key. This message is sent to the window that owns the menu.

Parameters

chUser		Value of the low-order word of wParam. Specifies

the ASCII character that corresponds to the key the user pressed.

fuFlag		Value of the high-order word of wParam. Specifies

the type of the active menu. This parameter can be one of the following values:

MF_POPUP	Pop-up menu

MF_SYSMENU	System menu

hmenu			Value of lParam. Identifies the active menu.

Return Value

An application that processes this message should return one of the following values in the high-order word of the return value:

0	Informs Windows that it should discard the character the user

pressed and create a short beep on the system speaker.

1	Informs Windows that it should close the active menu.

2	Informs Windows that the low-order word of the return value

specifies the zero-based relative position of a menu item. This item is selected by Windows.

WM_MENUSELECT

uItem = (UINT) LOWORD(wParam); // menu item or pop-up menu index

fuFlags = (UINT) HIWORD(wParam); // menu flags

hmenu = (HMENU) lParam; // handle of menu clicked

The WM_MENUSELECT message is sent to a menu's owner window when the user selects a menu item.

Parameters

uItem			Value of the low-order word of wParam. If the

selected item is a command item, this parameter contains the identifier of the menu item. If the selected item invokes a pop-up menu, this parameter contains the menu index of the pop-up menu in the main menu, and the hMenu parameter then contains the handle of the main (clicked) menu; use the GetSubMenu function to get the menu handle of the pop-up menu.

fuFlags		Value of the high-order word of wParam. Specifies

one or more menu flags. This parameter can be a combination of the following values:

MF_CHECKED		Item is checked.

MF_DISABLED		Item is disabled.

MF_GRAYED		Item is grayed.

MF_HILITE		Item is highlighted.

MF_MOUSESELECT	Item is selected with the mouse.

MF_POPUP		Item invokes a pop-up menu.

MF_SYSMENU		Item is contained in the System

menu (also known as Control menu). The hmenu parameter identifies the System menu associated with the message.

hmenu			Value of lParam. Identifies the menu that was

clicked.

WM_MOUSEACTIVATE

hwndTopLevel = (HWND) wParam; // handle of top-level parent

nHittest = (INT) LOWORD(lParam); // hit-test value

uMsg = (UINT) HIWORD(lParam); // mouse message

The WM_MOUSEACTIVATE message is sent when the cursor is in an inactive window and the user presses a mouse button. The parent window receives this message only if the child window passes it to the DefWindowProc function.

Parameters

hwndTopLevel	Value of wParam. Identifies the top-level parent

window of the window being activated.

nHittest		Value of the low-order word of lParam. Specifies

the hit-test value returned by the DefWindowProc function as a result of processing the WM_NCHITTEST message. For a list of hit-test values, see WM_NCHITTEST.

uMsg			Value of the high-order word of lParam. Specifies

the identifier of the mouse message generated when the user pressed a mouse button. The mouse message is either discarded or posted to the window, depending on the return value.

Return Value

The return value specifies whether the window should be activated and whether the identifier of the mouse message should be discarded. It must be one of the following values:

MA_ACTIVATE			Activates the window, and does not discard

the mouse message.

MA_ACTIVATEANDEAT		Activates the window, and discards the mouse

message.

MA_NOACTIVATE		Does not activate the window, and does not

discard the mouse message.

MA_NOACTIVATEANDEAT	Does not activate the window, but discards

the mouse message.

WM_MOUSEMOVE

fwKeys = wParam; // key flags

xPos = LOWORD(lParam); // horizontal position of cursor

yPos = HIWORD(lParam); // vertical position of cursor

The WM_MOUSEMOVE message is posted to a window when the cursor moves. If the mouse is not captured, the message is posted to the window that contains the cursor. Otherwise, the message is posted to the window that has captured the mouse.

Parameters

fwKeys		Value of wParam. Indicates whether various virtual

keys are down. This parameter can be any combination of the following values:

MK_CONTROL	Set if the CTRL key is down.

MK_LBUTTON	Set if the left mouse button is down.

MK_MBUTTON	Set if the middle mouse button is down.

MK_RBUTTON	Set if the right mouse button is down.

MK_SHIFT	Set if the SHIFT key is down.

xPos			Value of the low-order word of lParam. Specifies

the x-coordinate of the cursor. The coordinate is relative to the upper left corner of the client area.

yPos			Value of the high-order word of lParam. Specifies

the y-coordinate of the cursor. The coordinate is relative to the upper left corner of the client area.

WM_MOVE

xPos = (int) LOWORD(lParam); // horizontal position

yPos = (int) HIWORD(lParam); // vertical position

The WM_MOVE message is sent after a window has been moved.

Parameters

xPos			Value of the low-order word of lParam. Specifies

the x-coordinate of the upper left corner of the client area of the window.

yPos			Value of the high-order word of lParam. Specifies

the y-coordinate of the upper left corner of the client area of the window.

WM_NCACTIVATE

fActive = (BOOL) wParam;		// new state of title bar or icon

The WM_NCACTIVATE message is sent to a window when its nonclient area needs to be changed to indicate an active or inactive state.

Parameters

fActive		Value of wParam. Specifies when a title bar or icon

needs to be changed to indicate an active or inactive state. If an active title bar or icon is to be drawn, the fActive parameter is TRUE. It is FALSE for an inactive title bar or icon.

Return Value

When the fActive parameter is FALSE, an application should return TRUE to indicate that Windows should proceed with the default processing, or it should return FALSE to prevent the title bar or icon from being deactivated. When fActive is TRUE, the return value is ignored.

WM_NCHITTEST

xPos = LOWORD(lParam); // horizontal position of cursor

yPos = HIWORD(lParam); // vertical position of cursor

The WM_NCHITTEST message is sent to a window when the cursor moves, or when a mouse button is pressed or released. If the mouse is not captured, the message is sent to the window beneath the cursor. Otherwise, the message is posted to the window that has captured the mouse.

Parameters

xPos			Value of the low-order word of lParam. Specifies

the x-coordinate of the cursor. The coordinate is relative to the upper left corner of the screen.

yPos			Value of the high-order word of lParam. Specifies

the y-coordinate of the cursor. The coordinate is relative to the upper left corner of the screen.

Return Value

The return value of the DefWindowProc function is one of the following values, indicating the position of the cursor hot spot:

HTBORDER		In the border of a window that does not have a

sizing border

HTBOTTOM		In the lower horizontal border of a window

HTBOTTOMLEFT	In the lower left corner of a window border

HTBOTTOMRIGHT	In the lower right corner of a window border

HTCAPTION		In a title bar

HTCLIENT		In a client area

HTERROR		On the screen background or on a dividing line

between windows (same as HTNOWHERE, except that the DefWindowProc function produces a system beep to indicate an error)

HTGROWBOX		In a size box (same as HTSIZE)

HTHSCROLL		In a horizontal scroll bar

HTLEFT		In the left border of a window

HTMENU		In a menu

HTNOWHERE		On the screen background or on a dividing line

between windows

HTREDUCE		In a Minimize button

HTRIGHT		In the right border of a window

HTSIZE		In a size box (same as HTGROWBOX)

HTSYSMENU		In a System menu or in a Close button in a child

window

HTTOP			In the upper horizontal border of a window

HTTOPLEFT		In the upper left corner of a window border

HTTOPRIGHT		In the upper right corner of a window border

HTTRANSPARENT	In a window currently covered by another window

HTVSCROLL		In the vertical scroll bar

HTZOOM		In a Maximize button

WM_NCLBUTTONDBLCLK

nHittest = (INT) wParam; // hit-test value

pts = MAKEPOINTS(lParam); // position of cursor

The WM_NCLBUTTONDBLCLK message is posted when the user double-clicks the left mouse button while the cursor is within the nonclient area of a window. This message is posted to the window that contains the cursor. If a window has captured the mouse, this message is not posted.

Parameters

nHittest		Value of wParam. Specifies the hit-test value

returned by the DefWindowProc function as a result of processing the WM_NCHITTEST message. For a list of hit-test values, see WM_NCHITTEST.

pts			Value of lParam. Specifies a POINTS structure that

contains the x- and y-coordinates of the cursor. The coordinates are relative to the upper left corner of the screen.

WM_NCLBUTTONDOWN

nHittest = (INT) wParam; // hit-test value

pts = MAKEPOINTS(lParam); // position of cursor

The WM_NCLBUTTONDOWN message is posted when the user presses the left mouse button while the cursor is within the nonclient area of a window. This message is posted to the window that contains the cursor. If a window has captured the mouse, this message is not posted.

Parameters

nHittest		Value of wParam. Specifies the hit-test value

returned by the DefWindowProc function as a result of processing the WM_NCHITTEST message. For a list of hit-test values, see WM_NCHITTEST.

pts			Value of lParam. Specifies a POINTS structure that

contains the x- and y-coordinates of the cursor. The coordinates are relative to the upper left corner of the screen.

WM_NCLBUTTONUP

nHittest = (INT) wParam; // hit-test value

pts = MAKEPOINTS(lParam); // mouse-cursor coordinates

The WM_NCLBUTTONUP message is posted when the user releases the left mouse button while the cursor is within the nonclient area of a window. This message is posted to the window that contains the cursor. If a window has captured the mouse, this message is not posted.

Parameters

nHittest		Value of wParam. Specifies the hit-test value

returned by the DefWindowProc function as a result of processing the WM_NCHITTEST message. For a list of hit-test values, see WM_NCHITTEST.

pts			Value of lParam. Specifies a POINTS structure that

contains the x- and y-coordinates of the cursor. The coordinates are relative to the upper left corner of the screen.

WM_NCMBUTTONDBLCLK

nHittest = (INT) wParam; // hit-test value

pts = MAKEPOINTS(lParam); // position of cursor

The WM_NCMBUTTONDBLCLK message is posted when the user double-clicks the middle mouse button while the cursor is within the nonclient area of a window. This message is posted to the window that contains the cursor. If a window has captured the mouse, this message is not posted.

Parameters

nHittest		Value of wParam. Specifies the hit-test value

returned by the DefWindowProc function as a result of processing the WM_NCHITTEST message. For a list of hit-test values, see WM_NCHITTEST.

pts			Value of lParam. Specifies a POINTS structure that

contains the x- and y-coordinates of the cursor. The coordinates are relative to the upper left corner of the screen.

WM_NCMBUTTONDOWN

nHittest = (INT) wParam; // hit-test value

pts = MAKEPOINTS(lParam); // position of cursor

The WM_NCMBUTTONDOWN message is posted when the user presses the middle mouse button while the cursor is within the nonclient area of a window. This message is posted to the window that contains the cursor. If a window has captured the mouse, this message is not posted.

Parameters

nHittest		Value of wParam. Specifies the hit-test value

returned by the DefWindowProc function as a result of processing the WM_NCHITTEST message. For a list of hit-test values, see WM_NCHITTEST.

pts			Value of lParam. Specifies a POINTS structure that

contains the x- and y-coordinates of the cursor. The coordinates are relative to the upper left corner of the screen.

WM_NCMBUTTONUP

nHittest = (INT) wParam; // hit-test value

pts = MAKEPOINTS(lParam); // position of cursor

The WM_NCMBUTTONUP message is posted when the user releases the middle mouse button while the cursor is within the nonclient area of a window. This message is posted to the window that contains the cursor. If a window has captured the mouse, this message is not posted.

Parameters

nHittest		Value of wParam. Specifies the hit-test value

returned by the DefWindowProc function as a result of processing the WM_NCHITTEST message. For a list of hit-test values, see WM_NCHITTEST.

pts			Value of lParam. Specifies a POINTS structure that

contains the x- and y-coordinates of the cursor. The coordinates are relative to the upper left corner of the screen.

WM_NCMOUSEMOVE

nHittest = (INT) wParam; // hit-test value

pts = MAKEPOINTS(lParam); // position of cursor

The WM_NCMOUSEMOVE message is posted to a window when the cursor is moved within the nonclient area of the window. This message is posted to the window that contains the cursor. If a window has captured the mouse, this message is not posted.

Parameters

nHittest		Value of wParam. Specifies the hit-test value

returned by the DefWindowProc function as a result of processing the WM_NCHITTEST message. For a list of hit-test values, see WM_NCHITTEST.

pts			Value of lParam. Specifies a POINTS structure that

contains the x- and y-coordinates of the cursor. The coordinates are relative to the upper left corner of the screen.

WM_NCPAINT

hrgn = (HRGN) wParam; // handle of update region

An application sends the WM_NCPAINT message to a window when its frame must be painted.

Parameters

hrgn			Value of wParam. Identifies the update region of

the window. The update region is clipped to the window frame.

WM_NCRBUTTONDBLCLK

nHittest = (INT) wParam; // hit-test value

pts = MAKEPOINTS(lParam); // position of cursor

The WM_NCRBUTTONDBLCLK message is posted when the user double-clicks the right mouse button while the cursor is within the nonclient area of a window. This message is posted to the window that contains the cursor. If a window has captured the mouse, this message is not posted.

Parameters

nHittest		Value of wParam. Specifies the hit-test value

returned by the DefWindowProc function as a result of processing the WM_NCHITTEST message. For a list of hit-test values, see WM_NCHITTEST.

pts			Value of lParam. Specifies a POINTS structure that

contains the x- and y-coordinates of the cursor. The coordinates are relative to the upper left corner of the screen.

WM_NCRBUTTONDOWN

nHittest = (INT) wParam; // hit-test value

pts = MAKEPOINTS(lParam); // position of cursor

The WM_NCRBUTTONDOWN message is posted when the user presses the right mouse button while the cursor is within the nonclient area of a window. This message is posted to the window that contains the cursor. If a window has captured the mouse, this message is not posted.

Parameters

nHittest		Value of wParam. Specifies the hit-test value

returned by the DefWindowProc function as a result of processing the WM_NCHITTEST message. For a list of hit-test values, see WM_NCHITTEST.

pts			Value of lParam. Specifies a POINTS structure that

contains the x- and y-coordinates of the cursor. The coordinates are relative to the upper left corner of the screen.

WM_NCRBUTTONUP

nHittest = (INT) wParam; // hit-test value

pts = MAKEPOINTS(lParam); // position of cursor

The WM_NCRBUTTONUP message is posted when the user releases the right mouse button while the cursor is within the nonclient area of a window. This message is posted to the window that contains the cursor. If a window has captured the mouse, this message is not posted.

Parameters

nHittest		Value of wParam. Specifies the hit-test value

returned by the DefWindowProc function as a result of processing the WM_NCHITTEST message. For a list of hit-test values, see WM_NCHITTEST.

pts			Value of lParam. Specifies a POINTS structure that

contains the x- and y-coordinates of the cursor. The coordinates are relative to the upper left corner of the screen.

WM_NEXTDLGCTL

wCtlFocus = wParam; // identifies control for focus

fHandle = (BOOL) LOWORD(lParam); // wParam handle flag

The WM_NEXTDLGCTL message is sent to a dialog box procedure to set the keyboard focus to a different control in the dialog box.

Parameters

wCtlFocus		Value of wParam. If the fHandle parameter is TRUE,

the wCtlFocus parameter identifies the control that receives the focus. If fHandle is FALSE, wCtlFocus is a flag that indicates whether the next or previous control with the WS_TABSTOP style receives the focus. If wCtlFocus is zero, the next control receives the focus; otherwise, the previous control with the WS_TABSTOP style receives the focus.

fHandle		Value of lParam. Contains a flag that indicates how

Windows uses the wCtlFocus parameter. If the fHandle parameter is TRUE, wCtlFocus is a handle associated with the control that receives the focus; otherwise, wCtlFocus is a flag that indicates whether the next or previous control with the WS_TABSTOP style receives the focus.

WM_PALETTECHANGED

hwndPalChg = (HWND) wParam; // handle of window that changed palette

The WM_PALETTECHANGED message is sent to all top-level and overlapped windows after the window with the keyboard focus has realized its logical palette, thereby changing the system palette. This message enables a window without the keyboard focus that uses a color palette to realize its logical palette and update its client area.

Parameters

hwndPalChg		Value of wParam. Identifies the window that caused

the system palette to change.

WM_PALETTEISCHANGING

hwndRealize = (HWND) wParam; // window to realize palette

The WM_PALETTEISCHANGING message informs applications that an application is going to realize its logical palette.

Parameters

hwndRealize		Value of wParam. Identifies the window that is

going to realize its logical palette.

WM_PARENTNOTIFY

fwEvent = LOWORD(wParam); // event flags

idChild = HIWORD(wParam); // identifier of child window

lValue = lParam; // child handle, or cursor coordinates

The WM_PARENTNOTIFY message is sent to the parent of a child window when the child window is created or destroyed, or when the user clicks a mouse button while the cursor is over the child window. When the child window is being created, the system sends WM_PARENTNOTIFY just before the CreateWindow function that creates the window returns. When the child window is being destroyed, Windows sends the message before any processing to destroy the window takes place.

Parameters

fwEvent		Value of the low-order word of wParam. Specifies

the event for which the parent is being notified. This parameter can be one of the following values:

WM_CREATE		The child window is being

created.

WM_DESTROY		The child window is being

destroyed.

WM_LBUTTONDOWN	The user has placed the cursor

over the child window and has clicked the left mouse button.

WM_MBUTTONDOWN	The user has placed the cursor

over the child window and has clicked the middle mouse button.

WM_RBUTTONDOWN	The user has placed the cursor

over the child window and has clicked the right mouse button.

idChild		Value of the high-order word of wParam. If the

fwEvent parameter is the WM_CREATE or WM_DESTROY value, idChild specifies the identifier of the child window. Otherwise, idChild is undefined.

lValue		Contains the handle of the child window, if the

fwEvent parameter is the WM_CREATE or WM_DESTROY value; otherwise, lValue contains the x- and y-coordinates of the cursor. The x-coordinate is in the low-order word and the y-coordinate is in the high-order word.

WM_PASTE

wParam = 0; // not used; must be zero

lParam = 0; // not used; must be zero

An application sends a WM_PASTE message to an edit control or combo box to copy the current content of the clipboard to the edit control at the current caret position. Data is inserted only if the clipboard contains data in CF_TEXT format.

WM_POWER

fwPowerEvt = wParam; // power-event notification message

The WM_POWER message is sent when the system, typically a battery-powered personal computer, is about to enter suspended mode.

Parameters

fwPowerEvt		Value of wParam. Specifies a power-event

notification message. This parameter can be one of the following values:

PWR_CRITICALRESUME	Indicates that the system

is resuming operation after entering suspended mode without first sending a PWR_SUSPENDREQUEST notification message to the application. An application should perform any necessary recovery actions.

PWR_SUSPENDREQUEST	Indicates that the system

is about to enter suspended mode.

PWR_SUSPENDRESUME		Indicates that the system

is resuming operation after having entered suspended mode normally - that is, the system sent a PWR_SUSPENDREQUEST notification message to the application before the system was suspended. An application should perform any necessary recovery actions.

Return Value

The value an application returns depends on the value of the wParam parameter. If wParam is PWR_SUSPENDREQUEST, the return value is PWR_FAIL to prevent the system from entering the suspended state; otherwise, it is PWR_OK. If wParam is PWR_SUSPENDRESUME or PWR_CRITICALRESUME, the return value is zero.

WM_QUERYDRAGICON

The WM_QUERYDRAGICON message is sent to a minimized (iconic) window. The window is about to be dragged by the user but does not have an icon defined for its class. An application can return the handle of an icon or cursor. The system displays this cursor or icon while the user drags the icon.

Return Value

An application should return the handle of a cursor or icon that Windows is to display while the user drags the icon. The cursor or icon must be compatible with the display driver's resolution. If the application returns NULL, the system displays the default cursor.

WM_QUERYENDSESSION

nSource = (UINT) wParam; // source of end-session request

The WM_QUERYENDSESSION message is sent when the user chooses to end the Windows session or when an application calls the ExitWindows function. If any application returns zero, the Windows session is not ended. Windows stops sending WM_QUERYENDSESSION messages as soon as one application returns zero.

After processing this message, Windows sends the WM_ENDSESSION message with the wParam parameter set to the results of the WM_QUERYENDSESSION message.

Parameters

nSource		Value of wParam. Specifies the source of the

request to end the Windows session. This parameter is zero if the request occurred because the user clicked the Logoff or Shutdown button in the Windows NT Security dialog box. This parameter is nonzero if the user clicked the End Task button in the Task List dialog box.

Return Value

If an application can terminate conveniently, it should return TRUE; otherwise, it should return FALSE.

WM_QUERYNEWPALETTE

The WM_QUERYNEWPALETTE message informs a window that it is about to receive the keyboard focus, giving the window the opportunity to realize its logical palette when it receives the focus.

Return Value

If the window realizes its logical palette, it must return TRUE; otherwise, it must return FALSE.

WM_QUERYOPEN

The WM_QUERYOPEN message is sent to an icon when the user requests that the window be restored to its previous size and position.

Return Value

If the icon can be opened, an application that processes this message should return TRUE; otherwise, it should return FALSE to prevent the icon from being opened.

WM_QUIT

nExitCode = (int) wParam; // exit code

The WM_QUIT message indicates a request to terminate an application.

Parameters

nExitCode		Value of wParam. Specifies the exit code.

WM_RBUTTONDBLCLK

fwKeys = wParam; // key flags

xPos = LOWORD(lParam); // horizontal position of cursor

yPos = HIWORD(lParam); // vertical position of cursor

The WM_RBUTTONDBLCLK message is posted when the user double-clicks the right mouse button while the cursor is in the client area of a window. If the mouse is not captured, the message is posted to the window beneath the cursor. Otherwise, the message is posted to the window that has captured the mouse.

Parameters

fwKeys		Value of wParam. Indicates whether various virtual

keys are down. This parameter can be any combination of the following values:

MK_CONTROL	Set if the CTRL key is down.

MK_LBUTTON	Set if the left mouse button is down.

MK_MBUTTON	Set if the middle mouse button is down.

MK_RBUTTON	Set if the right mouse button is down.

MK_SHIFT	Set if the SHIFT key is down.

xPos			Value of the low-order word of lParam. Specifies

the x-coordinate of the cursor. The coordinate is relative to the upper left corner of the client area.

yPos			Value of the high-order word of lParam. Specifies

the y-coordinate of the cursor. The coordinate is relative to the upper left corner of the client area.

WM_RBUTTONDOWN

fwKeys = wParam; // key flags

xPos = LOWORD(lParam); // horizontal position of cursor

yPos = HIWORD(lParam); // vertical position of cursor

The WM_RBUTTONDOWN message is posted when the user presses the right mouse button while the cursor is in the client area of a window. If the mouse is not captured, the message is posted to the window beneath the cursor. Otherwise, the message is posted to the window that has captured the mouse.

Parameters

fwKeys		Value of wParam. Indicates whether various virtual

keys are down. This parameter can be any combination of the following values:

MK_CONTROL	Set if the CTRL key is down.

MK_LBUTTON	Set if the left mouse button is down.

MK_MBUTTON	Set if the middle mouse button is down.

MK_SHIFT	Set if the SHIFT key is down.

xPos			Value of the low-order word of lParam. Specifies

the x-coordinate of the cursor. The coordinate is relative to the upper left corner of the client area.

yPos			Value of the high-order word of lParam. Specifies

the y-coordinate of the cursor. The coordinate is relative to the upper left corner of the client area.

WM_RBUTTONUP

fwKeys = wParam; // key flags

xPos = LOWORD(lParam); // horizontal position of cursor

yPos = HIWORD(lParam); // vertical position of cursor

The WM_RBUTTONUP message is posted when the user releases the right mouse button while the cursor is in the client area of a window. If the mouse is not captured, the message is posted to the window beneath the cursor. Otherwise, the message is posted to the window that has captured the mouse.

Parameters

fwKeys		Value of wParam. Indicates whether various virtual

keys are down. This parameter can be any combination of the following values:

MK_CONTROL	Set if the CTRL key is down.

MK_LBUTTON	Set if the left mouse button is down.

MK_MBUTTON	Set if the middle mouse button is down.

MK_SHIFT	Set if the SHIFT key is down.

xPos			Value of the low-order word of lParam. Specifies

the x-coordinate of the cursor. The coordinate is relative to the upper left corner of the client area.

yPos			Value of the high-order word of lParam. Specifies

the y-coordinate of the cursor. The coordinate is relative to the upper left corner of the client area.

WM_RENDERALLFORMATS

The WM_RENDERALLFORMATS message is sent to the clipboard owner before it is destroyed, if the clipboard owner has delayed rendering one or more clipboard formats. For the content of the clipboard to remain available to other applications, the clipboard owner must render data in all the formats it is capable of generating, and place the data on the clipboard by calling the SetClipboardData function.

WM_RENDERFORMAT

uFormat = (UINT) wParam; // clipboard format

The WM_RENDERFORMAT message is sent to the clipboard owner if it has delayed rendering a specific clipboard format and if an application has requested data in that format. The clipboard owner must render data in the specified format and place it on the clipboard by calling the SetClipboardData function.

WM_SETCURSOR

hwnd = (HWND) wParam; // handle of window with cursor

nHittest = LOWORD(lParam); // hit-test code

wMouseMsg = HIWORD(lParam); // mouse-message identifier

The WM_SETCURSOR message is sent to a window if the mouse causes the cursor to move within a window and mouse input is not captured.

Parameters

hwnd			Value of wParam. Identifies the window that

contains the cursor.

nHittest		Value of the low-order word of lParam. Specifies

the hit-test code.

wMouseMsg		Value of the high-order word of lParam. Specifies

the identifier of the mouse message.

WM_SETFOCUS

hwndLoseFocus = (HWND) wParam; // handle of window losing focus

The WM_SETFOCUS message is sent to a window after it has gained the keyboard focus.

Parameters

hwndLoseFocus	Value of wParam. Identifies the window that has

lost the keyboard focus (may be NULL).

WM_SETFONT

wParam = (WPARAM) hfont; // handle of font

lParam = MAKELPARAM(fRedraw, 0); // redraw flag

An application sends a WM_SETFONT message to specify the font that a control is to use when drawing text.

Parameters

hfont			Value of wParam. Identifies the font. If this

parameter is NULL, the control uses the default system font to draw text.

fRedraw		Value of lParam. Specifies whether the control

should be redrawn immediately upon setting the font. Setting the fRedraw parameter to TRUE causes the control to redraw itself.

WM_SETREDRAW

wParam = (WPARAM) fRedraw; // state of redraw flag

lParam = 0; // not used; must be zero

An application sends the WM_SETREDRAW message to a window to allow changes in that window to be redrawn or to prevent changes in that window from being redrawn.

Parameters

fRedraw		Value of wParam. Specifies the state of the redraw

flag. If this parameter is TRUE, the redraw flag is set. If the parameter is FALSE, the flag is cleared.

WM_SETTEXT

wParam = 0; // not used; must be zero

lParam = (LPARAM)(LPCTSTR)lpsz; // address of window-text string

An application sends a WM_SETTEXT message to set the text of a window.

Parameters

lpsz			Value of lParam. Points to a null-terminated string

that is the window text.

Return Value

The return value is TRUE if the text is set. It is LB_ERRSPACE (for a list box) or CB_ERRSPACE (for a combo box) if insufficient space is available to set the text in the edit control. It is CB_ERR if this message is sent to a combo box without an edit control.

WM_SHOWWINDOW

fShow = (BOOL) wParam; // show/hide flag

fnStatus = (int) lParam; // status flag

The WM_SHOWWINDOW message is sent to a window when the window is about to be hidden or shown.

Parameters

fShow			Value of wParam. Specifies whether a window is

being shown. It is TRUE if the window is being shown or FALSE if the window is being hidden.

fnStatus		Value of lParam. Specifies the status of the window

being shown. The fnStatus parameter is zero if the message is sent because of a call to the ShowWindow function; otherwise, fnStatus is one of the following values:

SW_PARENTCLOSING	Window's owner window is being

minimized.

SW_PARENTOPENING	Window's owner window is being

restored.

WM_SIZE

fwSizeType = wParam; // resizing flag

nWidth = LOWORD(lParam); // width of client area

nHeight = HIWORD(lParam); // height of client area

The WM_SIZE message is sent to a window after its size has changed.

Parameters

fwSizeType		Value of wParam. Specifies the type of resizing

requested. This parameter can be one of the following values:

SIZE_MAXHIDE	Message is sent to all pop-up

windows when some other window is maximized.

SIZE_MAXIMIZED	Window has been maximized.

SIZE_MAXSHOW	Message is sent to all pop-up

windows when some other window has been restored to its former size.

SIZE_MINIMIZED	Window has been minimized.

SIZE_RESTORED	Window has been resized, but

neither the SIZE_MINIMIZED nor SIZE_MAXIMIZED value applies.

nWidth		Value of the low-order word of lParam. Specifies

the new width of the client area.

nHeight		Value of the high-order word of lParam. Specifies

the new height of the client area.

WM_SIZECLIPBOARD

hwndViewer = (HWND) wParam; // handle of clipboard viewer window

hglbRc = (HGLOBAL) lParam; // handle of RECT object

The WM_SIZECLIPBOARD message is sent to the clipboard owner by a clipboard viewer window when the clipboard contains data in the CF_OWNERDISPLAY format and the clipboard viewer's client area has changed size.

Parameters

hwndViewer		Value of wParam. Identifies the clipboard viewer

window.

hglbRc		Value of lParam. Identifies a global memory object

that contains a RECT structure. The structure specifies the new dimensions of the clipboard viewer's client area.

WM_SYSCHAR

chCharCode = (TCHAR) wParam; // character code

lKeyData = lParam; // key data

The WM_SYSCHAR message is posted to the window with the keyboard focus when a WM_SYSKEYDOWN message is translated by the TranslateMessage function. It specifies the character code of a system character key ¾ that is, a character key that is pressed while the ALT key is down.

Parameters

chCharCode		Value of wParam. Specifies the character code of

the System menu key.

lKeyData		Value of lParam. Specifies the repeat count, scan

code, extended-key flag, context code, previous key-state flag, and transition-state flag, as shown in the following table:

0-15	Specifies the repeat count. The value is the

number of times the keystroke is repeated as a result of the user holding down the key.

16-23	Specifies the scan code. The value depends on

the original equipment manufacturer (OEM).

24	Specifies whether the key is an extended key,

such as the right-hand ALT and CTRL keys that appear on an enhanced 101- or 102-key keyboard. The value is 1 if it is an extended key; otherwise, it is 0.

25-28	Reserved; do not use.

29	Specifies the context code. The value is 1 if

the ALT key is held down while the key is pressed; otherwise, the value is 0.

30	Specifies the previous key state. The value

is 1 if the key is down before the message is sent, or it is 0 if the key is up.

31	Specifies the transition state. The value is

1 if the key is being released, or it is 0 if the key is being pressed.

WM_SYSCOLORCHANGE

The WM_SYSCOLORCHANGE message is sent to all top-level windows when a change is made to a system color setting.

WM_SYSCOMMAND

uCmdType = wParam; // type of system command requested

xPos = LOWORD(lParam); // horizontal postion, in screen coord.

yPos = HIWORD(lParam); // vertical postion, in screen coord.

A window receives this message when the user chooses a command from the System menu (also known as Control menu) or when the user chooses the Maximize button or Minimize button.

Parameters

uCmdType		Specifies the type of system command requested.

This can be one of these values:

SC_CLOSE		Closes the window.

SC_DEFAULT		Selects the default item; the

user double-clicked the System menu.

SC_HOTKEY		Activates the window associated

with the application-specified hot key. The low-order word of lParam identifies the window to activate.

SC_HSCROLL		Scrolls horizontally.

SC_KEYMENU		Retrieves the System menu as a

result of a keystroke.

SC_MAXIMIZE 	Maximizes the window.

SC_MINIMIZE 	Minimizes the window.

SC_MOUSEMENU	Retrieves the System menu as a

result of a mouse click.

SC_MOVE		Moves the window.

SC_NEXTWINDOW	Moves to the next window.

SC_PREVWINDOW	Moves to the previous window.

SC_RESTORE		Restores the window to its normal

position and size.

SC_SCREENSAVE	Executes the screen saver

application specified in the [boot] section of the SYSTEM.INI file.

SC_SIZE		Sizes the window.

SC_TASKLIST		Executes or activates Windows

Task Manager.

SC_VSCROLL		Scrolls vertically.

xPos			Specifies the horizontal position of the cursor, in

screen coordinates, if a System menu command is chosen with the mouse. Otherwise, the xPos parameter is not used.

yPos			Specifies the vertical position of the cursor, in

screen coordinates, if a System menu command is chosen with the mouse. This parameter is - 1 if the command is chosen using a system accelerator, or zero if using a mnenomic.

WM_SYSKEYDOWN

nVirtKey = (int) wParam; // virtual-key code

lKeyData = lParam; // key data

The WM_SYSKEYDOWN message is posted to the window with the keyboard focus when the user holds down the ALT key and then presses another key. It also occurs when no window currently has the keyboard focus; in this case, the WM_SYSKEYDOWN message is sent to the active window. The window that receives the message can distinguish between these two contexts by checking the context code in the lKeyData parameter.

Parameters

nVirtKey		Value of wParam. Specifies the virtual-key code of

the key being pressed.

lKeyData		Value of lParam. Specifies the repeat count, scan

code, extended-key flag, context code, previous key-state flag, and transition-state flag, as shown in the following table:

0-15	Specifies the repeat count. The value is the

number of times the keystroke is repeated as a result of the user holding down the key.

16-23	Specifies the scan code. The value depends on

the original equipment manufacturer (OEM).

24	Specifies whether the key is an extended key,

such as the right-hand ALT and CTRL keys that appear on an enhanced 101- or 102-key keyboard. The value is 1 if it is an extended key; otherwise, it is 0.

25-28	Reserved; do not use.

29	Specifies the context code. The value is 1 if

the ALT key is down while the key is pressed; it is 0 if the WM_SYSKEYDOWN message is posted to the active window because no window has the keyboard focus.

30	Specifies the previous key state. The value

is 1 if the key is down before the message is sent, or it is 0 if the key is up.

31	Specifies the transition state. The value is

always 0 for a WM_SYSKEYDOWN message.

WM_SYSKEYUP

nVirtKey = (int) wParam; // virtual-key code

lKeyData = lParam; // key data

The WM_SYSKEYUP message is posted to the window with the keyboard focus when the user releases a key that was pressed while the ALT key was held down. It also occurs when no window currently has the keyboard focus; in this case, the WM_SYSKEYUP message is sent to the active window. The window that receives the message can distinguish between these two contexts by checking the context code in the lKeyData parameter.

Parameters

nVirtKey		Value of wParam. Specifies the virtual-key code of

the key being released.

lKeyData		Value of lParam. Specifies the repeat count, scan

code, extended-key flag, context code, previous key-state flag, and transition-state flag, as shown in the following table:

0-15	Specifies the repeat count. The value is the

number of times the keystroke is repeated as a result of the user holding down the key. The repeat count is always one for a WM_SYSKEYUP message.

16-23	Specifies the scan code. The value depends on

the original equipment manufacturer (OEM).

24	Specifies whether the key is an extended key,

such as the right-hand ALT and CTRL keys that appear on an enhanced 101- or 102-key keyboard. The value is 1 if it is an extended key; otherwise, it is 0.

25-28	Reserved; do not use.

29	Specifies the context code. The value is 1 if

the ALT key is down while the key is released; it is 0 if the WM_SYSKEYDOWN message is posted to the active window because no window has the keyboard focus.

30	Specifies the previous key state. The value

is always 1 for a WM_SYSKEYUP message.

31	Specifies the transition state. The value is

always 1 for a WM_SYSKEYUP message.

WM_TIMER

wTimerID = wParam; // timer identifier

The WM_TIMER message is posted to the installing thread's message queue after each interval specified in the SetTimer function used to install a timer.

Parameters

wTimerID		Value of wParam. Specifies the timer identifier.

WM_UNDO

wParam = 0; // not used; must be zero

lParam = 0; // not used; must be zero

An application sends a WM_UNDO message to an edit control to undo the last operation. When this message is sent to an edit control, the previously deleted text is restored or the previously added text is deleted.

WM_USER

The WM_USER constant is used by applications to help define private messages.

Remarks

The WM_USER constant is used to distinguish between message values that are reserved for use by Windows and values that can be used by an application to send messages within a private window class. There are five ranges of message numbers:

0 through WM_USER - 1	Messages reserved for use by Windows.

WM_USER through 0x7FFF	Integer messages for use by private window

classes.

0x8000 through 0xBFFF	Messages reserved for future use by Windows.

0xC000 through 0xFFFF	String messages for use by applications.

Greater than 0xFFFF	Reserved by Windows for future use.

Message numbers in the first range (0 through WM_USER - 1) are defined by Windows. Values in this range that are not explicitly defined are reserved for future use by Windows.

Message numbers in the second range (WM_USER through 0x7FFF) can be defined and used by an application to send messages within a private window class. These values cannot be used to define messages that are meaningful throughout an application, because some predefined window classes already define values in this range. For example, predefined control classes such as BUTTON, EDIT, LISTBOX, and COMBOBOX may use these values. Messages in this range should not be sent to other applications unless the applications have been designed to exchange messages and to attach the same meaning to the message numbers.

Message numbers in the third range (0x8000 through 0xBFFF) are reserved for future use by Windows.

Message numbers in the fourth range (0xC000 through 0xFFFF) are defined at run time when an application calls the RegisterWindowMessage function to retrieve a message number for a string. All applications that register the same string can use the associated message number for exchanging messages. The actual message number, however, is not a constant and cannot be assumed to be the same between different Windows sessions.

Message numbers in the fifth range (greater than 0xFFFF) are reserved for future use by Windows.

Note that all windows created in Windows Server Package receive not all user messages, but only in range WM_USER .. (WM_USER + 9).

WM_VSCROLL

nScrollCode = (int) LOWORD(wParam); // scroll bar value

nPos = (short int) HIWORD(wParam); // scroll box position

hwndScrollBar = (HWND) lParam; // handle of scroll bar

The WM_VSCROLL message is sent to a window when a scroll event occurs in the window's standard vertical scroll bar. This message is also sent to the owner of a vertical scroll bar control when a scroll event occurs in the control.

Parameters

nScrollCode		Value of the low-order word of wParam. Specifies a

scroll bar value that indicates the user's scrolling request. This parameter can be one of the following values:

SB_BOTTOM		Scrolls to the lower right.

SB_ENDSCROLL	Ends scroll.

SB_LINEDOWN		Scrolls one line down.

SB_LINEUP		Scrolls one line up.

SB_PAGEDOWN		Scrolls one page down.

SB_PAGEUP		Scrolls one page up.

SB_THUMBPOSITION	Scrolls to the absolute position.

The current position is specified by the nPos parameter.

SB_THUMBTRACK	Drags scroll box to the specified

position. The current position is specified by the nPos parameter.

SB_TOP		Scrolls to the upper left.

nPos			Value of the high-order word of wParam. Specifies

the current position of the scroll box if the nScrollCode parameter is SB_THUMBPOSITION or SB_THUMBTRACK; otherwise, nPos is not used.

hwndScrollBar	Value of lParam. Identifies the control if

WM_VSCROLL is sent by a scroll bar control. If WM_VSCROLL is sent by a window's standard scroll bar, hwndScrollBar is not used.

WM_VSCROLLCLIPBOARD

hwndViewer = (HWND) wParam; // clipboard viewer window

nScrollCode = (int) LOWORD(lParam); // scroll bar code

nPos = (int) HIWORD(lParam); // scroll box position

The WM_VSCROLLCLIPBOARD message is sent to the clipboard owner by a clipboard viewer window when the clipboard contains data in the CF_OWNERDISPLAY format and an event occurs in the clipboard viewer's vertical scroll bar. The owner should scroll the clipboard image and update the scroll bar values.

Parameters

hwndViewer		Value of wParam. Identifies the clipboard viewer

window.

nScrollCode		Value of the low-order word of lParam. Specifies a

scroll bar event. This parameter can be one of the following values:

SB_BOTTOM		Scroll to lower right.

SB_ENDSCROLL	End scroll.

SB_LINEDOWN		Scroll one line down.

SB_LINEUP		Scroll one line up.

SB_PAGEDOWN		Scroll one page down.

SB_PAGEUP		Scroll one page up.

SB_THUMBPOSITION	Scroll to absolute position. The

current position is specified by the nPos parameter.

SB_TOP		Scroll to upper left.

nPos			Value of the high-order word of lParam. Specifies

the current position of the scroll box if the nScrollCode parameter is SB_THUMBPOSITION; otherwise, the nPos parameter is not used.

WM_WINDOWPOSCHANGED

lpwp = (LPWINDOWPOS) lParam; // points to size and position data

The WM_WINDOWPOSCHANGED message is sent to a window whose size, position, or place in the Z order has changed.

Parameters

lpwp			Value of lParam. Points to a WINDOWPOS structure

that contains information about the window's new size and position.

WM_WINDOWPOSCHANGING

lpwp = (LPWINDOWPOS) lParam; // points to size and position data

The WM_WINDOWPOSCHANGING message is sent to a window whose size, position, or place in the Z order is about to change.

Parameters

lpwp			Value of lParam. Points to a WINDOWPOS structure

that contains information about the window's new size and position.

