Windows Server Package 95
Programmer’s Reference

Volume 1 - Functions

AbortDoc

The AbortDoc function stops the current print job and erases everything drawn since the last call to the StartDoc function. This function replaces the ABORTDOC printer escape.

Syntax

int AbortDoc(
 HDC hdc
);	

Parameters

hdc			Identifies the device context for the print job.

Return Value

If the function succeeds, the return value is greater than zero. If the function fails, the return value is SP_ERROR. To get extended error information, call GetLastError.

Remarks

Applications should call the AbortDoc function to stop a print job in case an error occurred, or to stop a print job after the user cancels that job. To end a successful print job, an application should call the EndDoc function. If Windows Print Manager was used to start the print job, calling the AbortDoc function erases the entire spool job, so that the printer receives nothing. If Print Manager was not used to start the print job, the data may already have been sent to the printer. In this case, the printer driver resets the printer (when possible) and ends the print job.

See Also

EndDoc, StartDoc

AddString

Adds string to the list box or combo box. The list items are automatically sorted unless the style LBS_SORT is not used for list box creation.

Syntax

int AddString(
 HWND hWnd,
 char *String
);

Parameters

hWnd			Identifies the handle to list box or combo box.
String			Identifies the string to add.

Return Value

If the function succeeds, it returns string position in the list (0 is the first position). Returns a negative value if an error occurs.

AppendMenu

Appends a new item to the end of the specified menu. An application can use this function to specify the content, appearance, and behavior of the menu item.

Syntax

BOOL AppendMenu(
 HMENU Menu,
 UINT Flags,
 UINT NewItemID,
 LPCTSTR String
);

Parameters

Menu			Identifies the menu to be changed.
Flags			Specifies flags to control the appearance and
behavior of the new menu item. This parameter can be a combination of the values listed in the following Remarks section.
NewItemID		Specifies either the identifier of the new menu
item or, if the Flags parameter is set to MF_POPUP, the handle of the pop-up menu.
String		Specifies the content of the new menu item (a
pointer to a null-terminated string).

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

The application must call the DrawMenuBar function whenever a menu changes, whether or not the menu is in a displayed window.

The following flags must be set in the Flags parameter:

MF_CHECKED		Places a check mark next to the item.
MF_DISABLED		Disables the menu item so that it cannot be
selected, but the flag does not gray it.
MF_ENABLED		Enables the menu item so that it can be selected
and restores it from its grayed state.
MF_GRAYED		Disables the menu item and grays it so it cannot be
selected.
MF_MENUBARBREAK	Functions the same as the MF_MENUBREAK flag except
for pop-up menus, where the new column is separated from the old column by a vertical line.
MF_MENUBREAK	Places the item on a new line (for menu bars) or in
a new column (for pop-up menus) without separating columns.
MF_POPUP		Specifies that the menu item is a pop-up item; that
is, selecting it activates a pop-up menu. The NewItemID parameter specifies the handle of the pop-up menu. This flag is used to add a pop-up item to a menu bar or to a pop-up menu.
MF_SEPARATOR	Draws a horizontal dividing line. This flag is only
used in a pop-up menu. The line cannot be grayed, disabled, or highlighted. The String and NewItemID parameters are ignored.
MF_STRING		Specifies that the menu item is a text string; the
String parameter points to the string.
MF_UNCHECKED	Does not place a check mark next to the item
(default).

The following list shows groups of flags that cannot be used together:

·	MF_DISABLED, MF_ENABLED, and MF_GRAYED
·	MF_MENUBARBREAK and MF_MENUBREAK
·	MF_CHECKED and MF_UNCHECKED

See Also

CreateMenu, DeleteMenu, DestroyMenu, DrawMenuBar, InsertMenu, ModifyMenu

Arc

The Arc function draws an elliptical arc.

Syntax

BOOL Arc(
 HDC DC,
 int X1,
 int Y1,
 int X2,
 int Y2,
 int X3,
 int Y3,
 int X4,
 int Y4,
);	

Parameters

DC			Identifies the device context where drawing takes
place.
X1			Specifies the logical x-coordinate of the upper-
left corner of the bounding rectangle.
Y1			Specifies the logical y-coordinate of the upper-
left corner of the bounding rectangle.
X2			Specifies the logical x-coordinate of the lower-
right corner of the bounding rectangle.
Y2			Specifies the logical y-coordinate of the lower-
right corner of the bounding rectangle.
X3			Specifies the logical x-coordinate of the ending
point of the radial line defining the starting point of the arc.
Y3			Specifies the logical y-coordinate of the ending
point of the radial line defining the starting point of the arc.
X4			Specifies the logical x-coordinate of the ending
point of the radial line defining the ending point of the arc.
Y4			Specifies the logical y-coordinate of the ending
point of the radial line defining the ending point of the arc.

Return Value

If the arc is drawn, the return value is TRUE; otherwise, it is FALSE.

Remarks

The points (X1, Y1) and (X2, Y2) specify the bounding rectangle. An ellipse formed by the given bounding rectangle defines the curve of the arc. The arc extends counterclockwise from the point where it intersects the radial from the center of the bounding rectangle to (X3, Y3). The arc ends where it intersects the radial from the center of the bounding rectangle to (X4, Y4). If the starting point and ending point are the same, a complete ellipse is drawn. The arc is drawn using the current pen; it is not filled. The current position is neither used nor updated by this function.

See Also

Chord, Ellipse, Pie

AssignCursor

Establishes the cursor shape for the specified window.

Syntax

BOOL AssignCursor(
 HWND hWnd,
 HCURSOR Cursor
);

Parameters

hWnd			Identifies the window.
Cursor 		Identifies the cursor. The cursor must have been
loaded by the LoadCursor function or created by the CreateCursorIndirect function.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE.

See Also

LoadCursor, CreateCursorIndirect

AssignIcon

Sets the icon for the specified window.

Syntax

BOOL AssignIcon(
 HWND hWnd,
 HICON Icon
);

Parameters

hWnd			Identifies the window.
Icon 			Identifies the icon. The icon must have been loaded
by the LoadIcon function or created by the CreateIconIndirect function.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE.

See Also

LoadIcon, CreateIconIndirect

AssignMenu

Sets the menu for the specified window.

Syntax

BOOL AssignMenu(
 HWND hWnd,
 HMENU Menu
);

Parameters

hWnd			Identifies the window.
Menu 			Identifies the menu. The menu must have been
created by the CreateMenu or CreateMenuIndirect functions.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE.

See Also

CreateMenu, CreateMenuIndirect

BitBlt

Performs a bit-block transfer of the color data corresponding to a rectangle of pixels from the specified source device context into a destination device context.

Syntax

BOOL BitBlt(
 HDC DestDC,
 int X,
 int Y,
 int Width,
 int Height,
 HDC SrcDC,
 int XSrc,
 int YSrc,
 DWORD Rop
);	

Parameters

DestDC		Identifies the destination device context.
X			Specifies the logical x-coordinate of the upper-
left corner of the destination rectangle.
Y			Specifies the logical y-coordinate of the upper-
left corner of the destination rectangle.
Width			Specifies the logical width of the source and
destination rectangles.
Height		Specifies the logical height of the source and the
destination rectangles.
SrcDC			Identifies the source device context.
XSrc			Specifies the logical x-coordinate of the upper-
left corner of the source rectangle.
NYSrc			Specifies the logical y-coordinate of the upper-
left corner of the source rectangle.
Rop			Specifies a raster-operation code. These codes
define how the color data for the source rectangle is to be combined with the color data for the destination rectangle to achieve the final color.

The following list shows some common raster operation codes:

BLACKNESS		Fills the destination rectangle using the color
associated with index 0 in the physical palette. (This color is black for the default physical palette.)
DSTINVERT		Inverts the destination rectangle.
MERGECOPY		Merges the colors of the source rectangle with the
specified pattern by using the Boolean AND operator.
MERGEPAINT		Merges the colors of the inverted source rectangle
with the colors of the destination rectangle by using the Boolean OR operator.
NOTSRCCOPY		Copies the inverted source rectangle to the
destination.
NOTSRCERASE		Combines the colors of the source and destination
rectangles by using the Boolean OR operator and then inverts the resultant color.
PATCOPY		Copies the specified pattern into the destination
bitmap.
PATINVERT		Combines the colors of the specified pattern with
the colors of the destination rectangle by using the Boolean XOR operator.
PATPAINT		Combines the colors of the pattern with the colors
of the inverted source rectangle by using the Boolean OR operator. The result of this operation is combined with the colors of the destination rectangle by using the Boolean OR operator.
SRCAND		Combines the colors of the source and destination
rectangles by using the Boolean AND operator.
SRCCOPY		Copies the source rectangle directly to the
destination rectangle.
SRCERASE		Combines the inverted colors of the destination
rectangle with the colors of the source rectangle by using the Boolean AND operator.
SRCINVERT		Combines the colors of the source and destination
rectangles by using the Boolean XOR operator.
SRCPAINT		Combines the colors of the source and destination
rectangles by using the Boolean OR operator.
WHITENESS		Fills the destination rectangle using the color
associated with index 1 in the physical palette. (This color is white for the default physical palette.)

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

If a rotation or shear transformation is in effect in the source device context, BitBlt returns an error. If other transformations exist in the source device context (and a matching transformation is not in effect in the destination device context), the rectangle in the destination device context is stretched, compressed, or rotated as necessary.
If the color formats of the source and destination device contexts do not match, the BitBlt function converts the source color format to match the destination format.
Not all devices support the BitBlt function. For more information, see the RC_BITBLT raster capability entry in GetDeviceCaps.
BitBlt returns an error if the source and destination device contexts represent different devices.

See Also

StretchBlt

CheckMenuItem

The CheckMenuItem function sets the state of the specified menu item's check mark attribute to either checked or unchecked.

Syntax

DWORD CheckMenuItem(
 HMENU Menu,
 UINT ItemID,
 UINT Check
);	

Parameters

Menu			Identifies the menu of interest.
ItemID		Specifies the menu item whose check mark attribute
is to be set, as determined by the fuFlags parameter.
Check			Specifies flags that control the interpretation of
the ItemID parameter and the state of the menu item's check mark attribute. This parameter can be a combination of either MF_BYCOMMAND or MF_BYPOSITION and MF_CHECKED or MF_UNCHECKED.
MF_BYCOMMAND	Indicates that the ItemID parameter gives the
identifier of the menu item. The MF_BYCOMMAND flag is the default, if neither the MF_BYCOMMAND nor MF_BYPOSITION flag is specified.
MF_BYPOSITIONL	Indicates that the ItemID parameter gives the zero-
based relative position of the menu item.
MF_CHECKED		Sets the check mark attribute to the checked state.
MF_UNCHECKED	Sets the check mark attribute to the unchecked
state.

Return Value

The return value specifies the previous state of the menu item (either MF_CHECKED or MF_UNCHECKED). If the menu item does not exist, the return value is 0xFFFFFFFF.

Remarks

An item in a menu bar cannot have a check mark.
The ItemID parameter identifies a pop-up item or a command item. For a pop-up item, the ItemID parameter must specify the position of the item, because a pop-up item does not have an identifier. For a command item, the ItemID parameter can specify either the item's position or its identifier.

See Also

EnableMenuItem, GetMenuItemID

ChildWithId

Retrieves a handle to the window in the child window list that has the supplied id. Returns 0 if no child window has the indicated id.

Syntax

HWND ChildWithId(
 HWND hWndParent,
 int ID
);

Parameters

hWndParent		Parent window handle.
ID			Item id.

Return Value

A handle to the window in the child window list that has the supplied id, or 0 if no child window has the indicated id.

See Also

GetId

Chord

Draws a chord (a region bounded by the intersection of an ellipse and a line segment, called a secant). The chord is outlined by using the current pen and filled by using the current brush.

Syntax

BOOL Chord(HDC DC, int X1, int Y1, int X2, int Y2, int X3, int Y3,
int X4, int Y4);

BOOL Chord(
 HDC DC,
 int X1,
 int Y1,
 int X2,
 int Y2,
 int X3,
 int Y3,
 int X4,
 int Y4
);	

Parameters

DC			Identifies the device context in which the chord
appears.
X1			Specifies the x-coordinate of the upper-left corner
of the bounding rectangle.
Y1			Specifies the y-coordinate of the upper-left corner
of the bounding rectangle.
X2			Specifies the x-coordinate of the lower-right
corner of the bounding rectangle.
Y2			Specifies the y-coordinate of the lower-right
corner of the bounding rectangle.
X3			Specifies the x-coordinate of the endpoint of the
radial defining the beginning of the chord.
Y3			Specifies the y-coordinate of the endpoint of the
radial defining the beginning of the chord.
X4			Specifies the x-coordinate of the endpoint of the
radial defining the end of the chord.
Y4			Specifies the y-coordinate of the endpoint of the
radial defining the end of the chord.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

The curve of the chord is defined by an ellipse that fits the specified bounding rectangle. The curve begins at the point where the ellipse intersects the first radial and extends counterclockwise to the point where the ellipse intersects the second radial. (A radial is a line segment drawn from the center of the ellipse to a specified endpoint on the ellipse.) The chord is closed by drawing a line from the intersection of the first radial and the curve to the intersection of the second radial and the curve.
If the starting point and ending point of the curve are the same, a complete ellipse is drawn.
The current position is neither used nor updated by this function.

See Also

Arc, Pie

ClearList

Clears out all associated entries in the associated list (list box or combo box).

Syntax

void ClearList(
 HWND hWnd
);

Parameters

hWnd			Identifies the handle to list box or combo box.

CloseClipboard

Closes the clipboard.

Syntax

BOOL CloseClipboard(void);

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

When the window has finished examining or changing the clipboard, close the clipboard by calling CloseClipboard. This enables other windows to access the clipboard.
Do not place an object on the clipboard after calling CloseClipboard.

See Also

OpenClipboard

CloseFile

Closes the file.

Syntax

BOOL CloseFile(
 HANDLE hFile
);

Parameters

hFile			Identifies the file to close.

ReturnValue

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

See Also

CreateFile

CloseWindow

Forces the window to close (sends WM_CLOSE message).

Syntax

LONG CloseWindow(
 HWND hWnd
);

Parameters

hWnd			Identifies the window to close.

Return Value

If an application owning the specified window processes this message, it should return zero.

See Also

DeleteWindow

CopyFile

Copies an existing file to a new file.

Syntax

BOOL CopyFile(
 char *ExistingFile,
 char *NewFile,
 BOOL FailIfExist
);

Parameters

ExistingFile	Points to a null-terminated string that specifies
the name of an existing file.
NewFile		Points to a null-terminated string that specifies
the name of the new file.
FailIfExists	Specifies how this operation is to proceed if a
file of the same name as that specified by NewFile already exists. If this parameter is TRUE and the new file already exists, the function fails. If this parameter is FALSE and the new file already exists, the function overwrites the existing file and succeeds.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

File attributes (FILE_ATTRIBUTE_*) for the existing file are copied to the new file. For example, if an existing file has the FILE_ATTRIBUTE_READONLY file attribute, a copy created through a call to CopyFile will also have the FILE_ATTRIBUTE_READONLY file attribute. For further information on file attributes, see CreateFile.

See Also

CreateFile, MoveFile

CountClipboardFormats

Retrieves the number of different data formats currently on the clipboard.

Syntax

int CountClipboardFormats(void);

Return Value

If the function succeeds, the return value is the number of different data formats currently on the clipboard. If the function fails, the return value is zero. To get extended error information, call GetLastError.

See Also

EnumClipboardFormats, RegisterClipboardFormat

CreateBitmapIndirect

Creates a device-independent bitmap from the binary resource file.

Syntax

HDIB CreateBitmapIndirect(
 char *ResourceFileName,
 char *BitmapName,
 int *Width,
 int *Height
);

Parameters

ResourceFileName	Specifies the name of the binary resource file. If
the full path isn’t specified (only file name), the function tries to open this file from the directory where the current application was started from.
BitmapName		Specifies the name of the bitmap recource.
Width			After the function returns, contains the width of
the bitmap.
Height		After the function returns, contains the height of
the bitmap.

Return Value

Handle to the created bitmap or 0 if function fails.

See Also

LoadBitmapFile, SelectBitmapToDC, CreateCursorIndirect, CreateDialogIndirect, CreateIconIndirect, CreateMenuIndirect

CreateButton

Creates the button control.

Syntax

HWND CreateButton(
 HWND hWndParent,
 int ID,
 char *Caption,
 WORD X,
 WORD Y,
 WORD W,
 WORD H,
 BOOL IsDefault
);

Parameters

hWndParent		Specifies the handle to the parent window.
ID			Specifies the button unique id.
Caption		Button text.
X			x-position of left-top corner of the button.
Y			y-position of left-top corner of the button.
W			Button width.
H			Button height.
IsDefault		TRUE if this button is the default button in the
parent window.

Return Value

Handle of the created button, or 0 if the function fails.

CreateCheckBox

Creates check-box control.

Syntax

HWND CreateCheckBox(
 HWND hWndParent,
 int ID,
 char *Caption,
 WORD X,
 WORD Y,
 WORD W,
 WORD H,
 HWND hGroupBox
);

Parameters

hWndParent		Specifies the handle to the parent window.
ID			Specifies the control unique id.
Caption		Check box text.
X			x-position of left-top corner of the control.
Y			y-position of left-top corner of the control.
W			Width.
H			Height.
hGroupBox		Specifies the handle of the parent group box (can
be 0).

Return Value

Handle of the created check box, or 0 if the function fails.

CreateComboBox

Creates combo-box control.

Syntax

HWND CreateComboBox(
 HWND hWndParent,
 int ID,
 WORD X,
 WORD Y,
 WORD W,
 WORD H,
 DWORD Style,
 WORD TextLen
);

Parameters

hWndParent		Specifies the handle to the parent window.
ID			Specifies the control unique id.
X			x-position of left-top corner of the control.
Y			y-position of left-top corner of the control.
W			Width.
H			Height.
Style			Combo-box style.
TextLen		Maximum text length.

Return Value

Handle of the created combo-box, or 0 if the function fails.

Remarks

One of the following combo box style constants must be among the styles set in style: CBS_SIMPLE, CBS_DROPDOWN or CBS_DROPDOWNLIST.

CreateCursorIndirect

Creates the cursor from the binary resource file.

Syntax

HCURSOR CreateCursorIndirect(
 char *ResourceFileName,
 char *CursorName
);

Parameters

ResourceFileName	Name of the resource file.
CursorName		Name of the cursor recource.

Return Value

Returns the handle to the created cursor, or 0 if fails.

See Also

LoadCursor, AssignCursor, CreateBitmapIndirect, CreateDialogIndirect, CreateMenuIndirect, CreateIconIndirect

CreateDDEData

Creates DDE data handle in the host Windows memory.

Syntax

HANDLE CreateDDEData(
 PTDDEDATA pDDEData
);

Parameters

pDDEData		Pointer to TDDEDATA structure containing DDE data.

Return Value

The function returns global memory handle created using the data in the transputer memory.

See Also

DDEData

CreateDDEPoke

Creates DDE data handle in the host Windows memory.

Syntax

HANDLE CreateDDEPoke(
 PTDDEPOKE pDDEPoke
);

Parameters

pDDEPoke		Pointer to TDDEPOKE structure containing DDE poke
data.

Return Value

The function returns global memory handle created using the data in the transputer memory.

See Also

DDEPoke

CreateDialogIndirect

Creates modal or modeless dialog from the specified binary resource file.

Syntax

HWND CreateDialogIndirect(
 char *ResourceFileName,
 char *DialogName,
 HWND hWndParent,
 DWORD DialogProc,
 BOOL IsModal
);

Parameters

ResourceFileName	Specifies the name of the resource file containing
the dialog resource.
DialogName		Specifies the dialog-type resource in the specified
file.
HWndParent		Specifies the handle of parent window.
DialogProc		Pointer to the dialog message-processing procedure.
IsModal		TRUE to make the dialog as modal, or FALSE
otherwise.

Return Value

The function returns the handle to the just created dialog, or 0 if fails.

CreateEdit

Creates the edit control.

Syntax

HWND CreateEdit(
 HWND hWndParent,
 int ID,
 char *Caption,
 WORD X,
 WORD Y,
 WORD W,
 WORD H,
 WORD TextLen,
 BOOL MultiLine
);

Parameters

hWndParent		Specifies the handle to the parent window.
ID			Specifies the control unique id.
Caption		Specifies the initial text to be displayed.
X			x-position of left-top corner of the control.
Y			y-position of left-top corner of the control.
W			Control width.
H			Control height.
TextLen		Specifies the maximum text length.
MultiLine		TRUE if the edit control is multi-line, or FALSE
otherwise.

Return Value

The function returns the handle to the created edit control, or 0 if fails.

CreateFile

Creates, opens, or truncates a file, pipe, communications resource, disk device, or console. It returns a handle that can be used to access the object. It can also open and return a handle to a directory.

Syntax

HANDLE CreateFile(
 char *FileName,
 DWORD fdwAccess,
 DWORD fdwShareMode,
 DWORD fdwCreate,
 DWORD fdwAttrsAndFlags
);

Parameters

FileName		Points to a null-terminated string that specifies
the name of the file, pipe, communications resource, disk device, or console to create, open, or truncate. If FileName is a path, there is a default string size limit of MAX_PATH characters. This limit is related to how the CreateFile function parses paths. An application can transcend this limit and send in paths longer than MAX_PATH characters by calling the wide (W) version of CreateFile and prepending "\\?\" to the path. The "\\?\" tells the function to turn off path parsing; it lets paths longer than MAX_PATH be used with CreateFileW. This also works with UNC names. The "\\?\" is ignored as part of the path. For example, "\\?\C:\myworld\private" is seen as "C:\myworld\private", and "\\?\UNC\bill_g_1\hotstuff\coolapps" is seen as "\\bill_g_1\hotstuff\coolapps".
fdwAccess		Specifies the type of access to the file or other
object. An application can obtain read access, write access, read-write access, or device query access. You can use the following flag constants to build a value for this parameter. Both GENERIC_READ and GENERIC_WRITE must be set to obtain read-write access:
0			Allows an application to query
device attributes without actually accessing the device.
GENERIC_READ	Specifies read access to the
file. Data can be read from the file and the file pointer can be moved.
GENERIC_WRITE	Specifies write access to the
file. Data can be written to the file and the file pointer can be moved.
FdwShareMode	Specifies how this file can be shared. This
parameter must be some combination of the following values:

0			Prevents the file from being
shared.
FILE_SHARE_READ	Other open operations can be
performed on the file for read access. If the CreateFile function is opening the client end of a mailslot, this flag is specified.
FILE_SHARE_WRITE	Other open operations can be
performed on the file for write access.
FdwCreate		Specifies which action to take on files that exist,
and which action to take when files do not exist. For more information about this parameter, see the following "Remarks" section. This parameter must be one of the following values:
CREATE_NEW		Creates a new file. The function
fails if the specified file already exists.
CREATE_ALWAYS	Creates a new file. The function
overwrites the file if it exists.
OPEN_EXISTING	Opens the file. The function
fails if the file does not exist.
OPEN_ALWAYS		Opens the file, if it exists. If
the file does not exist, the function creates the file as if fdwCreate were CREATE_NEW.
TRUNCATE_EXISTING	Opens the file. Once opened, the
file is truncated so that its size is zero bytes. The calling process must open the file with at least GENERIC_WRITE access. The function fails if the file does not exist.
FdwAttrsAndFlags	Specifies the file attributes and flags for the
file. Any combination of the following attributes is acceptable, except all other file attributes override FILE_ATTRIBUTE_NORMAL.

FILE_ATTRIBUTE_ARCHIVE	The file is an archive file. Applications use
this attribute to mark files for backup or removal.
FILE_ATTRIBUTE_NORMAL	The file has no other attributes set. This
attribute is valid only if used alone.
FILE_ATTRIBUTE_HIDDEN	The file is hidden. It is not to be included
in an ordinary directory listing.
FILE_ATTRIBUTE_READONLY	The file is read only. Applications can read
the file but cannot write to it or delete it.
FILE_ATTRIBUTE_SYSTEM	The file is part of or is used exclusively by
the operating system.
FILE_ATTRIBUTE_TEMPORARY	The file is being used for temporary
storage. File systems should attempt to keep all of the data in memory for quicker access, rather than flushing the data back to mass storage. A temporary file should be deleted by the application as soon as it is no longer needed.
FILE_FLAG_WRITE_THROUGH	Instructs the operating system to write
through any intermediate cache and go directly to the file. The operating system can still cache write operations, but cannot lazily flush them.
FILE_FLAG_NO_BUFFERING	Instructs the operating system to open the
file with no intermediate buffering or caching. This can provide performance gains in some situations.
FILE_FLAG_RANDOM_ACCESS	Indicates that the file is accessed randomly.
Windows uses this flag to optimize file caching.
FILE_FLAG_SEQUENTIAL_SCAN	Indicates that the file is to be
accessed sequentially from beginning to end. Windows uses this flag to optimize file caching. If an application moves the file pointer for random access, optimum caching may not occur; however, correct operation is still guaranteed.
FILE_FLAG_DELETE_ON_CLOSE	Indicates that the operating system is
to delete the file immediately after all its handles have been closed.
FILE_FLAG_BACKUP_SEMANTICS	Indicates that the file is being opened
or created for a backup or restore operation. The operating system ensures that the calling process overrides file security checks, provided it has the necessary permission to do so. The relevant permissions are SE_BACKUP_NAME and SE_RESTORE_NAME.An application can also set this flag to obtain a handle to a directory. A directory handle can be passed to some Win32 functions in place of a file handle.
FILE_FLAG_POSIX_SEMANTICS	Indicates that the file is to be
accessed according to POSIX rules. This includes allowing multiple files with names, differing only in case, for file systems that support such naming. Use care when using this option because files created with this flag may not be accessible by applications written for MS-DOS, Windows 3.x, or Windows NT.

Return Value

If the function succeeds, the return value is an open handle of the specified file. If the specified file exists before the function call and fdwCreate is CREATE_ALWAYS or OPEN_ALWAYS, a call to GetLastError returns ERROR_ALREADY_EXISTS (even though the function has succeeded). If the file does not exist before the call, GetLastError returns zero. If the function fails, the return value is INVALID_HANDLE_VALUE. To get extended error information, call GetLastError.

Remarks

When creating a new file, the CreateFile function performs the following actions:
· 	Combines the file attributes and flags specified by
fdwAttrsAndFlags with FILE_ATTRIBUTE_ARCHIVE.
·	Sets the file length to zero.
When opening an existing file, CreateFile performs the following actions:
·	Combines the file flags specified by fdwAttrsAndFlags with
existing file attributes. CreateFile ignores the file attributes specified by fdwAttrsAndFlags.
·	Sets the file length according to the value of fdwCreate.

If CreateFile opens the client end of a named pipe, the function uses any instance of the named pipe that is in the listening state. The opening process can duplicate the handle as many times as required but, once opened, the named pipe instance cannot be opened by another client. The access specified when a pipe is opened must be compatible with the access specified in the dwOpenMode parameter of the CreateNamedPipe function.
If CreateFile opens the client end of a mailslot, the function always returns a valid handle, even if the mailslot does not exist. In other words, there is no relationship between opening the client end and opening the server end of the mailslot.
CreateFile can create a handle to a communications resource, such as the serial port COM1. For communications resources, the fdwShareMode parameter must be 0 (exclusive access), the fdwCreate parameter must be OPEN_EXISTING. Read, write, or read-write access can be specified.
CreateFile can create a handle to console input (CONIN$). If the process has an open handle to it as a result of inheritance or duplication, it can also create a handle to the active screen buffer (CONOUT$).

The calling process must be attached to an inherited console. For console handles, set the CreateFile parameters as follows:

FileName		Use the CONIN$ value to specify console input and
the CONOUT$ value to specify console output. CONIN$ gets a handle of the console's input buffer.
fdwAccess		GENERIC_READ | GENERIC_WRITE is preferred, but
either one can limit access.
fdwShareMode	If the calling process inherited the console or if
a child process should be able to access the console, this parameter must be FILE_SHARE_READ | FILE_SHARE_WRITE.
fdwCreate		The user should specify OPEN_EXISTING when using
CreateFile to open the console.

The following list shows the effects of various settings of fwdAccess and FileName.

FileName	fwdAccess				Result
CON		GENERIC_READ			Opens console for input.
CON		GENERIC_WRITE			Opens console for output.
CON		GENERIC_READ\GENERIC_WRITE	Causes CreateFile to fail,
returning an error of ERROR_PATH_NOT_FOUND.

The CloseFile function is used to close a handle returned by CreateFile.
As noted above, specifying zero for fdwAccess allows an application to query device attributes without actually accessing the device. This type of querying is useful, for example, if an application wants to determine the size of a floppy disk drive and the formats it supports without having a floppy in the drive.

You can obtain a handle to a directory by setting the FILE_FLAG_BACKUP_SEMANTICS flag. A directory handle can be passed to some Win32 functions in place of a file handle. An application cannot create a directory with CreateFile.

See Also

CloseFile

CreateGraphWindow

Creates a window for GDI output.

Syntax

HWND CreateGraphWindow(
 char *Caption,
 DWORD AProcMes,
 DWORD dwStyle,
 WORD X,
 WORD Y,
 WORD nWidth,
 WORD nHeight,
 WORD BmpXSize,
 WORD BmpYSize,
 HWND hWndParent
);

Parameters

*Caption		Window caption.
AProcMes		Pointer to window message-processing function.
dwStyle		Window style.
X			x-position of left-top corner of the window.
Y			y-position of left-top corner of the window.
nWidth		Window width.
nHeight		Window height.
BmpXSize		Width (in pixels) of device context related
to the window.
BmpYSize		Width (in pixels) of device context related
to the window.
HWndParent		Handle to the parent window (can be 0).

Return Value

The function returns the handle to the created window, or 0 if fails.

Remarks

The following window styles can be specified in the dwStyle parameter:

WS_BORDER		Creates a window that has a thin-line border.
WS_CAPTION		Creates a window that has a title bar (includes the
WS_BORDER style).
WS_CHILD		Creates a child window. This style cannot be used
with the WS_POPUP style.
WS_CHILDWINDOW	Same as the WS_CHILD style.
WS_CLIPCHILDREN	Excludes the area occupied by child windows when
drawing occurs within the parent window. This style is used when creating the parent window.
WS_CLIPSIBLINGS	Clips child windows relative to each other; that
is, when a particular child window receives a WM_PAINT message, the WS_CLIPSIBLINGS style clips all other overlapping child windows out of the region of the child window to be updated. If WS_CLIPSIBLINGS is not specified and child windows overlap, it is possible, when drawing within the client area of a child window, to draw within the client area of a neighboring child window.
WS_DISABLED		Creates a window that is initially disabled. A
disabled window cannot receive input from the user.
WS_DLGFRAME		Creates a window that has a border of a style
typically used with dialog boxes. A window with this style cannot have a title bar.
WS_HSCROLL		Creates a window that has a horizontal scroll bar.
WS_MAXIMIZE		Creates a window that is initially maximized.
WS_MAXIMIZEBOX	Creates a window that has a Maximize button.
WS_MINIMIZE		Creates a window that is initially minimized.
WS_MINIMIZEBOX	Creates a window that has a Minimize button.
WS_OVERLAPPED	Creates an overlapped window. An overlapped window
has a title bar and a border.
WS_OVERLAPPEDWINDOW	Creates an overlapped window with the
WS_OVERLAPPED, WS_CAPTION, WS_SYSMENU, WS_THICKFRAME, WS_MINIMIZEBOX, and WS_MAXIMIZEBOX styles.
WS_POPUP		Creates a pop-up window. This style cannot be used
with the WS_CHILD style.
WS_POPUPWINDOW	Creates a pop-up window with WS_BORDER, WS_POPUP,
and WS_SYSMENU styles. The WS_CAPTION and WS_POPUPWINDOW styles must be combined to make the System menu visible.
WS_SYSMENU		Creates a window that has a System-menu box in its
title bar. The WS_CAPTION style must also be specified.
WS_THICKFRAME	Creates a window that has a sizing border.
WS_VISIBLE		Creates a window that is initially visible.
WS_VSCROLL		Creates a window that has a vertical scroll bar.

CreateGroupBox

Creates group box control.

Syntax

HWND CreateGroupBox(
 HWND hWndParent,
 int ID,
 char *Caption,
 WORD X,
 WORD Y,
 WORD W,
 WORD H
);

Parameters

hWndParent		Specifies the handle of the parent window.
ID			Specifies the unique control id.
Caption		Specifies the group box caption
X			x-position of left-top corner of the control.
Y			y-position of left-top corner of the control.
W			Control width.
H			Control height.

Return Value

The fucntion returns the handle of the created control, or 0 if fails.

CreateIconIndirect

Creates an icon from the specified binary resource file.

Syntax

HICON CreateIconIndirect(
 char *ResourceFileName,
 char *IconName
);

Parameters

ResourceFileName	Specifies the name of resource file.
IconName		Specifies the name of the icon resource in the
resource file.

Return Value

The function returns the handle to the created icon, or 0 if fails.

CreateListBox

Creates a list box control.

Syntax

HWND CreateListBox(
 HWND hWndParent,
 int ID,
 WORD X,
 WORD Y,
 WORD W,
 WORD H);

Parameters

hWndParent		Specifies the handle of the parent window.
ID			Specifies the unique control id.
X			x-position of left-top corner of the control.
Y			y-position of left-top corner of the control.
W			Control width.
H			Control height.

Return Value

The function returns the handle to the created list box, or 0 if fails.

CreateMenu

Creates a menu.

Syntax

HMENU CreateMenu(void);

Return Value

If the function succeeds, the return value is the handle of the newly created menu. If the function fails, the return value is 0.

Remarks

The menu is initially empty, but it can be filled with menu items by using the AppendMenu and InsertMenu functions.
Resources associated with a menu that is assigned to a window are freed automatically. If the menu is not assigned to a window, an application must free system resources associated with the menu before closing. An application frees menu resources by calling the DestroyMenu function.

CreateMenuIndirect

Creates a menu from the specified binary resource file.

Syntax

HMENU CreateMenuIndirect(
 char *ResourceFileName,
 char *MenuName
);

Parameters

ResourceFileName	Specifies the name of resource file.
MenuName		Specifies the name of the menu resource in the
resource file.

Return Value

The function returns the handle to the created menu, or 0 if fails.

CreatePen

The CreatePen function creates a logical pen that has the specified style, width, and color.

Syntax

HANDLE CreatePen(
 int PenStyle,
 int Width,
 DWORD Color
);

Parameters

PenStyle		Specifies the pen style. It can be any one of the
following values:
PS_SOLID		Pen is solid.
PS_DASH		Pen is dashed. This style is
valid only when the pen width is one or less in device units.
PS_DOT		Pen is dotted. This style is
valid only when the pen width is one or less in device units.
PS_DASHDOT		Pen has alternating dashes and
dots. This style is valid only when the pen width is one or less in device units.
PS_DASHDOTDOT	Pen has alternating dashes and
double dots. This style is valid only when the pen width is one or less in device units.
PS_NULL		Pen is invisible.
PS_INSIDEFRAME	Pen is solid. When this pen is
used in any graphics device interface (GDI) drawing function that takes a bounding rectangle, the dimensions of the figure are shrunk so that it fits entirely in the bounding rectangle, taking into account the width of the pen. This applies only to geometric pens.
Width			Specifies the width of the pen, in logical units.
If nWidth is zero, the pen is a single pixel wide, regardless of the current transformation.
Color			Specifies a color reference for the pen color.

Return Value

If the function succeeds, the return value is a handle that identifies a logical pen. If the function fails, the return value is 0.

Remarks

After an application creates a logical pen, it can select that pen into a DC by calling the SelectObject function. After a pen is selected into a DC, it can be used to draw lines and curves.
If the value specified by the Width parameter is zero, a line drawn with the created pen will always be a single pixel wide regardless of the current transformation.
If the value specified by Width is greater than 1, the PenStyle parameter must be PS_NULL, PS_SOLID, or PS_INSIDEFRAME.
If the value specified by Width is greater than 1 and PenStyle is PS_INSIDEFRAME, the line associated with the pen is drawn inside the frame of all primitives except polygons and polylines.
If the value specified by Width is greater than 1, PenStyle is PS_INSIDEFRAME, and the color specified by the Color parameter does not match one of the entries in the logical palette, Windows draws lines by using a dithered color. Dithered colors are not available with solid pens.
When an application no longer requires a given pen, it should call the DeleteObject function to delete the pen from the DC.

See Also

CreateSolidBrush, SelectObject

CreatePopupMenu

Creates a pop-up menu.

Syntax

HMENU CreatePopupMenu(void);

Return Value

If the function succeeds, the return value is the handle of the newly created pop-up menu.
If the function fails, the return value is NULL.

Remarks

The menu is initially empty, but it can be filled with menu items by using the AppendMenu and InsertMenu functions.
The application can add the pop-up menu to an existing menu or pop-up menu.
Resources associated with a pop-up menu that is assigned to a window are freed automatically. If the pop-up menu is not assigned to a window, an application must free system resources associated with the menu before closing. An application frees menu resources by calling the DestroyMenu function.

CreateRadioButton

Creates radio button control.

Syntax

HWND CreateRadioButton(
 HWND hWndParent,
 int ID,
 char *Caption,
 WORD X,
 WORD Y,
 WORD W,
 WORD H,
 HWND hGroupBox
);

Parameters

hWndParent		Specifies the handle of the parent window.
ID			Specifies the unique control id.
Caption		Text to be displayed with the button.
X			x-position of left-top corner of the control.
Y			y-position of left-top corner of the control.
W			Control width.
H			Control height.
hGroupBox		Specifies the handle of parent group box.

Return Value

The function returns handle to the created control, or 0 if fails.

CreateScrollBar

Creates a scroll bar control.

Syntax

HWND CreateScrollBar(
 HWND hWndParent,
 int ID,
 WORD X,
 WORD Y,
 WORD W,
 WORD H,
 BOOL IsHScrollBar
);

Parameters

hWndParent		Specifies the handle of the parent window.
ID			Specifies the unique control id.
X			x-position of left-top corner of the control.
Y			y-position of left-top corner of the control.
W			Control width.
H			Control height.
IsHScrollBar	TRUE for horizontal scroll bar, FALSE for vertical
one.

Return Value

The function returns handle to the created control, or 0 if fails.

CreateSolidBrush

Creates a logical brush that has the specified solid color.

Syntax

HANDLE CreateSolidBrush(
 DWORD Color
);

Parameters

Color			Specifies the color of the brush.

Return Value

If the function succeeds, the return value identifies a logical brush. If the function fails, the return value is NULL.

Remarks

A solid brush is a bitmap that Windows uses to paint the interiors of filled shapes. After an application creates a brush by calling CreateSolidBrush, it can select that brush into any device context by calling the SelectObject function.

See Also

CreatePen, SelectObject

CreateStatic

Creates static control.

Syntax

HWND CreateStatic(
 HWND hWndParent,
 int ID,
 char *Caption,
 WORD X,
 WORD Y,
 WORD W,
 WORD H,
 WORD TextLen
);

Parameters

hWndParent		Specifies the handle of the parent window.
ID			Specifies the unique control id.
Caption		The initial text to be displayed.
X			x-position of left-top corner of the control.
Y			y-position of left-top corner of the control.
W			Control width.
H			Control height.
TextLen		Specifies the maximum length of the text to be
displayed.

Return Value

The function returns handle to the created control, or 0 if fails.

CreateWindow

Creates a window.

Syntax

HWND CreateWindow(
 DWORD dwStyle,
 HWND hWndParent,
 char *Caption,
 DWORD ATranMesProc,
 WORD X,
 WORD Y,
 WORD nWidth,
 WORD nHeight
);

Parameters

dwStyle		Window style.
hWndParent		Handle to the parent window (can be 0).
*Caption		Window caption.
ATranMesProc	Pointer to window message-processing function.
X			x-position of left-top corner of the window.
Y			y-position of left-top corner of the window.
nWidth		Window width.
nHeight		Window height.

Return Value

The function returns the handle to the created window, or 0 if fails.

Remarks

The following window styles can be specified in the dwStyle parameter:

WS_BORDER		Creates a window that has a thin-line border.
WS_CAPTION		Creates a window that has a title bar (includes the
WS_BORDER style).
WS_CHILD		Creates a child window. This style cannot be used
with the WS_POPUP style.
WS_CHILDWINDOW	Same as the WS_CHILD style.
WS_CLIPCHILDREN	Excludes the area occupied by child windows when
drawing occurs within the parent window. This style is used when creating the parent window.
WS_CLIPSIBLINGS	Clips child windows relative to each other; that
is, when a particular child window receives a WM_PAINT message, the WS_CLIPSIBLINGS style clips all other overlapping child windows out of the region of the child window to be updated. If WS_CLIPSIBLINGS is not specified and child windows overlap, it is possible, when drawing within the client area of a child window, to draw within the client area of a neighboring child window.
WS_DISABLED		Creates a window that is initially disabled. A
disabled window cannot receive input from the user.
WS_DLGFRAME		Creates a window that has a border of a style
typically used with dialog boxes. A window with this style cannot have a title bar.
WS_HSCROLL		Creates a window that has a horizontal scroll bar.
WS_MAXIMIZE		Creates a window that is initially maximized.
WS_MAXIMIZEBOX	Creates a window that has a Maximize button.
WS_MINIMIZE		Creates a window that is initially minimized.
WS_MINIMIZEBOX	Creates a window that has a Minimize button.
WS_OVERLAPPED	Creates an overlapped window. An overlapped window
has a title bar and a border.
WS_OVERLAPPEDWINDOW	Creates an overlapped window with the
WS_OVERLAPPED, WS_CAPTION, WS_SYSMENU, WS_THICKFRAME, WS_MINIMIZEBOX, and WS_MAXIMIZEBOX styles.
WS_POPUP		Creates a pop-up window. This style cannot be used
with the WS_CHILD style.
WS_POPUPWINDOW	Creates a pop-up window with WS_BORDER, WS_POPUP,
and WS_SYSMENU styles. The WS_CAPTION and WS_POPUPWINDOW styles must be combined to make the System menu visible.
WS_SYSMENU		Creates a window that has a System-menu box in its
title bar. The WS_CAPTION style must also be specified.
WS_THICKFRAME	Creates a window that has a sizing border.
WS_VISIBLE		Creates a window that is initially visible.
WS_VSCROLL		Creates a window that has a vertical scroll bar.

DDEAckOnExecute

Posts WM_DDE_ACK message in reply to WM_DDE_EXECUTE message.

Syntax

BOOL DDEAckOnExecute(
 HWND hWndTo,
 HWND hWndFrom,
 PTDDEACK pDDEAck,
 HANDLE hCommands
);

Parameters

hWndTo		Sending window handle.
hWndFrom		Target window handle.
pDDEAck		Points to memory block containing TDDEACK structure
(a series of flags that indicate the status of the response).
hCommands 	Pointer to memory handle containing command string.

Return Value

TRUE if successfully posted, FALSE otherwise.

DDEAckOnInitiate

Posts WM_DDE_ACK message in reply to WM_DDE_INITIATE message.

Syntax

void DDEAckOnInitiate(
 HWND hWndTo,
 HWND hWndFrom,
 ATOM aApplication,
 ATOM aTopic
);

Parameters

hWndTo		Sending window handle.
hWndFrom		Target window handle.
aApplication	An atom that contains the name of the replying
application.
aTopic		An atom that contains the topic with which the
replying server window is associated.

DDEAckOnOther

Posts WM_DDE_ACK message in reply to DDE messages except WM_DDE_INITIATE and WM_DDE_EXECUTE.

Syntax

BOOL DDEAckOnOther(
 HWND hWndTo,
 HWND hWndFrom,
 PTDDEACK pDDEAck,
 ATOM aItem
);

Parameters

hWndTo		Sending window handle.
hWndFrom		Target window handle.
pDDEAck		Points to memory block containing DDEACK structure
(a series of flags that indicate the status of the response).
aItem			An atom that specifies the data item for which the
response is sent.

Return Value

TRUE if successfully posted, FALSE otherwise.

DDEAdvise

Posts WM_DDE_ADVISE message.

Syntax

BOOL DDEAdvise(
 HWND hWndTo,
 HWND hWndFrom,
 PTDDEADVISE pDDEAdvise,
 ATOM aItem,
 HANDLE *hDDEAdvise
);

Parameters

hWndTo		Sending window handle.
hWndFrom		Target window handle.
PDDEAdvise		Pointer to memory block containing DDEADVISE
structure (how the data to be sent).
aItem			An atom that specifies the data item being
requested.
hDDEAdvise		Returns pointer to created memory object with
DDEADVISE structure.

Return Value

TRUE if successfully posted, FALSE otherwise.

DDEData

Posts WM_DDE_DATA message.

Syntax

BOOL DDEData(
 HWND hWndTo,
 HWND hWndFrom,
 PTDDEDATA pDDEData,
 ATOM aItem,
 HANDLE *hDDEData
);

Parameters

hWndTo		Sending window handle.
hWndFrom		Target window handle.
pDDEData		Pointer to memory block containing TDDEDATA
structure (the uSize field should be set to 0 if the server is notifying the client that the data item value has changed during a “warm link”).
aItem			An atom that identifies the data item for which
data or notification is sent.
hDDEData		Returns pointer to created memory object with
TDDEADVISE structure.

Return Value

TRUE if successfully posted, FALSE otherwise.

DDEExecute

Posts WM_DDE_EXECUTE message.

Syntax

BOOL DDEExecute(
 HWND hWndTo,
 HWND hWndFrom,
 char *Commands,
 HANDLE *hCommands
);

Parameters

hWndTo		Sending window handle.
hWndFrom		Target window handle.
Commands		Command(s) to be executed.
hCommands		Returns pointer to created memory object with
command string.

Return Value

TRUE if successfully posted, FALSE otherwise.

DDEInitiate

Sends WM_DDE_INITIATE message.

Syntax

void DDEInitiate(
 HWND hWndTo,
 HWND hWndFrom,
 ATOM aApplication,
 ATOM aTopic
);

Parameters

hWndTo		Sending window handle.
hWndFrom		Target window handle.
aApplication	An atom that specifies the name of the application
with which a conversation is requested. The application name may not contain slashes or backslashes. If the application name is NULL, a conversation with all application is requested.
aTopic		An atom that specifies the topic for which a
conversation is requested. If the topic is NULL, a
conversation for all available topics is requested.

DDEPoke

Posts WM_DDE_POKE message.

Syntax

BOOL DDEPoke(
 HWND hWndTo,
 HWND hWndFrom,
 PTDDEPOKE pDDEPoke,
 ATOM aItem
);

Parameters

hWndTo		Sending window handle.
hWndFrom		Target window handle.
pDDEPoke		Pointer to memory block containing TDDEPOKE
structure (data and other information).
aItem			An atom that identifies the data item offered to
the server application.

Return Value

TRUE if successfully posted, FALSE otherwise.

DDERequest

Posts WM_DDE_REQUEST message.

Syntax

BOOL DDERequest(
 HWND hWndTo,
 HWND hWndFrom,
 WORD cfFormat,
 ATOM aItem
);

Parameters

hWndTo		Sending window handle.
hWndFrom		Target window handle.
cfFormat		A standard or registered clipboard format number.
aItem			An atom that specifies which data item is being
requested from the server.

Return Value

TRUE if successfully posted, FALSE otherwise.

DDETerminate

Posts WM_DDE_TERMINATE message.

Syntax

void DDETerminate(
 HWND hWndTo,
 HWND hWndFrom
);

Parameters

hWndTo		Sending window handle.
hWndFrom		Target window handle.

DDEUnAdvise

Posts WM_DDE_UNADVISE message.

Syntax

BOOL DDEUnAdvise(
 HWND hWndTo,
 HWND hWndFrom,
 ATOM aItem,
 WORD cfFormat
);

Parameters

hWndTo		Sending window handle.
hWndFrom		Target window handle.
aItem			An atom that specifies the data for which the
update request is being retracted. When aItem is 0, all active WM_DDE_ADVISE conversations associated with the client are to be terminated.
cfFormat		The clipboard format of the item that specifies the
clipboard format for which the update request is being retracted. When cfFormat is 0, all active WM_DDE_ADVISE conversations for the item are to be terminated.

Return Value

TRUE if successfully posted, FALSE otherwise.

DeleteDC

Deletes the specified device context (DC).

Syntax

BOOL DeleteDC(
 HDC DC
);

Parameters

DC			Identifies the DC.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE.

Remarks

An application must not delete a DC whose handle was obtained by calling the GetDC function. Instead, it must call the ReleaseDC function to free the DC.

DeleteFile

Deletes the specified file.

Syntax

BOOL DeleteFile(
 char *FileName
);

Parameters

FileName		Specifies the name of file to delete.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE.

DeleteMenu

Deletes an item from the specified menu.

Syntax

BOOL DeleteMenu(
 HMENU Menu,
 UINT Position,
 UINT Flags
);

Parameters

Menu			Identifies the menu to be changed.
Position		Specifies the menu item to be deleted, as
determined by the Flags parameter.
Flags			Specifies how the uItem parameter is interpreted.
This parameter must be one of the following values:
MF_BYCOMMAND	Indicates that uItem gives the
identifier of the menu item. The MF_BYCOMMAND flag is the default flag if neither the MF_BYCOMMAND nor MF_BYPOSITION flag is specified.
MF_BYPOSITION	Indicates that uItem gives the
zero-based relative position of the menu item.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

The application must call the DrawMenuBar function whenever a menu changes, whether or not the menu is in a displayed window.
If the menu item invokes a pop-up menu, this function destroys the handle of the pop-up menu and frees the memory used by the pop-up menu.

DeleteObject

Deletes a logical pen, brush, font, bitmap, region, or palette, freeing all system resources associated with the object.

Syntax

BOOL DeleteObject(
 HANDLE Object
);

Parameters

Object		Identifies a logical pen, brush, font, bitmap,
region, or palette.

Return Value

If the function succeeds, the return value is TRUE. If the given handle is not valid or is currently selected into a device context (DC), the return value is FALSE.

Remarks

The object to be deleted must not be currently selected into a DC. When a pattern brush is deleted, the bitmap associated with the brush is not deleted. The bitmap must be deleted independently.
After the object is deleted, the specified handle is no longer valid.

See Also

SelectObject

DeleteString

Deletes the item in the list (of list box or combo box) at the position supplied.

Syntax

int DeleteString(
 HWND hWnd,
 int Index
);

Parameters

hWnd			The handle of list box or combo box.
Index			The position of string to delete.

Return Value

Returns the number of remaining list items, or a negative value if an error occurs.

DeleteWindow

Destroys the given window.

Syntax

BOOL DeleteWindow(
 HWND hWnd
);

Parameters

hWnd			Identifies the window to be destroyed.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

The function sends WM_DESTROY and WM_NCDESTROY messages to the window to deactivate it and remove the keyboard focus from it. The function also destroys the window's menu, flushes the thread message queue, destroys timers, removes clipboard ownership, and breaks the clipboard viewer chain (if the window is at the top of the viewer chain).
If the given window is a parent or owner window, DeleteWindow automatically destroys the associated child or owned windows when it destroys the parent or owner window. The function first destroys child or owned windows, and then it destroys the parent or owner window.
DeleteWindow also destroys modeless dialog boxes created by the CreateDialogIndirect function.
A thread cannot use DeleteWindow to destroy a window created by a different thread. If the window being destroyed is a child window that does not have the WS_EX_NOPARENTNOTIFY style, a WM_PARENTNOTIFY message is sent to the parent.

See Also

CloseWindow

DestroyMenu

Destroys the given menu and frees any memory that the menu occupies.

Syntax

BOOL DestroyMenu(
 HMENU Menu
);

Parameters

Menu			Identifies the menu to be destroyed.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

Before closing, an application must use this function to destroy a menu not assigned to a window. A menu that is assigned to a window is automatically destroyed when the application closes.

See Also

CreateMenu, DeleteMenu

DisableDCBuffering

Flushs buffer and disables buffering for the specified device context.

Syntax

BOOL DisableDCBuffering(
 HDC hDC
);

Parameters

hDC			Device context handle.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE.

See Also

EnableDCBuffering, FlushDCBuffer

DisableMouseMessages

Disables sending mouse messages (WM_MOUSE, WM_LBUTTONDOWN, WM_LBUTTONUP, WM_RBUTTONDOWN, WM_LBUTTONDBLCLK) to the specified window queue.

Syntax

void DisableMouseMessages(
 HWND hWnd
);

Parameters

hWnd			Window handle.

Remarks

This function applies only to the windows created with CreateGraphWindow function.
Use this function to eliminate the number of messages beimg sent to the specified window, if you don’t need mouse input. Note that mouse input is enabled by default.

See Also

EnableMouseMessages

DispatchMessage

Dispatches a message to a window procedure.

Syntax

BOOL DispatchMessage(
 TMSG *Msg
);

Parameters

Msg			Points to an MSG structure that contains the
message.

Return Value

The return value specifies the value returned by the window procedure. Generally, the main message loop containing this function end when DispatchMessage returns FALSE.

See Also

RetrieveMessage, PeekMessage, SendMessage, PostMessage

DrawMenuBar

Redraws the menu bar of the specified window.

Syntax

BOOL DrawMenuBar(
 HWND hWnd
);

Parameters

hWnd			Identifies the window whose menu bar needs
redrawing.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

If the menu bar changes after Windows has created the window, this function must be called to draw the changed menu bar.

Ellipse

The Ellipse function draws an ellipse.

Syntax

BOOL Ellipse(
 HDC DC,
 int X1,
 int Y1,
 int X2,
 int Y2
);

Parameters

DC			Identifies the device context.
X1			Specifies the x-coordinate of the upper-left corner
of the bounding rectangle.
Y1			Specifies the y-coordinate of the upper-left corner
of the bounding rectangle.
X2

Specifies the x-coordinate of the lower-right corner of the bounding rectangle.

nBottomRect

Specifies the y-coordinate of the lower-right corner of the bounding rectangle.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

The center of the ellipse is the center of the given bounding rectangle. The ellipse is outlined by using the current pen and is filled by using the current brush.
The current position is neither used nor updated by this function.

See Also

Arc

EmptyClipboard

Empties the clipboard and frees handles to data in the clipboard.

Syntax

BOOL EmptyClipboard(void);

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

Before calling EmptyClipboard, an application must open the clipboard by using the OpenClipboard function. If the application specifies a NULL window handle when opening the clipboard, EmptyClipboard succeeds but sets the clipboard owner to NULL.

See Also

SetClipboardData

EnableDCBuffering

Enables buffering for the specified device context.

Syntax

BOOL EnableDCBuffering(
 HDC hDC,
 WORD wBufferSize
);

Parameters

hDC			Handle of device context.
wBufferSize		Specifies the size of DC buffer (number of
GDI calls).

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE.

Remarks

Not more than 16 device contexts can be buffered. The size of DC buffer limited only with the amount of free memory (note that one call requires at least 8 bytes).

See Also

DisableDCBuffering, FlushDCBuffer

EnableMenuItem

Enables, disables, or grays the given menu item.

Syntax

BOOL EnableMenuItem(
 HMENU Menu,
 UINT ItemID,
 UINT Enable
);

Parameters

Menu			Identifies the menu.
ItemID		Specifies the menu item to be enabled, disabled, or
grayed, as determined by the fuFlags parameter. This parameter specifies an item in a menu bar or in a pop-up menu.
Enable		Specifies flags that control the interpretation of
the uItem parameter and indicate whether the menu item is enabled, disabled, or grayed. This parameter must be a combination of either MF_BYCOMMAND or MF_BYPOSITION and MF_ENABLED, MF_DISABLED, or MF_GRAYED.
MF_BYCOMMAND	Indicates that uItem gives the
identifier of the menu item. If neither the MF_BYCOMMAND nor MF_BYPOSITION flag is specified, the MF_BYCOMMAND flag is the default flag.
MF_BYPOSITION	Indicates that uItem gives the
zero-based relative position of the menu item.
MF_DISABLED		Indicates that the menu item is
disabled, but not grayed, so it cannot be selected.
MF_ENABLED		Indicates that the menu item is
enabled and restored from a grayed state so that it can be selected.
MF_GRAYED		Indicates that the menu item is
disabled and grayed so that it cannot be selected.

Return Value

The return value specifies the previous state of the menu item (it is either MF_DISABLED, MF_ENABLED, or MF_GRAYED). If the menu item does not exist, the return value is 0xFFFFFFFF.

Remarks

The CreateMenu, InsertMenu and ModifyMenu functions can also set the state (enabled, disabled, or grayed) of a menu item.
An application must use the MF_BYPOSITION flag to specify the correct menu handle. If the menu handle of the menu bar is specified, the top-level menu item (an item in the menu bar) is affected. To set the state of an item in a pop-up or nested pop-up menu by position, an application must specify the handle of the pop-up menu.
When an application specifies the MF_BYCOMMAND flag, Windows checks all pop-up items that are subordinate to the menu identified by the specified menu handle. Therefore, unless duplicate menu items are present, specifying the menu handle of the menu bar is sufficient.

See Also

CreateMenu, GetMenuItemID, InsertMenu, CreateMenuIndirect

EnableMouseMessages

Disables sending mouse messages (WM_MOUSE, WM_LBUTTONDOWN, WM_LBUTTONUP, WM_RBUTTONDOWN, WM_LBUTTONDBLCLK) to the specified window queue.

void EnableMouseMessages(
 HWND hWnd
);

Parameters

hWnd			Window handle.

See Also

DisableMouseMessages

EnableWindow

Enables or disables mouse and keyboard input to the specified window or control. When input is disabled, the window does not receive input such as mouse clicks and key presses. When input is enabled, the window receives all input.

Syntax

BOOL EnableWindow(
 HWND hWnd,
 BOOL Enable
);

Parameters

hWnd			Identifies the window to be enabled or disabled.
Enable		Specifies whether to enable or disable the window.
If this parameter is TRUE, the window is enabled. If the parameter is FALSE, the window is disabled.

Return Value

If the window was previously disabled, the return value is TRUE; otherwise, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

If the enabled state of a window is changing, a WM_ENABLE message is sent before this function returns. If a window is already disabled, all its child windows are implicitly disabled, although they are not sent a WM_ENABLE message.
A window must be enabled before it can be activated. For example, if an application is displaying a modeless dialog box and has disabled its main window, the application must enable the main window before destroying the dialog box. Otherwise, another window will receive the keyboard focus and be activated. If a child window is disabled, it is ignored when Windows tries to determine which window should receive mouse messages.
By default, a window is enabled when it is created. To create a window that is initially disabled, an application can specify the WS_DISABLED style in the CreateWindow or CreateGraphWindow function. After a window has been created, an application can use the EnableWindow function to enable or disable the window.
An application can use this function to enable or disable a control in a dialog box. A disabled control cannot receive the keyboard focus, nor can a user access it.

EnableWLib

Initializes Windows Server structures and enables Wlib API functions to be called.

Syntax

void EnableWLib(
 BOOL enable
);

Parameters

enable		TRUE to enable Windows Library, FALSE to disable.

Remarks

Call to any of Wlib API functions may fail or even cause system crash, if Wlib will not be initialized.
It’s recommended to call EnableWLib function with FALSE parameter at the end of your program - to free allocated memory.

See Also

InitWLib

EndDoc

Ends a print job. This function replaces the ENDDOC printer escape.

Syntax

int EndDoc(
 HDC hDC
);

Parameters

hDC			Identifies the device context for the print job.

Return Value

If the function succeeds, the return value is greater than zero. If the function fails, the return value is SP_ERROR. To get extended error information, call GetLastError.

Remarks

Applications should call the EndDoc function immediately after finishing a print job.

See Also

StartDoc

EndPage

Informs the device that the application has finished writing to a page. This function is typically used to direct the device driver to advance to a new page. This function replaces the NEWFRAME printer escape.

Syntax

int EndPage(
 HDC hDC
);

Parameters

hDC			Identifies the device context for the print job.

Return Value

If the function succeeds, the return value is greater than zero. If the function fails, the return value is SP_ERROR. To get extended error information, call GetLastError.

See Also

StartPage

EnumClipboardFormats

Enumerates the formats currently available on the clipboard. Upon each call to this function, the uFormat parameter specifies an available clipboard format, and the function returns the next available format.

UINT EnumClipboardFormats(
 UINT Format
);

Parameters

Format		Specifies a known available clipboard format. Zero
is specified to retrieve the first format in the list.

Return Value

If the function succeeds, the return value is the next available clipboard format after the specified format. If the function fails, the return value is zero. To get extended error information, call GetLastError. If there are no more available clipboard formats or the clipboard is not open, the return value is zero.

Remarks

Before it enumerates the formats by using EnumClipboardFormats, an application must open the clipboard by using the OpenClipboard function.
EnumClipboardFormats enumerates the formats in the order they were placed on the clipboard. A window copying information to the clipboard should add clipboard objects in order - from the most descriptive clipboard format to the least descriptive. A window pasting information from the clipboard should retrieve the first format it can handle.
If the system provides automatic type conversions for a clipboard format, the given format is enumerated followed by the formats to which it can be converted. For more information about automatic type conversions, see the SetClipboardData function.

See Also

CountClipboardFormats, OpenClipboard, RegisterClipboardFormat

ExecFileDialog

Executes common file dialog.

Syntax

int ExecFileDialog(
 HWND Parent,
 int ResourceId,
 char *Path
);

Parameters

Parent		Handle to parent window.
ResourceId		Specifies the type of dialog:
SD_FILEOPEN		“Open” dialog
SD_FILESAVE		“Save As” dialog
Path			Specifies file mask for filtering file names in the
dialog. May contain wildargs (‘*’ and ‘?’). After the function returns, contains the selected file name.

Return Value

The function returns either IDOK (if the filename was selected and the user pressed “OK” button), or IDCANCEL (if the user pressed “Cancel” button, “Escape” key or closed the dialog with any other way).

ExecInputDialog

Executes common input dialog.

Syntax

int ExecInputDialog(
 HWND Parent,
 char *Title,
 char *Prompt,
 char *Buffer,
 WORD BufferSize
);

Parameters

Parent		Parent window handle.
Title			Dialog title.
Prompt		Dialog prompt.
Buffer		Buffer to receive user input.
BufferSize		BufferSize.

Return Value

IDOK or IDCANCEL.

ExitWindows

Either logs off, shuts down, or shuts down and restarts the system.

Syntax

BOOL ExitWindows(
 UINT fuOptions
);

Parameters

fuOptions		Specifies the type of shutdown. This parameter must
be some combination of the following values:
EWX_FORCE		Forces processes to terminate.
Instead of bringing up the "application not responding" dialog box for the user, this value forces an application to terminate if it does not respond.
EWX_LOGOFF		Shuts down all processes running
in the security context of the process that called the ExitWindows function. Then it logs the user off.
EWX_POWEROFF	Shuts down the system and turns
off the power. The system must support the power-off feature.
EWX_REBOOT		Shuts down the system and then
restarts the
system.
EWX_SHUTDOWN	Shuts down the system to a point
at which it is safe to turn off the power. All file buffers have been flushed to disk, and all running processes have stopped.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

This function returns as soon as it has initiated the shutdown. The shutdown or logoff then proceeds asynchronously.
During a shutdown or log-off operation, applications that are shut down are allowed a specific amount of time to respond to the shutdown request. If the time expires, Windows displays a dialog box that allows the user to forcibly shut down the application, to retry the shutdown, or to cancel the shutdown request. If the EWX_FORCE value is specified, Windows always forces applications to close and does not display the dialog box.

FindWindow

Retrieves the handle of the top-level window whose window name match the specified string.

Syntax

HWND FindWindow(
 char *Caption
);

Parameters

Class			Points to a null-terminated string that specifies
the window name (the window's title). If this parameter is NULL, all window names match.

Return Value

If the function succeeds, the return value is the handle of the window that has the specified window name. If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks

This function does not search child windows.

FloodFill

Fills an area of the display surface with the current brush. The area is assumed to be bounded as specified by the Color parameter.

Syntax

BOOL FloodFill(
 HDC DC,
 int X,
 int Y,
 DWORD Color
);

Parameters

DC			Identifies a device context.
X			Specifies the logical x-coordinate of the point
where filling is to begin.
Y			Specifies the logical y-coordinate of the point
where filling is to begin.
Color			Specifies the color of the boundary or of the area
to be filled.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

Following are reasons this function might fail:

·	The fill could not be completed.
·	The given point has the boundary color specified by the Color
parameter.
·	The given point lies outside the current clipping region - that
is, it is not visible on the device.

FlushDCBuffer

Flushs DC buffer for the specified GDI device (forces all cached functions to be called).

Syntax

BOOL FlushDCBuffer(
 HDC hDC
);

Parameters

hDC			Device context.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE.

See Also

EnableDCBuffering, DisableDCBuffering

FreeDDElParam

Syntax

BOOL FreeDDElParam(
 UINT uMsg,
 LONG lParam
);

The FreeDDElParam function frees the memory specified by the lParam parameter of a posted DDE message. An application receiving a posted DDE message should call this function after it has used the UnpackDDElParam function to unpack the lParam value.

Parameters

uMsg			Specifies the posted DDE message.
lParam		Specifies the lParam parameter of the posted DDE
message.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE.

Remarks

An application should call this function only for posted DDE messages. This function frees the memory specified by the lParam parameter. It does not free the contents of lParam.

See Also

PackDDElParam, UnpackDDElParam

GetCheck

Returns the state of the check box.

Syntax

UINT GetCheck(
 HWND hWnd
);

Return Value

BF_CHECKED 		Button is checked
BF_UNCHECKED	Button id unchecked
BF_GRAYED		Button is grayed (disabled)

GetBValue

Retrieves an intensity value for the blue component of a 32-bit red, green, blue (RGB) value.

Syntax

BYTE GetRValue(
 DWORD rgb)

Parameters

rgb			Specifies an RGB color value.

Return Value

The return value is the intensity of the blue component of the specified RGB color.

Remarks

The intensity value is in the range 0 through 255. The GetBValue macro is defined as follows:

#define GetBValue(rgb) ((BYTE)((rgb)>>16))

GetClassLong

Retrieves the specified 32-bit (long) value from the WNDCLASS structure associated with the specified window.

Syntax

LONG GetClassLong(
 HWND hWnd,
 int Index
);

Parameters

hWnd			Identifies the window and, indirectly, the class to
which the window belongs.
Index			Specifies the 32-bit value to retrieve. To retrieve
a 32-bit value from the extra class memory, specify the positive, zero-based byte offset of the value to be retrieved. Valid values are in the range zero through the number of bytes of extra class memory, minus four; for example, if you specified 12 or more bytes of extra class memory, a value of 8 would be an index to the third 32-bit integer. To retrieve any other value from the WNDCLASS structure, specify one of the following values:
GCL_CBCLSEXTRA	Retrieves the size, in bytes, of
the extra memory associated with the class.
GCL_CBWNDEXTRA	Retrieves the size, in bytes, of
the extra window memory associated with each window in the class. For information on how to access this memory, see GetWindowLong and GetWindowWord .
GCL_HBRBACKGROUND	Retrieves the handle of the
background brush associated with the class.
GCL_HCURSOR		Retrieves the handle of the
cursor associated with the class.
GCL_HICON		Retrieves the handle of the icon
associated with the class.
GCL_HMODULE		Retrieves the handle of the
module that registered the class.
GCL_MENUNAME	Retrieves the address of the menu
name string. The string identifies the menu resource associated with the class.
GCL_STYLE		Retrieves the window-class style
bits.
GCL_WNDPROC		Retrieves the address of the
window procedure associated with the class.

Return Value

If the function succeeds, the return value is the requested 32-bit value. If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

Reserve extra class memory by specifying a nonzero value in the cbClsExtra member of the WNDCLASS structure used with the RegisterClass function.

See Also

GetClassWord, GetWindowLong, GetWindowWord, SetClassLong, SetClassWord

GetClassWord

The GetClassWord function retrieves the 16-bit (word) value at the specified offset into the extra class memory for the window class to which the specified window belongs.

Syntax

WORD GetClassWord(
 HWND hWnd,
 int Index
);

Parameters

hWnd			Identifies the window and, indirectly, the class to
which the window belongs.
Index			Specifies the zero-based byte offset of the value
to be retrieved. Valid values are in the range zero through the number of bytes of class memory, minus two; for example, if you specified 10 or more bytes of extra class memory, a value of eight would be an index to the fifth 16-bit integer. There is an additional valid value:
GCW_ATOM	Retrieves an ATOM value that uniquely
identifies the window class. This is the same atom that the RegisterClass function returns.
GCW_HICONSM	Retrieves the handle of the small icon
associated with the window.

Return Value

If the function succeeds, the return value is the requested 16-bit value. If the function fails, it is zero. To get extended error information, call GetLastError.

Remarks

Other than GCW_ATOM and GCW_HICONSM, the GCW_ values are obsolete in the Win32 API. You must use the GetClassLong function to retrieve the class values of a window.

See Also

SetClassLong, SetClassWord

GetClipboardData

Retrieves data from the clipboard in the specified format. The clipboard must have been opened previously.

Syntax

HANDLE GetClipboardData(
 UINT Format
);

Parameters

Format		Specifies a clipboard format. For a description of
the clipboard formats, see the SetClipboardData function.

Return Value

If the function succeeds, the return value is the handle of a clipboard object in the specified format. If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks

An application can enumerate the available formats in advance by using the EnumClipboardFormats function.
The clipboard controls the handle GetClipboardData returns, not the application. The application must copy the data immediately, instead of relying on its handle for long-term use. The application must not free the handle or leave it locked.
The system implicitly converts data between certain clipboard formats. For example, if the CF_UNICODETEXT format is on the clipboard, a window can also retrieve data in the CF_TEXT or CF_OEMTEXT format. The available format is converted to the requested format on demand. The system converts between the three text formats just mentioned, between the two metafile formats (CF_ENHMETAFILE and CF_METAFILEPICT), and between the two bitmap formats (CF_BITMAP and CF_DIB). The system can also convert CF_DIB to CF_PALETTE (logical color palette). If the system provides a conversion between multiple formats, there is no advantage to placing them on the clipboard.

If the system provides automatic type conversions for a clipboard format, the given format is enumerated, followed by the formats to which it can be converted. For more information about automatic type conversions, see the SetClipboardData function.

See Also

EnumClipboardFormats

GetClipboardFormatName

Retrieves from the clipboard the name of the specified registered format. The function copies the name to the specified buffer.

Syntax

int GetClipboardFormatName(
 UINT Format,
 char *FormatName,
 int MaxCount
);

Parameters

Format		Specifies the type of format to be retrieved. This
parameter must not specify any of the predefined clipboard formats.
FormatName		Points to the buffer that is to receive the format
name.
MaxCount		Specifies the maximum length, in characters, of the
string to be copied to the buffer. If the name exceeds this limit, it is truncated.

Return Value

If the function succeeds, the return value is the length, in characters, of the string copied to the buffer. If the function fails, the return value is zero, indicating that the requested format does not exist or is predefined. To get extended error information, call GetLastError.

See Also

EnumClipboardFormats, RegisterClipboardFormat

GetClipboardOwner

Retrieves the window handle of the current owner of the clipboard.

Syntax

HWND GetClipboardOwner(void);

Parameters

This function has no parameters.

Return Value

If the function succeeds, the return value is the handle of the window that owns the clipboard. If the clipboard is not owned, the return value is NULL. To get extended error information, call GetLastError.

Remarks

The clipboard can still contain data even if the clipboard is not currently owned. In general, the clipboard owner is the window that last placed data in clipboard. The EmptyClipboard function assigns clipboard ownership.

GetCount

Returns the number of items in the list box or combo box.

Syntax

int GetCount(
 HWND hWnd
);

Parameters

hWnd			Handle of combo box or list box.

Return Value

The number of items in the list box or combo box, or a negative value if an error occurs.

GetCurrentPosition

Retrieves the current position in logical coordinates.

BOOL GetCurrentPosition(
 HDC hDC,
 PPOINT pPoint
);

Parameters

hDC			Identifies the device context.
pPoint		Points to a POINT structure that receives the
coordinates of the current position.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE.

See Also

MoveTo

GetCurrentTime

Retrieves the number of milliseconds that have elapsed since Windows was started.

Syntax

DWORD GetCurrentTime(void);

Return Value

If the function succeeds, the return value is the number of milliseconds that have elapsed since Windows was started.

Remarks

The internal timer wraps around to zero if Windows is run continuously for approximately 49.7 days.

GetCursorPos

Retrieves the cursor's position, in screen coordinates.

Syntax

BOOL GetCursorPos(
 PPOINT Point
);

Parameters

Point			Points to a POINT structure that receives the
screen coordinates of the cursor.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

The cursor position is always given in screen coordinates and is not affected by the mapping mode of the window that contains the cursor.

See Also

SetCursorPos

GetDC

The GetDC function retrieves a handle of a display device context (DC) for the client area of the specified window.

HDC GetDC(
 HWND hWnd
);

Parameters

hWnd			Identifies the window whose DC is to be retrieved.

Return Value

If the function succeeds, the return value identifies the DC for the given window's client area. If the function fails, the return value is NULL.

Remarks

After painting with a common DC, the ReleaseDC function must be called to release the DC. The number of DCs is limited only by available memory.

See Also

ReleaseDC

GetDDEAdvise

Copies data stored in DDE shared memory on host computer to local transputer memory.

Syntax

void GetDDEAdvise(
 HANDLE hDDEAdvise,
 PTDDEADVISE pDDEAdvise
);

Parameters

hDDEAdvise		Handle of memory object containing TDDEADVISE
structure.
pDDEData		Pointer to local transputer memory for storing
TDDEADVISE structure (must be already allocated).

GetDDEData
�Copies data stored in DDE shared memory on host computer to local transputer memory.

Syntax

void GetDDEData(
 HANDLE hDDEData,
 PTDDEDATA pDDEData
);

Parameters

hDDEData		Handle of memory object containing TDDEDATA
structure.
pDDEData		Pointer to local transputer memory for storing
TDDEDATA structure (must be already allocated according to GetDDEDataInfo return value).

See Also

GetDDEDataInfo

GetDDEDataInfo

Retrieves information about DDE data.

UINT GetDDEDataInfo(
 HANDLE hDDEData
);

Parameters

hDDEData		Handle of memory object containing DDEDATA
structure.

Return Value

Size (in bytes) of data.

See Also

GetDDEData

GetDeviceCaps

Retrieves device-specific information about a specified device.

Syntax

int GetDeviceCaps(
 HDC DC,
 int Index
);

Parameters

DC			Identifies the device context (DC).
Index			Specifies the item to return. This parameter can be
one of the following values:
DRIVERVERSION	The device driver version.
TECHNOLOGY		Device technology. It can be any
one of the following values:
DT_PLOTTER		Vector plotter
DT_RASDISPLAY	Raster display
DT_RASPRINTER	Raster printer
DT_RASCAMERA	Raster camera
DT_CHARSTREAM	Character stream
DT_METAFILE		Metafile
DT_DISPFILE		Display file
HORZSIZE		Width, in millimeters, of the
physical screen.
VERTSIZE		Height, in millimeters, of the
physical screen.
HORZRES		Width, in pixels, of the screen.
VERTRES		Height, in raster lines, of the
screen.
LOGPIXELSX		Number of pixels per logical inch
along the screen width.
LOGPIXELSY		Number of pixels per logical inch
along the screen height.
BITSPIXEL		Number of adjacent color bits for
each pixel.
PLANES		Number of color planes.
NUMBRUSHES		Number of device-specific
brushes.
NUMPENS		Number of device-specific pens.
NUMFONTS		Number of device-specific fonts.
NUMCOLORS		Number of entries in the device's
color table.
ASPECTX		Relative width of a device pixel
used for line drawing.
ASPECTY		Relative height of a device pixel
used for line drawing.
ASPECTXY		Diagonal width of the device
pixel used for line drawing.
PDEVICESIZE		Reserved.
CLIPCAPS		Flag that indicates the clipping
capabilities of the device. If the device can clip to a rectangle, it is 1. Otherwise, it is 0.
SIZEPALETTE		Number of entries in the system
palette. This index is valid only if the device driver sets the RC_PALETTE bit in the RASTERCAPS index and is available only if the driver is compatible with Windows version 3.0 or later.
NUMRESERVED		Number of reserved entries in the
system palette. This index is valid only if the device driver sets the RC_PALETTE bit in the RASTERCAPS index and is available only if the driver is compatible with Windows version 3.0 or later.
COLORRES		Actual color resolution of the
device, in bits per pixel. This index is valid only if the device driver sets the RC_PALETTE bit in the RASTERCAPS index and is available only if the driver is compatible with Windows version 3.0 or later.
PHYSICALWIDTH	For printing devices: the
physical width, in device units.
PHYSICALHEIGHT	For printing devices: the
physical height, in device units.
PHYSICALOFFSETX	For printing devices: the
physical printable area horizontal margin.
PHYSICALOFFSETY	For printing devices: the
physical printable area vertical margin.
SCALINGFACTORX	For printing devices: the scaling
factor along the horizontal axis.
SCALINGFACTORY	For printing devices: the scaling
factor along the vertical axis.
VREFRESH		For display devices: the current
vertical refresh rate of the device, in cycles per second (Hz).
DESKTOPHORZRES	Width, in pixels, of the virtual
desktop. This value may be larger than HORZRES if the device supports a virtual desktop or multiple displays.
DESKTOPVERTRES	Height, in pixels, of the virtual
desktop. This value may be larger than VERTRES if the device supports a virtual desktop or multiple displays.
BLTALIGNMENT	Preferred horizontal drawing
alignment, expressed as a multiple of pixels. For best drawing performance, windows should be horizontally aligned to a multiple of this value. A value of zero indicates that the device is accelerated, and any alignment may be used.
RASTERCAPS		Value that indicates the raster
capabilities of the device, as shown in the following table:
RC_BANDING		Requires banding support.
RC_BITBLT		Capable of transferring
bitmaps.
RC_BITMAP64		Capable of supporting
bitmaps larger than 64K.
RC_DI_BITMAP	Capable of supporting the
SetDIBits and GetDIBits functions.
RC_DIBTODEV		Capable of supporting the
SetDIBitsToDevice function.
RC_FLOODFILL	Capable of performing flood
fills.
RC_GDI20_OUTPUT	Capable of supporting
features of Windows 2.0.
RC_PALETTE		Specifies a palette-based
device.
RC_SCALING		Capable of scaling.
RC_STRETCHBLT	Capable of performing the
StretchBlt function.
RC_STRETCHDIB	Capable of performing the
StretchDIBits function.
CURVECAPS		Value that indicates the curve
capabilities of the device, as shown in the following table:
CC_NONE		Device does not support
curves.
CC_CIRCLES		Device can draw circles.
CC_PIE		Device can draw pie wedges.
CC_CHORD		Device can draw chord arcs.
CC_ELLIPSES		Device can draw ellipses.
CC_WIDE		Device can draw wide
borders.
CC_STYLED		Device can draw styled
borders.
CC_WIDESTYLED	Device can draw borders
that are wide and styled.
CC_INTERIORS	Device can draw interiors.
CC_ROUNDRECT	Device can draw rounded
rectangles.
LINECAPS		Value that indicates the line
capabilities of the device, as shown in the following table:
LC_NONE		Device does not support
lines.
LC_POLYLINE		Device can draw a polyline.
LC_MARKER		Device can draw a marker.
LC_POLYMARKER	Device can draw multiple
markers.
LC_WIDE		Device can draw wide lines.
LC_STYLED		Device can draw styled
lines.
LC_WIDESTYLED	Device can draw lines that
are wide and styled.
LC_INTERIORS	Device can draw interiors.
POLYGONALCAPS	Value that indicates the polygon
capabilities of the device, as shown in the following table:
PC_NONE		Device does not support
polygons.
PC_POLYGON		Device can draw alternate-
fill polygons.
PC_RECTANGLE	Device can draw rectangles.
PC_WINDPOLYGON	Device can draw winding-
fill polygons.
PC_SCANLINE		Device can draw a single
scanline.
PC_WIDE		Device can draw wide
borders.
PC_STYLED		Device can draw styled
borders.
PC_WIDESTYLED	Device can draw borders
that are wide and styled.
PC_INTERIORS	Device can draw interiors.
TEXTCAPS		Value that indicates the text
capabilities of the device, as shown in the following table:
TC_OP_CHARACTER	Device is capable of
character output precision.
TC_OP_STROKE	Device is capable of stroke
output precision.
TC_CP_STROKE	Device is capable of stroke
clip precision.
TC_CR_90		Device is capable of 90-
degree character rotation.
TC_CR_ANY		Device is capable of any
character rotation.
TC_SF_X_YINDEP	Device can scale
independently in the x- and y-directions.
TC_SA_DOUBLE	Device is capable of
doubled character for scaling.
TC_SA_INTEGER	Device uses integer
multiples only for character scaling.
TC_SA_CONTIN	Device uses any multiples
for exact character scaling.
TC_EA_DOUBLE	Device can draw double-
weight characters.
TC_IA_ABLE		Device can italicize.
TC_UA_ABLE		Device can underline.
TC_SO_ABLE		Device can draw strikeouts.
TC_RA_ABLE		Device can draw raster
fonts.
TC_VA_ABLE		Device can draw vector
fonts.
TC_RESERVED		Reserved; must be zero.
TC_SCROLLBLT	Device cannot scroll using
a bit-block transfer. Note that this meaning may be the opposite of what you expect.

Return Value

The return value specifies the value of the desired item.

GetEditInt

Translates the text of a specified control into an integer value.

Syntax

UINT GetEditInt(
 HWND hWnd,
 BOOL *Translate,
 BOOL Signed
);

Parameters

hWnd			Handle of the control whose text is to be
translated.

Translate		Points to a Boolean variable that receives a
function success/failure value. TRUE indicates success, FALSE indicates failure. This parameter is optional: it can be NULL. In that case, the function returns no information about success or failure.
Signed		Specifies whether the function should examine the
text for a minus sign at the beginning and return a signed integer value if it finds one. TRUE specifies that this should be done, FALSE that it should not.

Return Value

If the function succeeds, the variable pointed to by Translate is set to TRUE, and the return value is the translated value of the control text.
If the function fails, the variable pointed to by Translated is set to FALSE, and the return value is zero. Note that, since zero is a possible translated value, a return value of zero does not by itself indicate failure.
If Translated is NULL, the function returns no information about success or failure.
If the Signed parameter is TRUE, specifying that the value to be retrieved is a signed integer value, cast the return value to an int type.

Remarks

The GetEditInt function retrieves the text of the given control by sending the control a WM_GETTEXT message. The function translates the retrieved text by stripping any extra spaces at the beginning of the text and then converting the decimal digits. The function stops translating when it reaches the end of the text or encounters a nonnumeric character.
If the Signed parameter is TRUE, the function checks for a minus sign (-) at the beginning of the text and translates the text into a signed integer value. Otherwise, the function creates an unsigned integer value.
The function returns zero if the translated value is greater than INT_MAX (for signed numbers) or UINT_MAX (for unsigned numbers).

See Also

ChildWithId, GetEditText, SetEditInt

GetEditText

Retrieves the title or text associated with a control.

Syntax

int GetEditText(
 HWND hWnd,
 char *Text
);

Parameters

hWnd			Identifies the control whose title or text is to be
retrieved.
Text			Points to the buffer to receive the title or text.

Return Value

If the function succeeds, the return value specifies the number of characters copied to the buffer, not including the terminating null character. If the function fails, the return value is zero.

Remarks

The GetEditText function sends a WM_GETTEXT message to the control.

See Also

ChildWithId, GetEditInt, SetEditInt

GetFileAttributes

Returns attributes for a specified file or directory.

Syntax

DWORD GetFileAttributes(
 char *FileName
);

Parameters

FileName		Points to a null-terminated string that specifies
the name of a file or directory.

Return Value

If the function succeeds, the return value contains the attributes of the specified file or directory. If the function fails, the return value is 0xFFFFFFFF. To get extended error information, call GetLastError.
The attributes can be one or more of the following values:
FILE_ATTRIBUTE_ARCHIVE		The file or directory is an
archive file or directory. Applications use this flag to mark files for backup or removal.
FILE_ATTRIBUTE_DIRECTORY	The "file or directory" is a
directory.
FILE_ATTRIBUTE_HIDDEN		The file or directory is hidden.
It is not included in an ordinary directory listing.
FILE_ATTRIBUTE_NORMAL		The file or directory has no
other attributes set. This attribute is valid only if used alone.
FILE_ATTRIBUTE_READONLY		The file or directory is read-
only. Applications can read the file but cannot write to it or delete it. In the case of a directory, applications cannot delete it.
FILE_ATTRIBUTE_SYSTEM		The file or directory is part of,
or is used exclusively by, the operating system.
FILE_ATTRIBUTE_TEMPORARY	The file or directory is being
used for temporary storage. File systems attempt to keep all of the data in memory for quicker access rather than flushing the data back to mass storage. A temporary file should be deleted by the application as soon as it is no longer needed.
FILE_ATTRIBUTE_ATOMIC_WRITE	Reserved for future use; do not
specify.
FILE_ATTRIBUTE_XACTION_WRITE	Reserved for future use; do not
specify.

GetFileSize

Retrieves the size, in bytes, of the specified file.

Syntax

DWORD GetFileSize(
 HANDLE hFile,
 DWORD *dwSizeHigh
);

Parameters

hFile			Specifies an open handle of the file whose size is
being returned. The handle must have been created with either GENERIC_READ or GENERIC_WRITE access to the file.
DwSizeHigh		Points to the variable where the high-order word of
the file size is returned. This parameter can be NULL if the application does not require the high-order word.

Return Value

If the function succeeds, the return value is the low-order doubleword of the file size, and, if dwSizeHigh is non-NULL, the function puts the high-order doubleword of the file size into the LONG value pointed to by that parameter.
If the function fails and dwSizeHigh is NULL, the return value is 0xFFFFFFFF. To get extended error information, call GetLastError.
If the function fails and dwSizeHigh is non-NULL, the return value is 0xFFFFFFFF and GetLastError will return a value other than NO_ERROR.

Remarks

You cannot use the GetFileSize function with a handle of a nonseeking device such as a pipe or a communications device.
Note that, if the return value is 0xFFFFFFFF and if dwSizeHigh is non-NULL, an application must call GetLastError to determine whether the function has succeeded or failed.

GetFocus

Retrieves the handle of the keyboard focus window associated with the thread that called the function.

Syntax

HWND GetFocus(void);

Parameters

This function has no parameters.

Return Value

If the function succeeds, the return value is the handle of the keyboard focus window associated with the calling thread. If the calling thread does not contain a keyboard focus window, the return value is NULL.

Remarks

Although a return value of NULL means the calling thread does not have a keyboard focus window, another thread may have a keyboard focus window.

See Also

SetFocus

GetGValue

Retrieves an intensity value for the green component of a 32-bit red, green, blue (RGB) value.

Syntax

BYTE GetGValue(
 DWORD rgb)

Parameters

rgb			Specifies an RGB color value.

Return Value

The return value is the intensity of the green component of the specified RGB color.

Remarks

The intensity value is in the range 0 through 255. The GetGValue macro is defined as follows:

#define GetGValue(rgb) ((BYTE)(((WORD)(rgb))>>8))

GetId

Returns the id of the specified control.

Syntax

int GetId(
 HWND hWnd
);

Parameters

hWnd			Handle of the control.

ReturnValue

The function returns the control id.

See Also

ChildWithId

GetLastError

Returns the calling thread's last-error code value. Most Win32 functions set their calling thread's last-error value when they fail; a few functions set it when they succeed.

Syntax

DWORD GetLastError(void);

Return Value

The return value is the calling thread's last-error code value.

Remarks

You should call the GetLastError function immediately when a function's return value indicates that such a call will return useful data. That is because some functions call SetLastError(0) when they succeed, wiping out the error code set by the most recently failed function.
As noted, most Win32 functions call SetLastError when they fail. Function failure is typically indicated by a return value error code such as FALSE, NULL, 0xFFFFFFFF, or -1. Some functions call SetLastError under conditions of success; those cases are noted in each function's reference page.
Note that the last-error code is maintained on a per-thread basis. Multiple threads do not overwrite each other's last-error code.
Error codes are 32-bit values (bit 31 is the most significant bit). Bit 29 is reserved for application-defined error codes; no Win32 error code has this bit set. If you are defining an error code for your application, set this bit to one. That indicates that the error code has been defined by an application, and ensures that your error code does not conflict with any error codes defined by the operating system.

GetMenu

Retrieves the handle of the menu assigned to the given window.

Syntax

HMENU GetMenu(
 HWND hWnd
);

Parameters

hWnd			Identifies the window whose menu handle is
retrieved.

Return Value

If the function succeeds, the return value is the handle of the menu. If the given window has no menu, the return value is NULL. If the window is a child window, the return value is undefined.

See Also

GetSubMenu, AssignMenu

GetMenuItemCount

Determines the number of items in the specified menu bar or pop-up menu.

Syntax

int GetMenuItemCount(
 HMENU Menu
);

Parameters

Menu			Identifies the handle of the menu to be examined.

Return Value

If the function succeeds, the return value specifies the number of items in the menu. If the function fails, the return value is -1. To get extended error information, call GetLastError.

See Also

GetMenuItemID

GetMenuItemID

Retrieves the menu item identifier of a menu item located at the specified position in a menu bar or pop-up menu.

Syntax

UINT GetMenuItemID(
 HMENU Menu,
 int Position
);

Parameters

Menu			Identifies the menu bar or pop-up menu that
contains the item whose identifier is to be retrieved.
Position		Specifies the zero-based relative position of the
menu item whose identifier is to be retrieved.

Return Value

If the function succeeds, the return value specifies the identifier of the given menu item. If the menu item identifier is NULL or if the specified item invokes a pop-up menu, the return value is 0xFFFFFFFF.

See Also

GetMenuItemCount, GetMenuString

GetMenuState

Retrieves the menu flags associated with the specified menu item. If the menu item activates a pop-up menu, this function also returns the number of items in the pop-up menu.

Syntax

UINT GetMenuState(
 HMENU Menu,
 UINT ItemID,
 UINT Flags
);

Parameters

Menu			Identifies the menu that contains the menu item
whose flags are to be retrieved.
ItemID		Specifies the menu item for which the menu flags
are to be retrieved, as determined by the fuFlags parameter.
Flags			Specifies how the uItem parameter is interpreted.
This parameter can be one of the following values:
MF_BYCOMMAND	Indicates that the ItemID
parameter gives the identifier of the menu item. The MF_BYCOMMAND flag is the default if neither the MF_BYCOMMAND nor MF_BYPOSITION flag is specified.
MF_BYPOSITION	Indicates that the ItemID
parameter gives the zero-based relative position of the menu item.
Return Value

If the specified item does not exist, the return value is 0xFFFFFFFF.
If the menu item activates a pop-up menu, the low-order byte of the return value contains the menu flags associated with the item, and the high-order byte contains the number of items in the pop-up menu activated by the item.
Otherwise, the return value is a mask (Boolean OR) of the menu flags. Following are the menu flags associated with the menu item.
MF_CHECKED		Places a check mark next to the item (pop-up
menus only).
MF_DISABLED		Disables the item.
MF_GRAYED		Disables and grays the item.
MF_HILITE		Highlights the item.
MF_MENUBARBREAK	Functions the same as the MF_MENUBREAK flag,
except for pop-up menus where the new column is separated from the old column by a vertical line.
MF_MENUBREAK	Places the item on a new line (for menu bars)
or in a new column (for pop-up menus) without separating columns.
MF_SEPARATOR	Creates a horizontal dividing line (for pop-
up menus only).

See Also

GetMenu, GetMenuItemCount, GetMenuItemID, GetMenuString

GetMenuString

Copies the text string of the specified menu item into the specified buffer.

Syntax

int GetMenuString(
 HMENU Menu,
 UINT ItemID,
 char *String,
 int MaxCount,
 UINT Flag
);

Parameters

Menu			Identifies the menu.
ItemID		Specifies the menu item to be changed, as
determined by the Flag parameter.
String		Points to the buffer that is to receive the null-
terminated string.
MaxCount		Specifies the maximum length, in characters, of the
string to be copied. If the string is longer than the maximum specified in the cchMax parameter, the extra characters are truncated.
Flag			Specifies how the ItemID parameter is interpreted.
This parameter must be one of the following values:
MF_BYCOMMAND	Indicates that ItemID gives the
identifier of the menu item. If neither the MF_BYCOMMAND nor MF_BYPOSITION flag is specified, the MF_BYCOMMAND flag is the default flag.
MF_BYPOSITION	Indicates that ItemID gives the
zero-based relative position of the menu item.

Return Value

If the function succeeds, the return value specifies the number of characters copied to the buffer, not including the terminating null character.
If the function fails, the return value is zero.

Remarks

The cchMax parameter must be one larger than the number of characters in the text string to accommodate the terminating null character.

See Also

GetMenuItemID

GetPixel

Retrieves the red, green, blue (RGB) color value of the pixel at the specified coordinates.

Syntax

DWORD GetPixel(
 HDC DC,
 int X,
 int Y
);

Parameters

DC			Identifies the device context.
X			Specifies the logical x-coordinate of the pixel to
be examined.
Y			Specifies the logical y-coordinate of the pixel to
be examined.

Return Value

If the function succeeds, the return value is an RGB value. If the pixel is outside of the current clipping region, the return value is CLR_INVALID.

Remarks

The pixel must be within the boundaries of the current clipping region.
Not all devices support GetPixel. An application should call GetDeviceCaps to determine whether a specified device supports this function.

See Also

SetPixel

GetPrinterDC

Retrieves a device context of the default printer installed in Windows.

Syntax

HDC GetPrinterDC(void);

Return Value

Printer device context.

GetRadio

Returns the state of the radio button.

Syntax

UINT GetRadio(
 HWND hWnd
);

Return Value

BF_CHECKED 		Button is checked
BF_UNCHECKED	Button id unchecked
BF_GRAYED		Button is grayed (disabled)

GetROP2

Retrieves the foreground mix mode of the specified device context (DC). The mix mode specifies how the pen or interior color and the color already on the screen are combined to yield a new color.

Syntax

int GetROP2(
 HDC DC
);

Parameters

DC			Identifies the DC.

Return Value

If the function succeeds, the return value specifies the foreground mix mode. If the function fails, the return value is zero.

Remarks

Following are the foreground mix modes:

R2_BLACK		Pixel is always 0.
R2_COPYPEN		Pixel is the pen color.
R2_MASKNOTPEN	Pixel is a combination of the colors common to both
the screen and the inverse of the pen.
R2_MASKPEN		Pixel is a combination of the colors common to both
the pen and the screen.
R2_MASKPENNOT	Pixel is a combination of the colors common to both
the pen and the inverse of the screen.
R2_MERGENOTPEN	Pixel is a combination of the screen color and the
inverse of the pen color.
R2_MERGEPEN		Pixel is a combination of the pen color and the
screen color.
R2_MERGEPENNOT	Pixel is a combination of the pen color and the
inverse of the screen color.
R2_NOP		Pixel remains unchanged.
R2_NOT		Pixel is the inverse of the screen color.
R2_NOTCOPYPEN	Pixel is the inverse of the pen color.
R2_NOTMASKPEN	Pixel is the inverse of the R2_MASKPEN color.
R2_NOTMERGEPEN	Pixel is the inverse of the R2_MERGEPEN color.
R2_NOTXORPEN	Pixel is the inverse of the R2_XORPEN color.
R2_WHITE		Pixel is always 1.
R2_XORPEN		Pixel is a combination of the colors in the pen and
in the screen, but not in both.

See Also

SetROP2

GetRValue

Retrieves an intensity value for the red component of a 32-bit red, green, blue (RGB) value.

Syntax

BYTE GetRValue(
 DWORD rgb)

Parameters

rgb			Specifies an RGB color value.

Return Value

The return value is the intensity of the red component of the specified RGB color.

Remarks

The intensity value is in the range 0 through 255. The GetRValue macro is defined as follows:

#define GetRValue(rgb) ((BYTE)(rgb))

See Also

GetBValue, GetGValue, PALETTEINDEX, PALETTERGB, RGB

GetScrollPos

Retrieves the current position of the scroll box (thumb) in the specified scroll bar. The current position is a relative value that depends on the current scrolling range.

Syntax

int GetScrollPos(
 HWND hWnd
);

Parameters

hWnd			Identifies a scroll bar control.

Return Value

If the function succeeds, the return value is the current position of the scroll box. If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

An application can make limited use of 32-bit scroll positions by using GetScrollPos. Although the messages that indicate scroll bar position, WM_HSCROLL and WM_VSCROLL, are limited to 16 bits of position data, the functions SetScrollPos, SetScrollRange, GetScrollPos, and GetScrollRange support 32-bit scroll bar position data. Thus, an application can call GetScrollPos while processing either the WM_HSCROLL or WM_VSCROLL messages to obtain 32-bit scroll bar position data.

See Also

SetScrollPos

GetSelIndex

Returns the index of the currently selected item in list box or combo box.

Syntax

int GetSelIndex(
 HWND hWnd
);

Parameters

hWnd			Identifies a scroll bar control.

Return Value

The nonnegative index (starting at 0) of the currently selected item, or a negative value if no item is selected.

GetSelString

Retrieves the currently selected item from list box or combo box.

Syntax

int GetSelString(
 HWND hWnd,
 char *String,
 int MaxChars
);

Parameters

hWnd			Identifies a list box or combo box control.
String		Points to the buffer that is to receive the null-
terminated string.
MaxChars		Maximum number of characters to copy.

Return Value

For single-selection list boxes, GetSelString returns one of the following: the string length, a negative value if an error occurs, or 1 if no string is selected. For multiple-selection list boxes, it returns -1.

See Also

GetString

GetStaticText

Retrieves the static control's text.

Syntax

WORD GetStaticText(
 HWND hWnd,
 char *Text,
 WORD TextLen
);

Parameters

hWnd			Identifies a static control.
Text			Points to the buffer that is to receive the null-
terminated string.
TextLen		Maximum number of characters to copy.

Return Value

The number of characters copied.

See Also

SetStaticText

GetStockObject

Retrieves a handle to one of the predefined stock pens, brushes, fonts, or palettes.

Syntax

HANDLE GetStockObject(
 int Index
);

Parameters

Index			Specifies the type of stock object. This parameter
can be any one of the following values:
BLACK_BRUSH			Black brush.
DKGRAY_BRUSH		Dark gray brush.
GRAY_BRUSH			Gray brush.
HOLLOW_BRUSH		Hollow brush (equivalent to
NULL_BRUSH).
LTGRAY_BRUSH		Light gray brush.
NULL_BRUSH			Null brush (equivalent to
HOLLOW_BRUSH).
WHITE_BRUSH			White brush.
BLACK_PEN			Black pen.
NULL_PEN			Null pen.
WHITE_PEN			White pen.
ANSI_FIXED_FONT		Windows fixed-pitch
(monospace) system font.
ANSI_VAR_FONT		Windows variable-pitch
(proportional space) system font.
DEVICE_DEFAULT_FONT	Device-dependent font.
OEM_FIXED_FONT		Original equipment
manufacturer (OEM) dependent fixed-pitch (monospace) font.
SYSTEM_FONT			System font. By default,
Windows uses the system font to draw menus, dialog box controls, and text. In Windows versions 3.0 and later, the system font is a proportionally spaced font; earlier versions of Windows used a monospace system font.
SYSTEM_FIXED_FONT		Fixed-pitch (monospace)
system font used in Windows versions earlier than 3.0. This stock object is provided for compatibility with earlier versions of Windows.
DEFAULT_PALETTE		Default palette. This
palette consists of the static colors in the system palette.

Return Value

If the function succeeds, the return value identifies the logical object requested. If the function fails, the return value is NULL.

Remarks

Use the DKGRAY_BRUSH, GRAY_BRUSH, and LTGRAY_BRUSH stock objects only in windows with the CS_HREDRAW and CS_VREDRAW styles. Using a gray stock brush in any other style of window can lead to misalignment of brush patterns after a window is moved or sized. The origins of stock brushes cannot be adjusted.
The HOLLOW_BRUSH and NULL_BRUSH stock objects are equivalent.

GetStretchBltMode

Retrieves the current stretching mode. The stretching mode defines how color data is added to or removed from bitmaps that are stretched or compressed when the StretchBlt function is called.

Syntax

int GetStretchBltMode(
 HDC DC
);

Parameters

DC			Identifies the device context.

Return Value

If the function succeeds, the return value is the current stretching mode. If the function fails, the return value is zero.

See Also

SetStretchBltMode, StretchBlt

GetString

Retrieves the item at the specified position from list box or combo box.

Syntax

int GetString(
 HWND hWnd,
 char *String,
 int Index);

Parameters

hWnd			Identifies a list box or combo box control.
String		Points to the buffer that is to receive the null-
terminated string.
Index			String index.

Return Value

Returns the string length, or a negative value if an error occurs.

GetStringLen

Retrieves the string length of the item in list box or combo box at the position supplied.

Syntax

int GetStringLen(
 HWND hWnd,
 int Index
);

Parameters

hWnd			Identifies a list box or combo box control.
Index			String index.

Return Value

Returns the string length (excluding the terminating NULL) of the item at the position index supplied in Index. Returns a negative value in the case of an error.

GetSubMenu

Retrieves the handle of the pop-up menu activated by the specified menu item.

Syntax

HMENU GetSubMenu(
 HMENU Menu,
 int Position
);

Parameters

Menu			Identifies the menu.
Position		Specifies the zero-based relative position in the
given menu of an item that activates a pop-up menu.

Return Value

If the function succeeds, the return value is the handle of the pop-up menu activated by the menu item. If the menu item does not activate a pop-up menu, it is NULL.

See Also

CreatePopupMenu, GetMenu

GetSystemMenu

Allows the application to access the System menu (also known as the Control menu) for copying and modifying.

Syntax

HMENU GetSystemMenu(
 HWND hWnd,
 BOOL Revert
);

Parameters

hWnd			Identifies the window that will own a copy of the
System menu.
Revert		Specifies the action to be taken. If this parameter
is FALSE, GetSystemMenu returns the handle of the copy of the System menu currently in use. The copy is initially identical to the System menu, but it can be modified. If this parameter is TRUE, GetSystemMenu resets the System menu back to the Windows default state. The previous System menu, if any, is destroyed.

Return Value

If the Revert parameter is FALSE, the return value is the handle of a copy of the System menu. If the Revert parameter is TRUE, the return value is NULL.

Remarks

Any window that does not use the GetSystemMenu menu to make its own copy of the System menu receives the standard System menu.
The System menu initially contains items with various identifier values, such as SC_CLOSE, SC_MOVE, and SC_SIZE.
Menu items on the System menu send WM_SYSCOMMAND messages.
All predefined System menu items have identifier numbers greater than 0xF000. If an application adds commands to the System menu, it should use identifier numbers less than 0xF000.
Windows automatically grays items on the standard System menu, depending on the situation.

See Also

GetMenu

GetSystemMetrics

Retrieves various system metrics and system configuration settings. System metrics are the dimensions (widths and heights) of Windows display elements. All dimensions retrieved by GetSystemMetrics are in pixels.

Syntax

int GetSystemMetrics(
 int Index
);

Parameters

Index			Specifies the system metric or configuration
setting to retrieve. All SM_CX* values are widths. All SM_CY* values are heights. The following values are defined:
SM_CMOUSEBUTTONS		Number of buttons on mouse,
or zero if no mouse is installed.
SM_CXBORDER,
SM_CYBORDER			Width and height of window
border.
SM_CXCURSOR,
SM_CYCURSOR			Width and height of cursor.
SM_CXDLGFRAME,
SM_CYDLGFRAME		Width and height of window
frame for window that has the WS_DLGFRAME style.
SM_CXDOUBLECLK,
SM_CYDOUBLECLK		Width and height of a
rectangle around the location of a first click in a double-click sequence. The second click must occur within this rectangle for the system to consider the two clicks a double-click.
SM_CXFRAME,
SM_CYFRAME			Width and height of window
frame for a window that can be resized.
SM_CXFULLSCREEN,
SM_CYFULLSCREEN		Width and height of the
client area for a full-screen window.
SM_CXHSCROLL,
SM_CYHSCROLL		Width and height of arrow
bitmap on horizontal scrollbar.
SM_CXHTHUMB, 		Width of horizontal
scrollbar thumb box.
SM_CXICON,
SM_CYICON			Width and height of an
icon.
SM_CXICONSPACING,
SM_CYICONSPACING		Width and height of
rectangular cell that Program Manager uses to position tiled icons.
SM_CXMIN,
SM_CYMIN			Minimum width and height of
a window.
SM_CXMINTRACK,
SM_CYMINTRACK		Minimum tracking width and
height of a window. The user cannot drag the window frame to a size smaller than these dimensions. A window can override these values by processing the WM_GETMINMAXINFO message.
SM_CXSCREEN,
SM_CYSCREEN			Width and height of the
screen.
SM_CXSIZE,
SM_CYSIZE			Width and height of bitmaps
contained in title bar.
SM_CXVSCROLL,
SM_CYVSCROLL		Width and height of arrow
bitmap on vertical scrollbar.
SM_CYVTHUMB			Height of vertical
scrollbar thumb.
SM_CYCAPTION		Height of normal caption
area.
SM_CYKANJIWINDOW		For double-byte character
set versions of Windows, height of the Kanji window at the bottom of the screen.
SM_CYMENU			Height of single-line menu
bar.
SM_DBCSENABLED		Non-zero if the double-byte
character set (DBCS) version of USER.EXE is installed; zero otherwise.
SM_DEBUG			Non-zero if the debugging
version of USER.EXE is installed; zero otherwise.
SM_MENUDROPALIGNMENT	Non-zero if pop-up menus
are right-aligned relative to the corresponding menu-bar item; zero if they are left-aligned.
SM_MOUSEPRESENT		Non-zero if mouse is
installed; zero otherwise.
SM_PENWINDOWS		Non-zero if the Microsoft
Windows for Pen computing extensions are installed; zero otherwise.
SM_SHOWSOUNDS		Non-zero if the user
requires an application to present information visually in situations where it would otherwise present the information only in audible form; zero otherwise.
SM_SWAPBUTTON		Non-zero if the meanings of
the left and right mouse buttons are swapped; zero otherwise.

Return Value

The return value is the requested system metric or configuration setting.

Remarks

System metrics may vary from display to display.

GetTextColor

Retrieves the current text color for the specified device context (DC).

Syntax

DWORD GetTextColor(
 HDC DC
);

Parameters

DC			Identifies the DC.

Return Value

If the function succeeds, the return value is the current text color as a COLORREF value. If the function fails, the return value is CLR_INVALID.

Remarks

The text color defines the foreground color of characters drawn by using the TextOut or ExtTextOut function.

See Also

TextOut

GetTextMetrics

Fills the specified buffer with the metrics for the currently selected font.

Syntax

BOOL GetTextMetrics(
 HDC hDC,
 PTEXTMETRIC
 pMetrics);

Parameters

hDC			Identifies the device context.
pMetrics		Points to the TEXTMETRIC structure that is to
receive the metrics.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

GetWindowLong

Retrieves information about the specified window. The function also retrieves the 32-bit (long) value at the specified offset into the extra window memory of a window.

Syntax

LONG GetWindowLong(
 HWND hWnd,
 int Index
);

Parameters

hWnd			Identifies the window and, indirectly, the class to
which the window belongs.
Index			Specifies the zero-based offset to the value to be
retrieved. Valid values are in the range zero through the number of bytes of extra window memory, minus four; for example, if you specified 12 or more bytes of extra memory, a value of 8 would be an index to the third 32-bit integer. To retrieve any other value, specify one of the following values:
GWL_EXSTYLE		Retrieves the extended window
styles.
GWL_STYLE		Retrieves the window styles.
GWL_WNDPROC		Retrieves the address of the
window procedure.
GWL_HINSTANCE	Retrieves the handle of the
application instance.
GWL_HWNDPARENT	Retrieves the handle of the
parent window, if any.
GWL_ID		Retrieves the identifier of the
window.
GWL_USERDATA	Retrieves the 32-bit value
associated with the window. Each window has a corresponding 32-bit value intended for use by the application that created the window.
The following values are also available when the hwnd parameter identifies a dialog box:
DWL_DLGPROC		Specifies the address of the
dialog box procedure.
DWL_MSGRESULT	Specifies the return value of a
message processed in the dialog box procedure.
DWL_USER		Specifies extra information
private to the application, such as handles or pointers.

Return Value

If the function succeeds, the return value is the requested 32-bit value. If the function fails, the return value is zero. To get extended error information, call GetLastError.

See Also

GetWindowWord, SetWindowLong, SetWindowWord

GetWindowScrollerPos

Retrieves the current positions of window scrollers.

Syntax

BOOL GetWindowScrollerPos(
 HWND hWnd,
 PPOINT Point
);

Parameters

hWnd			Window handle.
Point			Pointer to the POINT structure that is to
receive the scrollers positions.

GetWindowText

Copies the text of the specified window's title bar (if it has one) into a buffer. If the specified window is a control, the text of the control is copied.

Syntax

int GetWindowText(
 HWND hWnd,
 char *Text
);

Parameters

hWnd			Identifies the window or control containing the
text.
Text			Points to the buffer that will receive the text.

Return Value

If the function succeeds, the return value is the length, in characters, of the copied string, not including the terminating null character. If the window has no title bar or text, if the title bar is empty, or if the window or control handle is invalid, the return value is zero. To get extended error information, call GetLastError.

Remarks

This function causes a WM_GETTEXT message to be sent to the specified window or control.

See Also

SetWindowText

GetWindowWord

Retrieves a 16-bit (word) value at the specified offset into the extra window memory for a window.

Syntax

WORD GetWindowWord(
 HWND hWnd,
 int Index
);

Parameters

hWnd			Identifies the window and, indirectly, the class to
which the window belongs.

Index			Specifies the zero-based byte offset of the value
to be retrieved. Valid values are in the range zero through the number of bytes of extra window memory, minus two; for example, if you specified 10 or more bytes of extra window memory, a value of 8 would be an index to the fifth 16-bit integer.

Return Value

If the function succeeds, the return value is the requested 16-bit value. If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

The GWW_ values are obsolete in Win32. You must use the GetWindowLong function to retrieve information about the window.

See Also

SetWindowWord

GlobalAddAtom

Adds a character string to the global atom table and returns a unique value (an atom) identifying the string.

Syntax

ATOM GlobalAddAtom(
 char *String
);

Parameters

String		Points to the null-terminated string to be added.
The string can have a maximum size of 255 bytes. Strings that differ only in case are considered identical. The case of the first string of this name added to the table is preserved and returned by the GlobalGetAtomName function.

Return Value

If the function succeeds, the return value is the newly created atom. If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

If the string already exists in the global atom table, the atom for the existing string is returned and the atom's reference count is incremented.
The string associated with the atom is not deleted from memory until its reference count is zero. For more information, see the GlobalDeleteAtom function.
Global atoms are not deleted automatically when the application terminates. For every call to the GlobalAddAtom function, there must be a corresponding call to the GlobalDeleteAtom function.
GlobalAddAtom returns a string atom whose value is in the range 0xC000 through 0xFFFF.
If the String parameter has the form "#1234", GlobalAddAtom returns an integer atom whose value is the 16-bit representation of the decimal number specified in the string (0x04D2, in this example). If the decimal value specified is 0x0000 or a value in the range 0xC000 through 0xFFFF, the return value is zero, indicating an error. If lpszName is in the range 0x0001 through 0xBFFF, the return value is the low-order word of lpszName.

The MAKEINTATOM macro can be used to convert a WORD value into a string that can be added to the atom table by using the GlobalAddAtom function.

See Also

GlobalDeleteAtom, GlobalGetAtomName

GlobalAlloc

Allocates the specified number of bytes from the heap. In the linear Win32 API environment, there is no difference between the local heap and the global heap.

Syntax

HANDLE GlobalAlloc(
 UINT Flags,
 DWORD Bytes
);

Parameters

Flags			Specifies how to allocate memory. If zero is
specified, the default is GMEM_FIXED. Except for the incompatible combinations that are specifically noted, any combination of the following flags can be used. To indicate whether the function allocates fixed or movable memory, specify one of the first four flags:
GMEM_FIXED		Allocates fixed memory. This flag
cannot be combined with the GMEM_MOVEABLE or GMEM_DISCARDABLE flag. The return value is a pointer to the memory block. To access the memory, the calling process simply casts the return value to a pointer.
GMEM_MOVEABLE	Allocates movable memory. This
flag cannot be combined with the GMEM_FIXED flag. The return value is the handle of the memory object. The handle is a 32-bit quantity that is private to the calling process. To translate the handle into a pointer, use the GlobalLock function.
GPTR			Combines the GMEM_FIXED and
GMEM_ZEROINIT flags.
GHND			Combines the GMEM_MOVEABLE and
GMEM_ZEROINIT flags.
GMEM_DDESHARE	Allocates memory to be used by
the dynamic data exchange (DDE) functions for a DDE conversation. Unlike Windows version 3. x, this memory is not shared globally. However, this flag is available for compatibility purposes. It may be used by some applications to enhance the performance of DDE operations and should, therefore, be specified if the memory is to be used for DDE. Only processes that use DDE or the clipboard for interprocess communications should specify this flag.
GMEM_DISCARDABLE	Allocates discardable memory.
This flag cannot be combined with the GMEM_FIXED flag. Some Win32-based applications may ignore this flag.
GMEM_LOWER		Ignored. This flag is provided
only for compatibility with Windows version 3. x.
GMEM_NOCOMPACT	Does not compact or discard
memory to satisfy the allocation request.
GMEM_NODISCARD	Does not discard memory to
satisfy the allocation request.
GMEM_NOT_BANKED	Ignored. This flag is provided
only for compatibility with Windows version 3. x.
GMEM_NOTIFY		Ignored. This flag is provided
only for compatibility with Windows version 3. x.
GMEM_SHARE		Same as the GMEM_DDESHARE flag.
GMEM_ZEROINIT	Initializes memory contents to
zero.
Bytes			Specifies the number of bytes to allocate. If this
parameter is zero and the fuFlags parameter specifies the GMEM_MOVEABLE flag, the function returns a handle to a memory object that is marked as discarded.

Return Value

If the function succeeds, the return value is the handle of the newly allocated memory object. If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks

If the heap does not contain sufficient free space to satisfy the request, GlobalAlloc returns NULL. Because NULL is used to indicate an error, virtual address zero is never allocated. It is, therefore, easy to detect the use of a NULL pointer.
All memory is created with execute access; no special function is required to execute dynamically generated code.
Memory allocated with this function is guaranteed to be aligned on an 8-byte boundary.
The GlobalAlloc and LocalAlloc functions are limited to a combined total of 65,536 handles for GMEM_MOVEABLE and LMEM_MOVEABLE memory per process. This limitation does not apply to GMEM_FIXED or LMEM_FIXED memory.
If this function succeeds, it allocates at least the amount of memory requested. If the actual amount allocated is greater than the amount requested, the process can use the entire amount. To determine the actual number of bytes allocated, use the GlobalSize function.

See Also

GlobalFree, GlobalLock, GlobalReAlloc

GlobalDeleteAtom

Decrements the reference count of a global string atom. If the atom's reference count reaches zero, GlobalDeleteAtom removes the string associated with the atom from the global atom table.

Syntax

ATOM GlobalDeleteAtom(
 ATOM nAtom
);

Parameters

nAtom			Identifies the atom and character string to be
deleted.

Return Value

If the function succeeds, the return value is zero. If the function fails, the return value is the atm parameter. To get extended error information, call GetLastError.

Remarks

A string atom's reference count specifies the number of times the string has been added to or removed from the atom table. The GlobalAddAtom function increments the reference count of a string that already exists in the global atom table each time it is called.
The only way to ensure that an atom has been deleted from the atom table is to call this function repeatedly until it fails. When the reference count is decremented to zero, the next GlobalFindAtom or GlobalDeleteAtom function call fails.
GlobalDeleteAtom has no effect on an integer atom (an atom created by using the MAKEINTATOM macro). The function always returns zero for an integer atom.

See Also

GlobalAddAtom

GlobalFlags

Returns information about the specified global memory object.

Syntax

UINT GlobalFlags(
 HANDLE Mem
);

Parameters

Mem			Identifies the global memory object. This handle is
returned by either the GlobalAlloc or GlobalReAlloc function.

Return Value

If the function succeeds, the return value is a 32-bit value specifying the allocation flags and the lock count for the memory object. If the function fails, the return value is the GMEM_INVALID_HANDLE flag, indicating that the global handle is not valid. To get extended error information, call GetLastError.

Remarks

The low-order byte of the low-order word of the return value contains the lock count of the object. To retrieve the lock count from the return value, use the GMEM_LOCKCOUNT mask with the bitwise AND (&) operator. The lock count of memory objects allocated with the GMEM_FIXED flag is always zero.
The high-order byte of the low-order word of the return value indicates the allocation flags of the memory object. It can be zero or any combination of the following flags:
GMEM_DDESHARE	Memory was allocated for use by the dynamic data
exchange (DDE) functions. Unlike Windows version 3.x, this memory is not shared globally. However, this flag is available for compatibility purposes and may be used by some applications to enhance the performance of DDE operations. Only processes that use DDE or the clipboard for interprocess communications should specify this flag.
GMEM_DISCARDABLE	The object's memory block can be discarded.
GMEM_DISCARDED	The object's memory block has been discarded.

See Also

GlobalLock, GlobalReAlloc, GlobalUnlock

GlobalFree

Frees the specified global memory object and invalidates its handle.

Syntax

HANDLE GlobalFree(
 HANDLE Mem
);

Parameters

Mem			Identifies the global memory object. This handle is
returned by either the GlobalAlloc or GlobalReAlloc function.

Return Value

If the function succeeds, the return value is NULL. If the function fails, the return value is equal to the handle of the global memory object. To get extended error information, call GetLastError.

Remarks

Heap corruption or an access violation exception may occur if the process tries to examine or modify the memory after it has been freed.
If the Mem parameter is NULL, GlobalFree fails and the system generates an access violation exception.
GlobalFree will free a locked memory object. A locked memory object has a lock count greater than zero. However, if an application is running under a debug (DBG) version of Windows NT, such as the one distributed on the SDK CD-ROM, GlobalFree enter a breakpoint just before freeing a locked object.

See Also

GlobalAlloc, GlobalFlags, GlobalLock, GlobalReAlloc, GlobalUnlock

GlobalGetAtomName

Retrieves a copy of the character string associated with the specified global atom.

Syntax

UINT GlobalGetAtomName(
 ATOM nAtom,
 char *pBuffer,
 int nSize
);

Parameters

nAtom			Identifies the global atom associated with the
character string to be retrieved.
pBuffer		Points to the buffer for the character string.
nSize			Specifies the size, in characters, of the buffer.

Return Value

If the function succeeds, the return value is the length of the string copied to the buffer, in characters, not including the terminating null character. If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

The string returned for an integer atom (an atom created by the MAKEINTATOM macro) is a null-terminated string in which the first character is a pound sign (#) and the remaining characters represent the unsigned integer originally passed to MAKEINTATOM.

See Also

GlobalAddAtom, GlobalDeleteAtom

GlobalLock

Locks a global memory object and returns a pointer to the first byte of the object's memory block. The memory block associated with a locked memory object cannot be moved or discarded. For memory objects allocated with the GMEM_MOVEABLE flag, the function increments the lock count associated with the memory object.

Syntax

void* GlobalLock(
 HANDLE Mem
);

Parameters

Mem			Identifies the global memory object. This handle is
returned by either the GlobalAlloc or GlobalReAlloc function.

Return Value

If the function succeeds, the return value is a pointer to the first byte of the memory block. If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks

The internal data structures for each memory object include a lock count that is initially zero. For movable memory objects, GlobalLock increments the count by one, and the GlobalUnlock function decrements the count by one. For each call that a process makes to GlobalLock for an object, it must eventually call GlobalUnlock. Locked memory will not be moved or discarded, unless the memory object is reallocated by using the GlobalReAlloc function. The memory block of a locked memory object remains locked until its lock count is decremented to zero, at which time it can be moved or discarded.
Memory objects allocated with the GMEM_FIXED flag always have a lock count of zero. For these objects, the value of the returned pointer is equal to the value of the specified handle.

If the specified memory block has been discarded or if the memory block has a zero-byte size, this function returns NULL.
Discarded objects always have a lock count of zero.

See Also

GlobalFlags, GlobalReAlloc, GlobalUnlock

GlobalMemoryStatus

Retrieves information about current available memory. The function returns information about both physical and virtual memory. This function supersedes the GetFreeSpace function.

Syntax

void GlobalMemoryStatus(
 MEMORYSTATUS *MemStat
);

Parameters

MemStat		Points to a MEMORYSTATUS structure in which
information about current memory availability is returned. Before calling this function, the calling process should set the dwLength member of this structure.

Remarks

An application can use the GlobalMemoryStatus function to determine how much memory it can allocate without severely impacting other applications.
The information returned is volatile, and there is no guarantee that two sequential calls to this function will return the same information.

GlobalReAlloc

Changes the size or attributes of a specified global memory object. The size can increase or decrease.

Syntax

HANDLE GlobalReAlloc(
 HANDLE hMem,
 DWORD Bytes,
 UINT Flags
);

Parameters

hMem			Identifies the global memory object to be
reallocated. This handle is returned by either the GlobalAlloc or GlobalReAlloc function.
Bytes			Specifies the new size, in bytes, of the memory
block. If this parameter is zero and the Flags parameter specifies the GMEM_MOVEABLE flag, the function returns the handle of a memory object that is marked as discarded. If Flags specifies the GMEM_MODIFY flag, this parameter is ignored.
Flags			Specifies how to reallocate the global memory
object. If the GMEM_MODIFY flag is specified, this parameter modifies the attributes of the memory object, and the Bytes parameter is ignored. Otherwise, this parameter controls the reallocation of the memory object.
The GMEM_MODIFY flag can be combined with either or both of the following flags:
GMEM_DISCARDABLE	Allocates discardable memory if
the GMEM_MODIFY flag is also specified. This flag is ignored, unless the object was previously allocated as movable or the GMEM_MOVEABLE flag is also specified.
GMEM_MOVEABLE	Changes a fixed memory object to
a movable memory object if the GMEM_MODIFY flag is also specified.
If this parameter does not specify GMEM_MODIFY, it can be any combination of the following flags:
GMEM_MOVEABLE	If cbBytes is zero, discards a
previously movable and discardable memory block. If the lock count of the object is not zero or if the block is not movable and discardable, the function fails. If Bytes is nonzero, enables the system to move the reallocated block to a new location without changing the movable or fixed attribute of the memory object. If the object is fixed, the handle returned may be different from the handle specified by the Mem parameter. If the object is movable, the block can be moved without invalidating the handle, even if the object is currently locked by a previous call to the GlobalLock function. To get the new address of the memory block, use GlobalLock.
GMEM_NOCOMPACT	Prevents memory from being
compacted or discarded to satisfy the allocation request.
GMEM_ZEROINIT	Causes the additional memory
contents to be initialized to zero if the memory object is growing in size.

Return Value

If the function succeeds, the return value is the handle of the reallocated memory object. If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks

If GlobalReAlloc reallocates a movable object, the return value is the handle of the memory object. To convert the handle to a pointer, use the GlobalLock function.
If GlobalReAlloc reallocates a fixed object, the value of the handle returned is the address of the first byte of the memory block. To access the memory, a process can simply cast the return value to a pointer.

See Also

GlobalAlloc, GlobalFree

GlobalSize

Retrieves the current size, in bytes, of the specified global memory object.

Syntax

DWORD GlobalSize(
 HANDLE Mem
);

Retrieves the current size, in bytes, of the specified global memory object.

Parameters

Mem			Identifies the global memory object. This handle is
returned by either the GlobalAlloc or GlobalReAlloc function.

Return Value

If the function succeeds, the return value is the size, in bytes, of the specified global memory object. If the specified handle is not valid or if the object has been discarded, the return value is zero. To get extended error information, call GetLastError.

Remarks

The size of a memory block may be larger than the size requested when the memory was allocated.
To verify that the specified object's memory block has not been discarded, use the GlobalFlags function before calling GlobalSize.

See Also

GlobalAlloc, GlobalReAlloc

GlobalUnlock

Decrements the lock count associated with a memory object that was allocated with the GMEM_MOVEABLE flag. This function has no effect on memory objects allocated with the GMEM_FIXED flag.

Syntax

BOOL GlobalUnlock(
 HANDLE Mem
);

Parameters

Mem			Identifies the global memory object. This handle is
returned by either the GlobalAlloc or GlobalReAlloc function.

Return Value

If the memory object is still locked after decrementing the lock count, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError. If GetLastError returns NO_ERROR, the memory object is unlocked.

Remarks

The internal data structures for each memory object include a lock count that is initially zero. For movable memory objects, the GlobalLock function increments the count by one, and GlobalUnlock decrements the count by one. For each call that a process makes to GlobalLock for an object, it must eventually call GlobalUnlock. Locked memory will not be moved or discarded, unless the memory object is reallocated by using the GlobalReAlloc function. The memory block of a locked memory object remains locked until its lock count is decremented to zero, at which time it can be moved or discarded.
Memory objects allocated with the GMEM_FIXED flag always have a lock count of zero. If the specified memory block is fixed memory, this function returns TRUE.

If the memory object is already unlocked, GlobalUnlock returns FALSE and GetLastError reports ERROR_NOT_LOCKED. Memory objects allocated with the LMEM_FIXED flag always have a lock count of zero and cause the ERROR_NOT_LOCKED error.
A process should not rely on the return value to determine the number of times it must subsequently call GlobalUnlock for a memory object.

See Also

GlobalFlags, GlobalLock

HideList

Hides the drop down list of a drop down or drop down list combo box.

Syntax

void HideList(
 HWND hWnd
);

Parameters

hWnd			The handle of combo box control.

InitWLib

Initializes link from the transputer application to Windows Server.

Syntax

void InitWLib(
 void *In,
 void *Out
);

Parameters

In			Input channel of root transputer connected to host
system (C012).
Out			Output channel of root transputer connected to host
system (C012).
Remarks

If the transputer application uses configuration file or the root transputer connected to C012 with the link other than 0, this function have to be called before any other call to WLib functions.

For example, for B004/B008 boards (if transputer project doesn't contain configuration file and collected with "/T" option):

#include "wlib.h"
int main()
{
 InitWLib(LINK0IN, LINK0OUT);
 ...
}

For boards where root transputer connected to host via link number 1 (also without configuration file):

#include "wlib.h"
int main()
{
 InitWLib(LINK1IN, LINK1OUT);
 ...
}

If you use configuration files, "In" and "Out" parameters should be from your process description:

(config file)

...
process (interface (input HostInput, output HostOutput,
 input Input[2], int InputSize = 2,
 output Output[2], int OutputSize = 2)) Master;
...

(main program)

#include "wlib.h"
int main()
{
 InitWLib(HostInput, HostOutput);
 ...
}

See Also

EnableWLib

InsertMenu

Inserts a new menu item into a menu, moving other items down the menu.

Syntax

BOOL InsertMenu(
 HMENU Menu,
 UINT Position,
 UINT Flags,
 UINT NewItemID,
 char *String
);

Parameters

Menu			Identifies the menu to be changed.
Position		Specifies the menu item before which the new menu
item is to be inserted, as determined by the Flags parameter.
Flags			Specifies flags that control the interpretation of
the uItem parameter and the content, appearance, and behavior of the new menu item. This parameter must be a combination of one of the following required values and at least one of the values listed in the Remarks section.
MF_BYCOMMAND	Indicates that the NewItemID
parameter gives the identifier of the menu item. The MF_BYCOMMAND flag is the default if neither the MF_BYCOMMAND nor MF_BYPOSITION flag is specified.
MF_BYPOSITION	Indicates that the NewItemID
parameter gives the zero-based relative position of the new menu item. If NewItemID is 0xFFFFFFFF, the new menu item is appended to the end of the menu.
NewItemID		Specifies either the identifier of the new menu
item or, if the Flags parameter has the MF_POPUP flag set, the handle of the pop-up menu.
String		Specifies the content of the new menu item.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

The application must call the DrawMenuBar function whenever a menu changes, whether or not the menu is in a displayed window.
The following list describes the flags that can be set in the Flags parameter:
MF_CHECKED		Places a check mark next to the item.
MF_DISABLED		Disables the menu item so that it cannot be
selected, but the flag does not gray it.
MF_ENABLED		Enables the menu item so that it can be selected
and restores it from its grayed state.
MF_GRAYED		Disables the menu item and grays it so it cannot be
selected.
MF_MENUBARBREAK	Functions the same as the MF_MENUBREAK flag except
for pop-up menus where the new column is separated from the old column by a vertical line.
MF_MENUBREAK	Places the item on a new line (for menu bars) or in
a new column (for pop-up menus) without separating columns.
MF_POPUP		Specifies that the menu item is a pop-up item; that
is, selecting it activates a pop-up menu. The NewItemID parameter specifies the handle of the pop-up menu. This flag is used to add a pop-up item to a menu bar or to a pop-up menu.
MF_SEPARATOR	Draws a horizontal dividing line. This flag is only
used in a pop-up menu. The line cannot be grayed, disabled, or highlighted. The String and NewItemID parameters are ignored.
MF_STRING		Specifies that the menu item is a text string; the
String parameter points to the string.
MF_UNCHECKED	Does not place a check mark next to the item
(default).

The following list shows groups of flags that cannot be used together:

·	MF_BYCOMMAND and MF_BYPOSITION
·	MF_DISABLED, MF_ENABLED, and MF_GRAYED
·	MF_STRING and MF_SEPARATOR
·	MF_MENUBARBREAK and MF_MENUBREAK
·	MF_CHECKED and MF_UNCHECKED

See Also

AppendMenu, DeleteMenu, DrawMenuBar, ModifyMenu, RemoveMenu

InsertString

Inserts string in the list box or combo box at the position supplied.

Syntax

int InsertString(
 HWND hWnd,
 char *String,
 int Index
);

Parameters

hWnd			The handle of list box or combo box control.
String		String to be inserted.
Index			Specifies the position of new string in the list.

Return Value

Returns the new item's actual position (starting at 0) in the list. A negative value is returned if an error occurs.

Remarks

The list is not resorted. If index is -1, the string is appended to the end of the list.

IsClipboardFormatAvailable

Determines whether the clipboard contains data in the specified format.

Syntax

BOOL IsClipboardFormatAvailable(
 UINT Format
);

Parameters

Format		Specifies a standard or registered clipboard
format. For a description of the clipboard formats, see the SetClipboardData function.

Return Value

If the clipboard format is available, the return value is TRUE; otherwise, it is FALSE. To get extended error information, call GetLastError.

See Also

CountClipboardFormats, EnumClipboardFormats, RegisterClipboardFormat, SetClipboardData

KillTimer

Destroys the specified timer. The system searches the message queue for any pending WM_TIMER messages associated with the timer and removes them.

Syntax

BOOL KillTimer(
 HWND hWnd,
 UINT idEvent
);

Parameters

hWnd			Identifies the window associated with the specified
timer. This value must be the same as the hwnd value passed to the SetTimer function that created the timer.
idEvent		Specifies the timer to be destroyed. If the window
handle passed to SetTimer is valid, this parameter must be the same as the idEvent value passed to SetTimer. If the application calls SetTimer with hwnd set to NULL, this parameter must be the timer identifier returned by SetTimer.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

See Also

SetTimer

LineTo

Draws a line from the current position up to, but not including, the specified point.

Syntax

BOOL LineTo(
 HDC DC,
 int X,
 int Y
);

Parameters

DC			Identifies a device context.
X			Specifies the x-coordinate of the line's ending
point.
Y			Specifies the y-coordinate of the line's ending
point.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE.

Remarks

The coordinates of the line's ending point are specified in logical units.
The line is drawn by using the current pen and, if the pen is a geometric pen, the current brush.
If the function succeeds, the current position is set to the specified ending point.

See Also

MoveTo

LoadBitmapFile

Loads a device-independent bitmap from the file.

Syntax

HDIB LoadBitmapFile(
 char *FileName,
 int *Width,
 int *Height
);

Parameters

FileName		Name of the Windows bitmap (.bmp) to load.
Width			Points to a buffer to receive bitmap width.
Height		Points to a buffer to receive bitmap height.

Return Value

If the function succeeds, the return value is the handle to loaded bitmap. If the function fails, the return value is 0.

Remarks

This function can load only monochrome, 16-colors and 256-colors bitmaps. It can’t load OS/2 bitmaps.

See Also

SaveBitmapFile, SelectBitmapToDC

LoadCursor

Loads the specified cursor resource.

Syntax

HCURSOR LoadCursor(
 int Cursor
);

Parameters

Cursor		The resource identifier of one of the Win32
predefined cursors; one the following values:
IDC_APPSTARTING	Standard arrow and small
hourglass
IDC_ARROW		Standard arrow
IDC_CROSS		Crosshair
IDC_IBEAM		Text I-beam
IDC_ICON		Empty icon
IDC_NO		Slashed circle
IDC_SIZE		Four-pointed arrow
IDC_SIZEALL		Same as IDC_SIZE
IDC_SIZENESW	Double-pointed arrow pointing
northeast and southwest
IDC_SIZENS		Double-pointed arrow pointing
north and south
IDC_SIZENWSE	Double-pointed arrow pointing
northwest and southeast
IDC_SIZEWE		Double-pointed arrow pointing
west and east
IDC_UPARROW		Vertical arrow
IDC_WAIT		Hourglass

Return Value

If the function succeeds, the return value is the handle of the newly loaded cursor. If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks

LoadCursor only loads the cursor resource if it has not been loaded; otherwise, it retrieves the handle of the existing resource.
The LoadCursor function searches the cursor resource most appropriate for the cursor for the current display device. The cursor resource can be a color or monochrome bitmap.

See Also

AssignCursor, SetCursor

LoadIcon

Loads the specified icon resource.

Syntax

HICON LoadIcon(
 int Icon
);

Parameters

Icon			The resource identifier of one of the Win32
predefined icons; one the following values:
IDI_APPLICATION	Default application icon.
IDI_ASTERISK	Asterisk (used in informative
messages).
IDI_EXCLAMATION	Exclamation point (used in
warning messages).
IDI_HAND		Hand-shaped icon (used in serious
warning messages).
IDI_QUESTION	Question mark (used in prompting
messages).

Return Value

If the function succeeds, the return value is the handle of the newly loaded icon. If the function fails, the return value is NULL. To get extended error information, call GetLastError.

Remarks

LoadIcon loads the icon resource only if it has not been loaded; otherwise, it retrieves a handle to the existing resource. The function searches the icon resource for the icon most appropriate for the current display. The icon resource can be a color or monochrome bitmap.

LoadProtocolExtension

Load protocol extension DLL.

Syntax

BOOL LoadProtocolExtension(
 char *ModuleName,
 char *DispatchFunctionName,
 DWORD *DispatchFunctionInstance
);

Parameters

ModuleName				Specifies file name of DLL.
DispatchFunctionName		Null-terminated string which specifies
the name of dispatch function.
DispatchFunctionInstance	Points to the buffer to receive an
instance of loaded DLL.
Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE.

See Also

UnloadProtocolExtension

MessageBeep

Plays a waveform sound. The waveform sound for each sound type is identified by an entry in the [sounds] section of the registry.

Syntax

BOOL MessageBeep(
 UINT fuType
);

Parameters

fuType		Specifies the sound type, as identified by an entry
in the [sounds] section of the registry. This parameter can be one of the following values:
0xFFFFFFFF			Standard beep using the
computer speaker
MB_ICONASTERISK		SystemAsterisk
MB_ICONEXCLAMATION	SystemExclamation
MB_ICONHAND			SystemHand
MB_ICONQUESTION		SystemQuestion
MB_OK				SystemDefault

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

After queuing the sound, the MessageBeep function returns control to the calling function and plays the sound asynchronously.
If it cannot play the specified alert sound, MessageBeep attempts to play the system default sound. If it cannot play the system default sound, the function produces a standard beep sound through the computer speaker.
The user can disable the warning beep by using the Control Panel Sound application.

See Also

MessageBox

MessageBox

Creates, displays, and operates a message box. The message box contains an application-defined message and title, plus any combination of predefined icons and push buttons.

Syntax

int MessageBox(
 char *message,
 char *title,
 UINT Flags
);

Parameters

message		Points to a null-terminated string containing the
message to be displayed.
title			Points to a null-terminated string used for the
dialog box title. If this parameter is NULL, the default title Error is used.
Flags			Specifies the contents and behavior of the dialog
box. This parameter can be a combination of the following values:
MB_ABORTRETRYIGNORE	The message box contains
three push buttons: Abort, Retry, and Ignore.
MB_APPLMODAL		The user must respond to
the message box before continuing work in the window identified by the hwndOwner parameter. However, the user can move to the windows of other applications and work in those windows. MB_APPLMODAL is the default value if neither MB_SYSTEMMODAL nor MB_TASKMODAL is specified.
MB_DEFAULT_DESKTOP_ONLY	The desktop currently
receiving input must be a default desktop; otherwise, the function fails. A default desktop is one an application runs on after the user has logged on.
MB_DEFBUTTON1		The first button is the
default button. Note that the first button is always the default unless MB_DEFBUTTON2 or MB_DEFBUTTON3 is specified.
MB_DEFBUTTON2		The second button is the
default button.
MB_DEFBUTTON3		The third button is the
default button.
MB_ICONASTERISK		Same as MB_ICONINFORMATION.
MB_ICONEXCLAMATION	An exclamation-point icon
appears in the message box.
MB_ICONHAND			Same as MB_ICONSTOP.
MB_ICONINFORMATION	An icon consisting of a
lowercase letter i in a circle appears in the message box.
MB_ICONQUESTION		A question-mark icon
appears in the message box.
MB_ICONSTOP			A stop-sign icon appears in
the message box.
MB_OK				The message box contains
one push button: OK.
MB_OKCANCEL			The message box contains
two push buttons: OK and Cancel.
MB_RETRYCANCEL		The message box contains
two push buttons: Retry and Cancel.
MB_SETFOREGROUND		The message box becomes the
foreground window. Internally, Windows calls the SetForegroundWindow function for the message box.
MB_SYSTEMMODAL		All applications are
suspended until the user responds to the message box. Unless the application specifies MB_ICONHAND, the message box does not become modal until after it is created; consequently, the owner window and other windows continue to receive messages resulting from its activation. Use system-modal message boxes to notify the user of serious, potentially damaging errors that require immediate attention (for example, running out of memory).
MB_TASKMODAL		Same as MB_APPLMODAL except
that all the top-level windows belonging to the current task are disabled if the hwndOwner parameter is NULL. Use this flag when the calling application or library does not have a window handle available but still needs to prevent input to other windows in the current application without suspending other applications.
MB_YESNO			The message box contains
two push buttons: Yes and No.
MB_YESNOCANCEL		The message box contains
three push buttons: Yes, No, and Cancel.

Return Value

The return value is zero if there is not enough memory to create the message box.
If the function succeeds, the return value is one of the following menu-item values returned by the dialog box:
IDABORT		Abort button was selected.
IDCANCEL		Cancel button was selected.
IDIGNORE		Ignore button was selected.
IDNO			No button was selected.
IDOK			OK button was selected.
IDRETRY		Retry button was selected.
IDYES			Yes button was selected.

If a message box has a Cancel button, the function returns the IDCANCEL value if either the ESC key is pressed or the Cancel button is selected. If the message box has no Cancel button, pressing ESC has no effect.

Remarks

When you use a system-modal message box to indicate that the system is low on memory, the strings pointed to by the message and title parameters should not be taken from a resource file, because an attempt to load the resource may fail.
When an application calls MessageBox and specifies the MB_ICONHAND and MB_SYSTEMMODAL flags for the Flags parameter, Windows displays the resulting message box regardless of available memory. When these flags are specified, Windows limits the length of the message box text to three lines. Windows does not automatically break the lines to fit in the message box, however, so the message string must contain carriage returns to break the lines at the appropriate places.

See Also

MessageBeep

ModifyMenu

Changes an existing menu item. This function is used to specify the content, appearance, and behavior of the menu item.

Syntax

BOOL ModifyMenu(
 HMENU Menu,
 UINT Position,
 UINT Flags,
 UINT NewItemID,
 char *String
);

Parameters

Menu			Identifies the menu to be changed.
Position		Specifies the menu item to be changed, as
determined by the Flags parameter.
Flags			Specifies flags that control the interpretation of
the uItem parameter and the content, appearance, and behavior of the menu item. This parameter must be a combination of one of the following required values and at least one of the values listed in the Remarks section.
MF_BYCOMMAND	Indicates that the Position
parameter gives the identifier of the menu item. The MF_BYCOMMAND flag is the default if neither the MF_BYCOMMAND nor MF_BYPOSITION flag is specified.
MF_BYPOSITION	Indicates that the Position
parameter gives the zero-based relative position of the menu item.
NewItemID		Specifies either the identifier of the modified
menu item or, if Flags is set to the MF_POPUP flag, the handle of the pop-up menu.
String		Contains a pointer to a null-terminated string.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

If ModifyMenu replaces a menu item that activates a pop-up menu, the function destroys the old pop-up menu and frees the memory used by it.
The application must call the DrawMenuBar function whenever a menu changes, whether or not the menu is in a displayed window. To change the attributes of existing menu items, it is much faster to use the CheckMenuItem and EnableMenuItem functions.
The following list describes the flags that may be set in the Flags parameter:
MF_BYCOMMAND	Indicates that the Position parameter specifies
the identifier of the menu item (the default).
MF_BYPOSITION	Indicates that the Position parameter specifies the
zero-based relative position of the new menu item.
MF_CHECKED		Places a check mark next to the item.
MF_DISABLED		Disables the menu item so that it cannot be
selected, but this flag does not gray it.
MF_ENABLED		Enables the menu item so that it can be selected
and restores it from its grayed state.
MF_GRAYED		Disables the menu item and grays it so that it
cannot be selected.
MF_MENUBARBREAK	Functions the same as the MF_MENUBREAK flag, except
for pop-up menus where the new column is separated from the old column by a vertical line.
MF_MENUBREAK	Places the item on a new line (for menu bars) or in
a new column (for pop-up menus) without separating columns.
MF_POPUP		Specifies that the menu item is a pop-up item; that
is, selecting it activates a pop-up menu. The NewItemID parameter specifies the handle of the pop-up menu. This flag is used to add a pop-up item to a menu bar or to a pop-up menu.
MF_SEPARATOR	Draws a horizontal dividing line. This flag is used
only in a pop-up menu. The dividing line cannot be grayed, disabled, or highlighted. The String and NewItemID parameters are ignored.
MF_STRING		Specifies that the menu item is a text string; the
NewItemID parameter points to the string.
MF_UNCHECKED	Does not place a check mark next to the item (the
default).
The following list shows groups of flags that cannot be used together:

·	MF_BYCOMMAND and MF_BYPOSITION
·	MF_DISABLED, MF_ENABLED, and MF_GRAYED
·	MF_STRING, MF_SEPARATOR
·	MF_MENUBARBREAK and MF_MENUBREAK
·	MF_CHECKED and MF_UNCHECKED

See Also

AppendMenu, CheckMenuItem, DrawMenuBar, EnableMenuItem

MoveFile

Renames an existing file or a directory (including all its children).

Syntax

BOOL MoveFile(
 char *ExistingFile,
 char *NewFile
);

Parameters

ExistingFile	Points to a null-terminated string that names an
existing file or directory.
NewFile		Points to a null-terminated string that specifies
the new name of a file or directory. The new name must not already exist. A new file may be on a different file system or drive. A new directory must be on the same drive.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

The MoveFile function will move (rename) either a file or a directory (including all its children) either in the same directory or across directories. The one caveat is that the MoveFile function will fail on directory moves when the destination is on a different volume.

See Also

CopyFile

MoveTo

Updates the current position to the specified point and optionally returns the previous position.

Syntax

BOOL MoveTo(
 HDC DC,
 int X,
 int Y
);

Parameters

DC			Identifies a device context.
X			Specifies the x-coordinate of the new position, in
logical units.
Y			Specifies the y-coordinate of the new position, in
logical units.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE.

Remarks

The MoveTo function affects all drawing functions.

See Also

LineTo

MoveWindow

Changes the position and dimensions of the specified window. For a top-level window, the position and dimensions are relative to the upper-left corner of the screen. For a child window, they are relative to the upper-left corner of the parent window's client area.

Syntax

BOOL MoveWindow(
 HWND hWnd,
 int X,
 int Y,
 int nWidth,
 int nHeight,
 BOOL bRepaint
);

Parameters

hWnd			Identifies the window.
X			Specifies the new position of the left side of the
window.
Y			Specifies the new position of the top of the
window.
nWidth		Specifies the new width of the window.
nHeight		Specifies the new height of the window.
bRepaint		Specifies whether the window is to be repainted. If
this parameter is TRUE, the window receives a WM_PAINT message. If the parameter is FALSE, no repainting of any kind occurs. This applies to the client area, the nonclient area (including the title bar and scroll bars), and any part of the parent window uncovered as a result of moving a child window. If this parameter is FALSE, the application must explicitly invalidate or redraw any parts of the window and parent window that need redrawing.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE.

Remarks

If the bRepaint parameter is TRUE, Windows sends the WM_PAINT message to the window procedure immediately after moving the window (that is, the MoveWindow function calls the UpdateWindow function). If bRepaint is FALSE, Windows places the WM_PAINT message in the message queue associated with the window. The message loop dispatches the WM_PAINT message only after dispatching all other messages in the queue.
MoveWindow sends a WM_GETMINMAXINFO message to the window being moved, enabling it to modify the default values for the largest and smallest possible windows. If the parameters of MoveWindow exceed these values, they will be replaced by the minimum or maximum values specified in the WM_GETMINMAXINFO message.

MoveWindow sends WM_WINDOWPOSCHANGING, WM_WINDOWPOSCHANGED, WM_MOVE, WM_SIZE, and WM_NCCALCSIZE messages to the window.

OpenClipboard

Opens the clipboard for examination and prevents other applications from modifying the clipboard content.

Syntax

BOOL OpenClipboard(
 HWND hWnd
);

Parameters

hWnd			Identifies the window to be associated with the
open clipboard. If this parameter is NULL, the open clipboard is associated with the current task.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

OpenClipboard fails if another window has the clipboard open.
An application should call the CloseClipboard function after every successful call to OpenClipboard.
The window identified by the hwnd parameter does not become the clipboard owner unless the EmptyClipboard function is called.

See Also

CloseClipboard, EmptyClipboard

PALETTEINDEX

Accepts an index to a logical-color palette entry and returns a palette-entry specifier consisting of a 32-bit COLORREF value that specifies the color associated with the given index. An application using a logical color palette can pass this specifier, instead of an explicit red, green, blue (RGB) value, to GDI functions that expect a color. This allows the function to use the color in the specified palette entry.

Syntax

COLORREF PALETTEINDEX(
 WORD wPaletteIndex
)

Parameters

wPaletteIndex

Specifies an index to the palette entry containing the color to be used for a graphics operation.

Return Value

The return value is a logical-palette index specifier.

Remarks

The PALETTEINDEX macro is defined as follows:

#define PALETTEINDEX(i) \
 ((COLORREF) (0x01000000 | (DWORD) (WORD) (i)))

See Also

PALETTERGB, RGB

PALETTERGB

Accepts three values that represent the relative intensities of red, green, and blue and returns a palette-relative red, green, blue (RGB) specifier consisting of 2 in the high-order byte and an RGB value in the three low-order bytes. An application using a color palette can pass this specifier, instead of an explicit RGB value, to functions that expect a color.

Syntax

COLORREF PALETTERGB(
 BYTE bRed,
 BYTE bGreen,
 BYTE bBlue
)

Parameters

bRed			Specifies the intensity of the red color field.
bGreen		Specifies the intensity of the green color field.
bBlue			Specifies the intensity of the blue color field.

Return Value

The return value is a palette-relative RGB specifier. For output devices that support logical palettes, Windows matches a palette-relative RGB value to the nearest color in the logical palette of the device context as though the application had specified an index to that palette entry. If an output device does not support a system palette, Windows uses the palette-relative RGB as though it were a conventional RGB doubleword returned by the RGB macro.

Remarks

The PALETTERGB macro is defined as follows:

#define PALETTERGB(r, g, b) \
 (0x02000000 | RGB(r, g, b))

See Also

PALETTEINDEX, RGB

PatBlt

Paints the given rectangle using the brush that is currently selected into the specified device context. The brush color and the surface color(s) are combined by using the given raster operation.

Syntax

BOOL PatBlt(
 HDC DC,
 int X,
 int Y,
 int Width,
 int Height,
 DWORD Rop
);

Parameters

DC			Identifies the device context.
X			Specifies the x-coordinate, in logical units, of
the upper-left corner of the rectangle to be filled.
Y			Specifies the y-coordinate, in logical units, of
the upper-left corner of the rectangle to be filled.
Width			Specifies the width, in logical units, of the
rectangle.
Height		Specifies the height, in logical units, of the
rectangle.
Rop			Specifies the raster operation code. This code may
be one of the following values:
PATCOPY	Copies the specified pattern into the
destination bitmap.
PATINVERT	Combines the colors of the specified
pattern with the colors of the destination rectangle by using the Boolean OR operator.
DSTINVERT	Inverts the destination rectangle.
BLACKNESS	Fills the destination rectangle using
the color associated with index 0 in the physical palette. (This color is black for the default physical palette.)
WHITENESS	Fills the destination rectangle using
the color associated with index 1 in the physical palette. (This color is white for the default physical palette.)

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

The values of the Rop parameter for this function are a limited subset of the full 256 ternary raster-operation codes; in particular, an operation code that refers to a source rectangle cannot be used.
Not all devices support the PatBlt function. For more information, see the description of the RC_BITBLT capability in the GetDeviceCaps function.

See Also

GetDeviceCaps

PeekMessage

Checks an application message queue for a message and places the message (if any) in the specified structure.

Syntax

BOOL PeekMessage(
 TMSG *Msg,
 HWND hWnd,
 UINT MsgFilterMin,
 UINT MsgFilterMax,
 UINT RemoveMsg
);

Parameters

Msg			Points to an TMSG structure that contains message
information from the Windows-based application queue.
HWnd			Identifies the window whose messages are to be
examined.
MsgFilterMin	Specifies the value of the first message in the
range of messages to be examined.
MsgFilterMax	Specifies the value of the last message in the
range of messages to be examined.
RemoveMsg		Specifies how messages are handled. This parameter
can be one of the following values:
PM_NOREMOVE	Messages are not removed from the queue
after processing by PeekMessage.
PM_REMOVE	Messages are removed from the queue
after processing by PeekMessage.

Return Value

If a message is available, the return value is TRUE. If the function fails, the return value is FALSE.

Remarks

The PeekMessage function does not wait for a message to be placed in the queue before returning.
PeekMessage retrieves only messages associated with the window identified by the hWnd parameter or any of its children, and within the range of message values given by the MsgFilterMin and MsgFilterMax parameters. If hWnd is NULL, PeekMessage retrieves messages for any window that belongs to the current application making the call. If MsgFilterMin and MsgFilterMax are both zero, PeekMessage returns all available messages (that is, no range filtering is performed).

The WM_KEYFIRST and WM_KEYLAST constants can be used as filter values to retrieve all keyboard messages; the WM_MOUSEFIRST and WM_MOUSELAST constants can be used to retrieve all mouse messages.

See Also

PostMessage, SendMessage, DispatchMessage, RetrieveMessage

Pie

Draws a pie-shaped wedge bounded by the intersection of an ellipse and two radials. The pie is outlined by using the current pen and filled by using the current brush.

Syntax

BOOL Pie(
 HDC DC,
 int X1,
 int Y1,
 int X2,
 int Y2,
 int X3,
 int Y3,
 int X4,
 int Y4
);

Parameters

DC			Identifies the device context.
X1			Specifies the x-coordinate of the upper-left corner
of the bounding rectangle.
Y1			Specifies the y-coordinate of the upper-left corner
of the bounding rectangle.
X2			Specifies the x-coordinate of the lower-right
corner of the bounding rectangle.
Y2			Specifies the y-coordinate of the lower-right
corner of the bounding rectangle.
X3			Specifies the x-coordinate of the endpoint of the
first radial.
Y3			Specifies the y-coordinate of the endpoint of the
first radial.
X4			Specifies the x-coordinate of the endpoint of the
second radial.
Y4			Specifies the y-coordinate of the endpoint of the
second radial.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

The curve of the pie is defined by an ellipse that fits the specified bounding rectangle. The curve begins at the point where the ellipse intersects the first radial and extends counterclockwise to the point where the ellipse intersects the second radial. (A radial is a line drawn from the center of the ellipse to the specified endpoint on the ellipse.)
The current position is neither used nor updated by this function.

See Also

Arc, Chord

PostMessage

Places (posts) a message in the message queue associated with the thread that created the specified window and then returns without waiting for the thread to process the message. Messages in a message queue are retrieved by calls to the RetrieveMessage or PeekMessage function.

Syntax

BOOL PostMessage(
 HWND hWnd,
 UINT Message,
 WPARAM wParam,
 LPARAM lParam
);

Parameters

hWnd			Identifies the window whose window procedure is to
receive the message. One value - HWND_BROADCAST - have special meaning: the message is posted to all top-level windows in the system, including disabled or invisible unowned windows, overlapped windows, and pop-up windows. The message is not posted to child windows.
Message		Specifies the message to be posted.
wParam		Specifies additional message-specific information.
lParam		Specifies additional message-specific information.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

See Also

PeekMessage, SendMessage

ReadFile

Reads data from a file, starting at the position indicated by the file pointer. After the read operation has been completed, the file pointer is adjusted by the number of bytes actually read, unless the file handle is created with the overlapped attribute.

Syntax

BOOL ReadFile(
 HANDLE hFile,
 void *pBuffer,
 DWORD nNumberOfBytesToRead,
 DWORD *pNumberOfBytesRead
);

Parameters

hFile			Identifies the file to be read. The file handle
must have been created with GENERIC_READ access to the file.
pBuffer		Points to the buffer that receives the data read
from the file.

nNumberOfBytesToRead	Specifies the number of bytes to be read from
the file.
lpNumberOfBytesRead	Points to the number of bytes read. ReadFile
sets this value to zero before doing any work or error checking. If this parameter is zero when ReadFile returns TRUE on a named pipe, the other end of the message-mode pipe called the WriteFile function with nNumberOfBytesToWrite set to zero.

Return Value

If the function succeeds, the return value is TRUE. If the return value is TRUE and the number of bytes read is zero, the file pointer was beyond the current end of the file at the time of the read operation.
If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

If part of the file is locked by another process and the read operation overlaps the locked portion, this function fails.
Characters can be read from the console input buffer by using ReadFile with a handle to console input. The console mode determines the exact behavior of the ReadFile function.
If ReadFile attempts to read from a mailslot whose buffer is too small, the function returns FALSE and GetLastError returns ERROR_INSUFFICIENT_BUFFER.
If the anonymous write pipe handle has been closed and ReadFile attempts to read using the corresponding anonymous read pipe handle, the function returns FALSE and GetLastError returns ERROR_BROKEN_PIPE.

See Also

CreateFile, WriteFile

Rectangle

Draws a rectangle. The rectangle is outlined by using the current pen and filled by using the current brush.

Syntax

BOOL Rectangle(
 HDC DC,
 int X1,
 int Y1,
 int X2,
 int Y2
);

Parameters

DC			Identifies the device context.
X1			Specifies the logical x-coordinate of the upper-
left corner of the rectangle.
Y1			Specifies the logical y-coordinate of the upper-
left corner of the rectangle.
X2			Specifies the logical x-coordinate of the lower-
right corner of the rectangle.
Y2			Specifies the logical y-coordinate of the lower-
right corner of the rectangle.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

The current position is neither used nor updated by this function.

RegisterClipboardFormat

Registers a new clipboard format. This format can then be used as a valid clipboard format.

Syntax

UINT RegisterClipboardFormat(
 char *FormatName
);

Parameters

FormatName		Points to a null-terminated string that names the
new format.

Return Value

If the function succeeds, the return value identifies the registered clipboard format. If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

If a registered format with the specified name already exists, a new format is not registered and the return value identifies the existing format. This enables more than one application to copy and paste data using the same registered clipboard format.
Registered clipboard formats are identified by values in the range 0xC000 through 0xFFFF.

See Also

CountClipboardFormats, EnumClipboardFormats, GetClipboardFormatName

ReleaseCapture

Releases the mouse capture from a window in the current thread and restores normal mouse input processing. A window that has captured the mouse receives all mouse input, regardless of the position of the cursor, except when a mouse button is clicked while the cursor hot spot is in the window of another thread.

Syntax

BOOL ReleaseCapture(void);

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE.

Remarks

An application calls this function after calling the SetCapture function.

See Also

SetCapture

ReleaseDC

Releases a device context (DC), freeing it for use by other applications. The effect of the ReleaseDC function depends on the type of device context. It frees only common and window DCs. It has no effect on class or private DCs.

Syntax

int ReleaseDC(
 HWND hWnd,
 HDC DC
);
Parameters

hWnd			Identifies the window whose DC is to be released.
DC			Identifies the DC to be released.

Return Value

The return value specifies whether the DC is released. If the DC is released, the return value is 1. If the DC is not released, the return value is zero.

Remarks

The application must call the ReleaseDC function for each call to the GetWindowDC function and for each call to the GetDC function that retrieves a common DC.
An application cannot use the ReleaseDC function to release a DC that was created by calling the CreateDC function; instead, it must use the DeleteDC function.

See Also

GetDC, DeleteDC

RetrieveMessage

Retrieves message from the application message queue.

Syntax

void RetrieveMessage(
 TMSG *Msg
);

Parameters

Msg			Points to TMSG structure.

Remarks

If there are no messages in the queue, the functions fills all TMSG fields with zeros.

RGB

Selects a red, green, blue (RGB) color based on the arguments supplied and the color capabilities of the output device.

Syntax

COLORREF RGB(
 BYTE bRed,
 BYTE bGreen,
 BYTE bBlue
)

Parameters

cRed			Specifies the intensity of the red color.
cGreen		Specifies the intensity of the green color.
cBlue			Specifies the intensity of the blue color.

Return Value

The return value is the resultant RGB color.

Remarks

The intensity for each argument is in the range 0 through 255. If all three intensities are zero, the result is black. If all three intensities are 255, the result is white.
For information about using color values in a color palette, see PALETTEINDEX and PALETTERGB macros.
The RGB macro is defined as follows:

#define RGB(r, g ,b) \
 ((DWORD)(((BYTE)(r)|((WORD)(g) << 8))| (((DWORD)(BYTE)(b)) << 16)))

See Also

PALETTEINDEX, PALETTERGB

SaveBitmapFile

Save the specified device context as a Windows device-independent bitmap (.bmp).

Syntax

BOOL SaveBitmapFile(
 HDC hDC,
 char *FileName
);

Parameters

hDC			Specifies the device context.
FileName		The name of file to be created.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE.

See Also

LoadBitmapFile

SelectBitmapToDC

Selects the specified device-independent bitmap into the screen device context, using bit-block transfer.

Syntax

BOOL SelectBitmapToDC(
 HDC DC,
 HDIB Dib,
 POINT *pPoint,
 int x,
 int y,
 int Width,
 int Height
);

Parameters

DC			Identifies the destination device context.
Dib			Identifies the source device context.
pPoint		Points to an array of three points in logical space
that identify three corners of the destination parallelogram. The upper-left corner of the source rectangle is mapped to the first point in this array, the upper-right corner to the second point in this array, and the lower-left corner to the third point. The lower-right corner of the source rectangle is mapped to the implicit fourth point in the parallelogram.
x			Specifies the x-coordinate, in logical units, of
the upper-left corner of the source rectangle.
y			Specifies the y-coordinate, in logical units, of
the upper-left corner of the source rectangle.
Width			Specifies the width, in logical units, of the
source rectangle.
Height		Specifies the height, in logical units, of the
source rectangle.

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

The fourth vertex of the parallelogram (D) is defined by treating the first three points (A, B, and C) as vectors and computing D = B + C - A.
destination device context; the source coordinates are transformed according to the source device context. If the source transformation has a rotation or shear, an error is returned.
If the destination and source rectangles do not have the same color format, the function converts the source rectangle to match the destination rectangle.

See Also

LoadBitmapFile, BitBlt, GetDeviceCaps, StretchBlt

SelectObject

Selects an object into the specified device context (DC). The new object replaces the previous object of the same type.

Syntax

HANDLE SelectObject(
 HDC DC,
 HANDLE Object
);

Parameters

DC			Identifies the DC.
Object		Identifies the object to be selected.

Return Value

If the selected object is not a region and the function succeeds, the return value is the handle of the object being replaced. If an error occurs, the return value is NULL or GDI_ERROR.

Remarks

This function returns the previously selected object of the specified type. An application should always replace a new object with the original, default object after it has finished drawing with the new object.
An application cannot select a bitmap into more than one DC at a time.

SendMessage

Specified message to a window or windows. The function calls the window procedure for the specified window and does not return until the window procedure has processed the message.

Syntax

LRESULT SendMessage(
 HWND hWnd,
 UINT Message,
 WPARAM wParam,
 LPARAM lParam
);

Parameters

hWnd			Identifies the window whose window procedure will
receive the message. If this parameter is HWND_BROADCAST, the message is sent to all top-level windows in the system, including disabled or invisible unowned windows, overlapped windows, and pop-up windows; but the message is not sent to child windows.
Message		Specifies the message to be sent.
wParam		Specifies additional message-dependent information.
lParam		Specifies additional message-dependent information.

Return Value

The return value specifies the result of the message processing and depends on the message sent.

See Also

PostMessage

SetCapture

Sets the mouse capture to the specified window belonging to the current thread. Once a window has captured the mouse, all mouse input is directed to that window, regardless of whether the cursor is within the borders of that window. Only one window at a time can capture the mouse.

Syntax

HWND SetCapture(
 HWND hWnd
);

Parameters

hWnd			Identifies the window in the current thread that is
to capture the mouse.

Return Value

If the function succeeds, the return value is the handle of the window that had previously captured the mouse. If there is no such window, the return value is NULL.

Remarks

If the mouse cursor is over a window created by another thread, the system will direct mouse input to the specified window only if a mouse button is down.
Only the foreground window can capture the mouse. When a background window attempts to do so, the window receives messages only for mouse events that occur when the cursor hot spot is within the visible portion of the window. Also, even if the foreground window has captured the mouse, the user can still click another window, bringing it to the foreground.
When the window no longer requires all mouse input, the thread that created the window should call the ReleaseCapture function to release the mouse.
This function cannot be used to capture mouse input meant for another process.

See Also

ReleaseCapture

SetCheck

Changes the state of check box.

Syntax

void SetCheck(
 HWND hWnd,
 UINT CheckFlag
);

Parameters

hWnd			Identifies the handle of control.
CheckFlag		Specifies the check state. This parameter can be
one of the following values:
0	Sets the button state to unchecked.
1	Sets the button state to checked.
2	Sets the button state to grayed. This value
can be used only if the button has the BS_3STATE or BS_AUTO3STATE style.

See Also

GetCheck

SetClassLong

Replaces the specified 32-bit (long) value at the specified offset into the extra class memory or the WNDCLASS structure for the class to which the specified window belongs.

Syntax

LONG SetClassLong(
 HWND hWnd,
 int Index,
 LONG lNewLong
);

Parameters

hWnd			Identifies the window and, indirectly, the class to
which the window belongs.
Index			Specifies the 32-bit value to replace. To set a 32-
bit value in the extra class memory, specify the positive, zero-based byte offset of the value to be set. Valid values are in the range zero through the number of bytes of extra class memory, minus four; for example, if you specified 12 or more bytes of extra class memory, a value of 8 would be an index to the third 32-bit integer. To set any other value from the WNDCLASS structure, specify one of the following values:
GCL_CBCLSEXTRA	Sets the size, in bytes, of the
extra memory associated with the class. Setting this value does not change the number of extra bytes already allocated.
GCL_CBWNDEXTRA	Sets the size, in bytes, of the
extra window memory associated with each window in the class. Setting this value does not change the number of extra bytes already allocated. For information on how to access this memory, see SetWindowLong and SetWindowWord.
GCL_HBRBACKGROUND	Replaces the handle of the
background brush associated with the class.
GCL_HCURSOR		Replaces the handle of the cursor
associated with the class.
GCL_HICON		Replaces the handle of the icon
associated with the class.
GCL_HMODULE		Replaces the handle of the module
that registered the class.
GCL_MENUNAME	Replaces the address of the menu
name string. The string identifies the menu resource associated with the class.
GCL_STYLE		Replaces the window-class style
bits.
GCL_WNDPROC		Replaces the address of the
window procedure associated with the class.
lNewLong		Specifies the replacement value.

Return Value

If the function succeeds, the return value is the previous value of the specified 32-bit integer.
If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

Use the SetClassLong function with care. For example, it is possible to change the background color for a class by using SetClassLong, but this change does not immediately repaint all windows belonging to the class.

See Also

GetClassLong, SetClassWord, SetWindowLong, SetWindowWord

SetClassWord

The SetClassWord function replaces the 16-bit (word) value at the specified offset into the extra class memory for the window class to which the specified window belongs.

Syntax

WORD SetClassWord(
 HWND hWnd,
 int Index,
 WORD wNewWord
);

Parameters

hWnd			Identifies the window and, indirectly, the class to
which the window belongs.
Index			Specifies the zero-based byte offset of the value
to be replaced. Valid values are in the range zero through the number of bytes of class memory minus two; for example, if you specified 10 or more bytes of extra class memory, a value of 8 would be an index to the fifth 16-bit integer.
wNewWord		Specifies the replacement value.

Return Value

If the function succeeds, the return value is the previous value of the specified 16-bit integer. If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

The GCW_ values are obsolete in the Win32 API. You must use the SetClassLong function to set the class values previously set by using the GCW_ values with the SetClassWord function.

See Also

GetClassWord, SetClassLong

SetClipboardData

Places data on the clipboard in the specified clipboard format. The window must be the current clipboard owner, and the application must have called the OpenClipboard function.

Syntax

HANDLE SetClipboardData(
 UINT Format,
 HANDLE hMem
);

Parameters

Format		Specifies a clipboard format. This parameter can be
a registered format or any of the standard clipboard formats listed in the Remarks section. For information about registered clipboard formats, see the RegisterClipboardFormat function.
hMem			Identifies the data in the specified format.

Return Value

If the function succeeds, the return value is the handle of the data.
If the function fails, the return value is NULL. To get extended rror information, call GetLastError.

Remarks

Once SetClipboardData is called, the system owns the object identified by the hData parameter. The application can read the data, but must not free the handle or leave it locked. If the hData parameter identifies a memory object, the object must have been allocated using the GlobalAlloc function with the GMEM_MOVEABLE and GMEM_DDESHARE flags.

The Format parameter can identify a registered clipboard format, or it can be one of the following values:

CF_BITMAP			A handle of a bitmap (HBITMAP).
CF_DIB			A memory object containing a BITMAPINFO
structure followed by the bitmap bits.
CF_DIF			Software Arts' Data Interchange Format.
CF_DSPBITMAP		Bitmap display format associated with a
private format. The hMem parameter must be a handle of data that can be displayed in bitmap format in lieu of the privately formatted data.
CF_DSPENHMETAFILE		Enhanced metafile display format associated
with a private format. The hMem parameter must be a handle of data that can be displayed in enhanced metafile format in lieu of the privately formatted data.
CF_DSPMETAFILEPICT	Metafile-picture display format associated
with a private format. The hMem parameter must be a handle of data that can be displayed in metafile-picture format in lieu of the privately formatted data.
CF_DSPTEXT			Text display format associated with a private
format. The hMem parameter must be a handle of data that can be displayed in text format in lieu of the privately formatted data.
CF_ENHMETAFILE		A handle of an enhanced metafile
(HENHMETAFILE).
CF_METAFILEPICT		Handle of a metafile picture format as
defined by the METAFILEPICT structure. When passing a CF_METAFILEPICT handle by means of dynamic data exchange (DDE), the application responsible for deleting hData should also free the metafile referred to by the CF_METAFILEPICT handle.
CF_OEMTEXT			Text format containing characters in the OEM
character set. Each line ends with a carriage return/linefeed (CR-LF) combination. A null character signals the end of the data.
CF_OWNERDISPLAY		Owner-display format. The clipboard owner
must display and update the clipboard viewer window.
CF_PALETTE			Handle of a color palette. Whenever an
application places data in the clipboard that depends on or assumes a color palette, it should place the palette on the clipboard as well.
When displaying clipboard data, Windows Clipboard always uses as its current palette any object on the clipboard that is in the CF_PALETTE format.
CF_PENDATA			Data for the pen extensions to the Microsoft®
Windows™ for Pen Computing.
CF_PRIVATEFIRST through
CF_PRIVATELAST		Range of integer values for private clipboard
formats. Handles associated with private clipboard formats are not freed automatically; the clipboard owner must free such handles.
CF_RIFF			Represents audio data more complex than can
be represented in a CF_WAVE standard wave format.
CF_SYLK			Microsoft Symbolic Link (SYLK) format.
CF_TEXT			Text format. Each line ends with a carriage
return/linefeed (CR-LF) combination. A null character signals the end of the data.
CF_WAVE			Represents audio data in one of the standard
wave formats, such as 11 kHz or 22 kHz pulse code modulation (PCM).
CF_TIFF			Tagged-image file format.
CF_UNICODETEXT		Unicode text format. Each line ends with a
carriage return/linefeed (CR-LF) combination. A null character signals the end of the data.

The system implicitly converts data between certain clipboard formats: if a window requests data in a clipboard format that is not on the clipboard, the system converts an available format to the requested format. The system can convert data between the text formats CF_UNICODETEXT, CF_TEXT, and CF_OEMTEXT; between the metafile formats CF_ENHMETAFILE and CF_METAFILEPICT; and between the bitmap formats CF_BITMAP and CF_DIB. The system can also convert CF_DIB to CF_PALETTE.
If the system provides a conversion between multiple formats, there is no advantage to placing more than one format on the clipboard. When copying bitmaps, it is best to place only the CF_DIB format on the clipboard. This is because the colors in a device-dependent bitmap (CF_BITMAP) are relative to the system palette, which may change before the bitmap is pasted. If only the CF_DIB format is on the clipboard and a window requests the CF_BITMAP format, the system renders the device-dependent bitmap using the current palette at that time.

If you place the CF_BITMAP format on the clipboard (and not CF_DIB), the system renders the CF_DIB clipboard format as soon as the clipboard is closed. This ensures that the correct palette is used to generate the device-independent bitmap (DIB). Conversions between other clipboard formats occur upon demand.
Windows supports three clipboard formats for text: CF_UNICODETEXT, CF_TEXT, and CF_OEMTEXT. Specify CF_TEXT for ANSI text, CF_UNICODETEXT for Unicode text, and CF_OEMTEXT for text in the OEM character set.
Windows supports two clipboard formats for metafiles: CF_ENHMETAFILE and CF_METAFILEPICT. Specify CF_ENHMETAFILE for enhanced metafiles and CF_METAFILEPICT for Windows metafiles.

See Also

GetClipboardData, RegisterClipboardFormat

SetCursor

Establishes the cursor shape.

Syntax

HCURSOR SetCursor(
 HCURSOR hCursor
);

Parameters

hCursor		Identifies the cursor. The cursor must have been
loaded by the LoadCursor function or created by the CreateCursorIndirect function. If this parameter is NULL, the cursor is removed from the screen.

Return Value

The return value is the handle of the previous cursor, if there was one. If there was no previous cursor, the return value is NULL.

Remarks

The cursor is set only if the new cursor is different from the previous cursor; otherwise, the function returns immediately.
The cursor is a shared resource. A window should set the cursor shape only when the cursor is in its client area or when the window is capturing mouse input. In systems without a mouse, the window should restore the previous cursor before the cursor leaves the client area or before it relinquishes control to another window.
The cursor is not shown on the screen if the internal cursor display count is less than zero. This occurs if the application uses the ShowCursor function to hide the cursor more times than to show the cursor.

See Also

LoadCursor, CreateCursorIndirect

SetCursorPos

Moves the cursor to the specified screen coordinates.

Syntax

BOOL SetCursorPos(
 int X,
 int Y
);

Parameters

X			Specifies the new x-coordinate, in screen
coordinates, of the cursor.
Y			Specifies the new y-coordinate, in screen
coordinates, of the cursor.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

The cursor is a shared resource. A window should move the cursor only when the cursor is in its client area.

See Also

GetCursorPos, SetCursor

SetEditInt

Sets the text of a control to the string representation of a specified integer value.

Syntax

void SetEditInt(
 HWND hWnd,
 UINT Value,
 BOOL Signed
);

Parameters

hWnd			Specifies the control to be chenged.
Value			Specifies the integer value used to generate the
item text.
Signed		Specifies whether the Value parameter is signed or
unsigned. If this parameter is TRUE, Value is signed. If this parameter is TRUE and Value is less than zero, a minus sign is placed before the first digit in the string. If this parameter is FALSE, Value is unsigned.

Remarks

To set the new text, this function sends a WM_SETTEXT message to the specified control.

See Also

GetEditInt, SetEditText

SetEditText

Sets the text of a control.

Syntax

void SetEditText(
 HWND hWnd,
 char *Text
);

Parameters

hWnd			Identifies the control with a text that is to be
set.
Text			Points to the null-terminated string that contains
the text to be copied to the control.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE.

Remarks

The SetEditText function sends a WM_SETTEXT message to the specified control.

See Also

GetEditText, SetEditInt

SetFilePointer

Moves the file pointer of an open file.

Syntax

DWORD SetFilePointer(
 HANDLE hFile,
 LONG lDistanceToMove,
 DWORD dwMoveMethod
);

Parameters

hFile				Identifies the file whose file pointer is to
be moved. The file handle must have been created with GENERIC_READ or GENERIC_WRITE access to the file.
lDistanceToMove		Specifies the number of bytes to move the
file pointer. A positive value moves the pointer forward in the file and a negative value moves it backward.
lpDistanceToMoveHigh	Points to the high-order word of the 64-bit
distance to move. If the value of this parameter is NULL, SetFilePointer can operate only on files whose maximum size is (2^32) - 2. If this parameter is specified, the maximum file size is (2^64) - 2. This parameter also receives the high-order word of the new value of the file pointer.
dwMoveMethod		Specifies the starting point for the file
pointer move. This parameter can be one of the following values:
FILE_BEGIN		The starting point is zero
or the beginning of the file. If FILE_BEGIN is specified, DistanceToMove is interpreted as an unsigned location for the new file pointer.
FILE_CURRENT	The current value of the
file pointer is the starting point.
FILE_END		The current end-of-file
position is the starting point.
Return Value

If the SetFilePointer function succeeds, the return value is the low-order doubleword of the new file pointer, and if lpDistanceToMoveHigh is not NULL, the function puts the high-order doubleword of the new file pointer into the LONG pointed to by that parameter.
If the function fails and lpDistanceToMoveHigh is NULL, the return value is 0xFFFFFFFF. To get extended error information, call GetLastError.
If the function fails, and lpDistanceToMoveHigh is non-NULL, the return value is 0xFFFFFFFF and GetLastError will return a value other than NO_ERROR.

Remarks

You cannot use the SetFilePointer function with a handle to a nonseeking device, such as a pipe or a communications device.
If the hFile file handle was opened with the FILE_FLAG_NO_BUFFERING flag set, an application can move the file pointer only to sector-aligned positions. A sector-aligned position is a position that is a whole number multiple of the volume's sector size. If an application calls SetFilePointer with distance-to-move values that result in a position that is not sector-aligned and a handle that was opened with FILE_FLAG_NO_BUFFERING, the function fails, and GetLastError returns ERROR_INVALID_PARAMETER.

Note that if the return value is 0xFFFFFFFF and if lpDistanceToMoveHigh is non-NULL, an application must call GetLastError to determine whether the function has succeeded or failed.

See Also

ReadFile, WriteFile

SetFocus

Sets the keyboard focus to the specified window. All subsequent keyboard input is directed to this window. The window, if any, that previously had the keyboard focus loses it.

Syntax

HWND SetFocus(
 HWND hWnd
);

Parameters

hWnd			Identifies the window that will receive the
keyboard input. If this parameter is NULL, keystrokes are ignored.

Return Value

If the function succeeds, the return value is the handle of the window that previously had the keyboard focus. If there is no such window or if the hwnd parameter is invalid, the return value is NULL.

Remarks

If the window identified by the hWnd parameter was created by the calling thread, the keyboard-focus status of the calling thread is set to hWnd.
The SetFocus function sends a WM_KILLFOCUS message to the window that loses the keyboard focus and a WM_SETFOCUS message to the window that receives the keyboard focus. It also activates either the window that receives the focus or the parent of the window that receives the focus.

See Also

GetFocus

SetPixel

Sets the pixel at the specified coordinates to the specified color.

Syntax

DWORD SetPixel(
 HDC DC,
 int X,
 int Y,
 DWORD Color
);

DC			Identifies the device context.
X			Specifies the x-coordinate, in logical units, of
the point to be set.
Y			Specifies the y-coordinate, in logical units, of
the point to be set.
Color			Specifies the color to be used to paint the point.

Return Value

If the function succeeds, the return value is the RGB value that the function sets the pixel to. This value may differ from the color specified by Color; that happens when an exact match for the specified color cannot be found.
If the function fails, the return value is -1. To get extended error information, call GetLastError.

Remarks

Not all devices support the SetPixel function. For more information, see the GetDeviceCaps.

SetRadio

Changes the state of radio button.

Syntax

void SetRadio(
 HWND hWnd,
 UINT CheckFlag
);

Parameters

hWnd			Identifies the handle of control.
CheckFlag		Specifies the check state. This parameter can be
one of the following values:
0	Sets the button state to unchecked.
1	Sets the button state to checked.
2	Sets the button state to grayed. This value
can be used only if the button has the BS_3STATE or BS_AUTO3STATE style.

See Also

GetRadio

SetROP2

Sets the current foreground mix mode. GDI uses the foreground mix mode to combine pens and interiors of filled objects with the colors already on the screen. The foreground mix mode defines how colors from the brush or pen and the colors in the existing image are to be combined.

Syntax

int SetROP2(
 HDC DC,
 int DrawMode
);

Parameters

DC			Identifies the device context (DC).
DrawMode		Specifies the new mix mode. This parameter can be
any one of the following values:
R2_BLACK		Pixel is always 0.
R2_COPYPEN		Pixel is the pen color.
R2_MASKNOTPEN	Pixel is a combination of the
colors common to both the screen and the inverse of the pen.
R2_MASKPEN		Pixel is a combination of the
colors common to both the pen and the screen.
R2_MASKPENNOT	Pixel is a combination of the
colors common to both the pen and the inverse of the screen.
R2_MERGENOTPEN	Pixel is a combination of the
screen color and the inverse of the pen color.
R2_MERGEPEN		Pixel is a combination of the pen
color and the screen color.
R2_MERGEPENNOT	Pixel is a combination of the pen
color and the inverse of the screen color.
R2_NOP		Pixel remains unchanged.
R2_NOT		Pixel is the inverse of the
screen color.
R2_NOTCOPYPEN	Pixel is the inverse of the pen
color.
R2_NOTMASKPEN	Pixel is the inverse of the
R2_MASKPEN color.
R2_NOTMERGEPEN	Pixel is the inverse of the
R2_MERGEPEN color.
R2_NOTXORPEN	Pixel is the inverse of the
R2_XORPEN color.
R2_WHITE		Pixel is always 1.
R2_XORPEN		Pixel is a combination of the
colors in the pen and in the screen, but not in both.

Return Value

If the function succeeds, the return value specifies the previous mix mode. If the function fails, the return value is zero.

Remarks

Mix modes define how GDI combines source and destination colors when drawing with the current pen. The mix modes are binary raster operation codes, representing all possible Boolean functions of two variables, using the binary operations AND, OR, and XOR (exclusive OR), and the unary operation NOT. The mix mode is for raster devices only; it is not available for vector devices.

See Also

GetROP2

SetScrollLine

Sets scroll bar line magnitude.

Syntax

void SetScrollLine(
 HWND hWnd,
 int LineMagnitude
);

Parameters

hWnd			Specifies the scroll bar handle.
LineMagnitude	The number of range units to scroll the scroll bar
when the user requests a small movement by clicking on the scroll bar's arrows.

Remarks

The default line magnitude is 1.

See Also

SetScrollPage, SetScrollPos, SetScrollRange

SetScrollPage

Sets scroll bar line magnitude.

Syntax

void SetScrollPage(
 HWND hWnd,
 int PageMagnitude
);

Parameters

hWnd			Specifies the scroll bar handle.
PageMagnitude	The number of range units to scroll the scroll bar
when the user requests a large movement by clicking in the scroll bar's scrolling area.

Remarks

The default page magnitude is 10.

See Also

SetScrollLine, SetScrollPos, SetScrollRange

SetScrollPos

Sets the position of the scroll box (thumb) in the specified scroll bar and, if requested, redraws the scroll bar to reflect the new position of the scroll box.

Syntax

int SetScrollPos(
 HWND hWnd,
 int Pos,
 BOOL Redraw
);

Parameters

hWnd			Specifies a scroll bar control.
Pos			Specifies the new position of the scroll box. The
position must be within the scrolling range.
Redraw		Specifies whether the scroll bar is redrawn to
reflect the new scroll box position. If this parameter is TRUE, the scroll bar is redrawn. If it is FALSE, the scroll bar is not redrawn.

Return Value

If the function succeeds, the return value is the previous position of the scroll box. If the function fails, the return value is zero.

Remarks

If the scroll bar is redrawn by a subsequent call to another function, setting the Redraw parameter to FALSE is useful.
Because the messages that indicate scroll bar position, WM_HSCROLL and WM_VSCROLL, are limited to 16 bits of position data, applications that rely solely on those messages for position data have a practical maximum value of 65,535 for the SetScrollPos function's Pos parameter.
However, because the SetScrollPos, SetScrollRange, GetScrollPos, and GetScrollRange functions support 32-bit scroll bar position data, there is a way to circumvent the 16-bit barrier of the WM_HSCROLL and WM_VSCROLL messages.

See Also

SetScrollLine, SetScrollPage, SetScrollRange

SetScrollRange

Sets the minimum and maximum position values for the specified scroll bar. It can also be used to hide or show a standard scroll bar.

Syntax

void SetScrollRange(
 HWND hWnd,
 int MinPos,
 int MaxPos,
 BOOL Redraw
);

Parameters

hWnd			Identifies a scroll bar control.
MinPos		Specifies the minimum scrolling position.
MaxPos		Specifies the maximum scrolling position.
Redraw		Specifies whether the scroll bar should be redrawn
to reflect the change. If this parameter is TRUE, the scroll bar is redrawn. If it is FALSE, the scroll bar is not redrawn.

Remarks

If the call to SetScrollRange immediately follows a call to the SetScrollPos function, the Redraw parameter in SetScrollPos must be zero to prevent the scroll bar from being drawn twice.
The default range for a standard scroll bar is 0 through 100. The difference between the values specified by the nMinPos and nMaxPos parameters must not be greater than the value of MAXLONG.
Because the messages that indicate scroll bar position, WM_HSCROLL and WM_VSCROLL, are limited to 16 bits of position data, applications that rely solely on those messages for position data have a practical maximum value of 65,535 for the SetScrollRange function's nMaxPos parameter.

However, because the SetScrollPos, SetScrollRange, GetScrollPos, and GetScrollRange functions support 32-bit scroll bar position data, there is a way to circumvent the 16-bit barrier of the WM_HSCROLL and WM_VSCROLL messages.

See Also

SetScrollLine, SetScrollPage, SetScrollPos

SetSelIndex

Selects a string of characters in a list box or combo box.

Syntax

int SetSelIndex(
 HWND hWnd,
 int Index
);

Parameters

hWnd			Identifies a scroll bar control.
Index			Specifies the index of the string of characters in
the box to select. If the index is 0, the first line in the list box is selected. If the index is -1, the current selection is removed.

Return Value

If an error occurs, a negative value is returned.

See Also

SetSelString

SetSelString

Forces the selection of the first item in list box or combo box beginning with the supplied text that appears beyond the specified position.

Syntax

int SetSelString(
 HWND hWnd,
 char *String,
 int Index
);

Parameters

hWnd			Identifies a scroll bar control.
String		Specifies the string to select.
Index			Specifies the string number in the list to start
the search from. If it is -1, the entire list is searched, beginning with the first item.

Return Value

Returns the position of the newly selected item, or a negative value in the case of an error.

See Also

SetSelIndex

SetStaticText

Syntax

Changes the text of the specified static control.

void SetStaticText(
 HWND hWnd,
 char *Text
);

Parameters

hWnd			Identifies the static control whose text is to be
changed.
Text			Points to a null-terminated string to be used as
the new control text.

Remarks

The SetStaticText function causes a WM_SETTEXT message to be sent to the specified control. The SetStaticText function does not expand tab characters (ASCII code 0x09). Tab characters are displayed as vertical bar (|) characters.

See Also

GetStaticText

SetStretchBltMode

Sets the bitmap stretching mode in the specified device context.

Syntax

int SetStretchBltMode(
 HDC DC,
 int StretchMode
);

Parameters

DC			Identifies the device context.
StretchMode		Specifies the stretching mode. It can be one of the
following values:
BLACKONWHITE	Performs a Boolean AND operation
using the color values for the eliminated and existing pixels. If the bitmap is a monochrome bitmap, this mode preserves black pixels at the expense of white pixels.
COLORONCOLOR	Deletes the pixels. This mode
deletes all eliminated lines of pixels without trying to preserve their information.
WHITEONBLACK	Performs a Boolean OR operation
using the color values for the eliminated and existing pixels. If the bitmap is a monochrome bitmap, this mode preserves white pixels at the expense of black pixels.
HALFTONE		Maps pixels from the source
rectangle into blocks of pixels in the destination rectangle. The average color over the destination block of pixels approximates the color of the source pixels.

Return Value

If the function succeeds, the return value is the previous stretching mode. If the function fails, the return value is zero.

Remarks

The stretching mode defines how Windows combines rows or columns of a bitmap with existing pixels on a display device when an application calls the StretchBlt function.
The BLACKONWHITE and WHITEONBLACK modes are typically used to preserve foreground pixels in monochrome bitmaps. The COLORONCOLOR mode is typically used to preserve color in color bitmaps.
The HALFTONE mode requires more processing of the source image than the other three modes; it is slower than the others but produces higher quality images.

See Also

StretchBlt

SetTextAlign

Sets the text-alignment flags for the specified device context.

Syntax

UINT SetTextAlign(
 HDC hDC,
 UINT wFlags
);

Parameters

hDC			Identifies the device context.
wFlags		Specifies the text alignment by using a mask of the
values in the following list. Only one flag can be chosen from those that affect horizontal and vertical alignment. In addition, only one of the two flags that alter the current position can be chosen.
TA_BASELINE		The reference point will be on
the base line of the text.
TA_BOTTOM		The reference point will be on
the bottom edge of the bounding rectangle.
TA_TOP		The reference point will be on
the top edge of the bounding rectangle.
TA_CENTER		The reference point will be
aligned horizontally with the center of the bounding rectangle.
TA_LEFT		The reference point will be on
the left edge of the bounding rectangle.
TA_RIGHT		The reference point will be on
the right edge of the bounding rectangle.
TA_NOUPDATECP	The current position is not
updated after each text output call. The reference point is passed to the text output function.
TA_UPDATECP		The current position is updated
after each text output call. The current position is used as the reference point.
When the current font has a vertical default base line, as with Kanji, the following values must be used instead of TA_BASELINE and TA_CENTER:
VTA_BASELINE	The reference point will be on
the base line of the text.
VTA_CENTER		The reference point will be
aligned vertically with the center of the bounding rectangle.
The default values are TA_LEFT, TA_TOP, and
TA_NOUPDATECP.

Return Value

If the function succeeds, the return value is the previous text-alignment setting. If the function fails, the return value is GDI_ERROR. To get extended error information, call GetLastError.

Remarks

The TextOut function uses the text-alignment flags to position a string of text on a display or other device. The flags specify the relationship between a reference point and a rectangle that bounds the text. The reference point is either the current position or a point passed to a text output function.
The rectangle that bounds the text is formed by the character cells in the text string.

See Also

TextOut

SetTextColor

Sets the text color for the specified device context to the specified color.

Syntax

DWORD SetTextColor(
 HDC DC,
 DWORD Color
);

Parameters

DC			Identifies the device context.
Color			Specifies the color of the text.

Return Value

If the function succeeds, the return value is a color reference for the previous text color. If the function fails, the return value is CLR_INVALID. To get extended error information, call GetLastError.

Remarks

The text color is used to draw the face of each character written by the TextOut function. The text color is also used in converting bitmaps from color to monochrome and vice versa.

See Also

BitBlt, StretchBlt, TextOut

SetTimer

Creates a timer with the specified time-out value.

Syntax

UINT SetTimer(
 HWND hWnd,
 UINT idTimer,
 UINT uTimeout
);

Parameters

hWnd			Identifies the window to be associated with the
timer. If this parameter is NULL, no window is associated with the timer and the idTimer parameter is ignored.
idTimer		Specifies a nonzero timer identifier. If the hwnd
parameter is NULL, this parameter is ignored.

uTimeout		Specifies the time-out value, in milliseconds.

Return Value

If the function succeeds, the return value is an integer identifying the new timer. An application can pass this value to the KillTimer function to destroy the timer. If the function fails to create a timer, the return value is zero.

Remarks

An application can process WM_TIMER messages by including a WM_TIMER case statement in the window procedure. The wParam parameter of the WM_TIMER message contains the value of the idTimer parameter.

See Also

KillTimer

SetWindowLong

Changes an attribute of the specified window. The function also sets a 32-bit (long) value at the specified offset into the extra window memory of a window.

Syntax

LONG SetWindowLong(
 HWND hWnd,
 int Index,
 LONG lNewLong
);

Parameters

hWnd			Identifies the window and, indirectly, the class to
which the window belongs.
Index			Specifies the zero-based offset to the value to be
set. Valid values are in the range zero through the number of bytes of extra window memory, minus 4; for example, if you specified 12 or more bytes of extra memory, a value of 8 would be an index to the third 32-bit integer. To set any other value, specify one of the following values:
GWL_EXSTYLE		Sets a new extended window style.
GWL_STYLE		Sets a new window style.
GWL_WNDPROC		Sets a new address for the window
procedure.
GWL_HINSTANCE	Sets a new application instance
handle.
GWL_ID		Sets a new identifier of the
window.
GWL_USERDATA	Sets the 32-bit value associated
with the window. Each window has a corresponding 32-bit value intended for use by the application that created the window.
lNewLong		Specifies the replacement value.

Return Value

If the function succeeds, the return value is the previous value of the specified 32-bit integer. If the function fails, the return value is zero. To get extended error information, call GetLastError.

You must not call SetWindowLong with the GWL_HWNDPARENT index to change the parent of a child window.

See Also

GetWindowLong, SetWindowWord

SetWindowText

Changes the text of the specified window's title bar (if it has one). If the specified window is a control, the text of the control is changed.

Syntax

BOOL SetWindowText(
 HWND hWnd,
 char *Text
);

Parameters

hWnd			Identifies the window or control whose text is to
be changed.
Text			Points to a null-terminated string to be used as
the new title or control text.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

The SetWindowText function causes a WM_SETTEXT message to be sent to the specified window or control. If the window is a list box control created with the WS_CAPTION style, however, SetWindowText sets the text for the control, not for the list box entries.
The SetWindowText function does not expand tab characters (ASCII code 0x09). Tab characters are displayed as vertical bar (|) characters.

See Also

GetWindowText

SetWindowWord

Replaces the 16-bit (word) value at the specified offset into the extra window memory for the specified window.

Syntax

WORD SetWindowWord(
 HWND hWnd,
 int Index,
 WORD wNewWord
);

Parameters

hWnd			Identifies the window and, indirectly, the class to
which the window belongs.
Index			Specifies the zero-based byte offset of the value
to be replaced. Valid values are in the range zero through the number of bytes of window memory, minus two; for example, if you specified 10 or more bytes of extra window memory, a value of 8 would be an index to the fifth 16-bit integer.
wNewWord		Specifies the replacement value.

Return Value

If the function succeeds, the return value is the previous value of the specified 16-bit integer. If the function fails, the return value is zero. To get extended error information, call GetLastError.

Remarks

The GWW_ values are obsolete in the Win32 API. You must use the SetWindowLong function to set information about the window.

See Also

GetWindowWord, SetWindowLong

ShowList

Shows the list of a drop down or drop down list combo box.

Syntax

void ShowList(
 HWND hWnd
);

Parameters

hWnd			Specifies the combo box control.

See Also

HideList

ShowWindow

Sets the specified window's show state.

Syntax

BOOL ShowWindow(
 HWND hWnd,
 int nCmdShow
);

Parameters

hWnd			Identifies the window.
nCmdShow		Specifies how the window is to be shown. This
parameter can be one of the following values:
SW_HIDE			Hides the window and
activates another window.
SW_MINIMIZE			Minimizes the specified
window and activates the next top-level window in the Z order.
SW_RESTORE			Activates and displays the
window. If the window is minimized or maximized, Windows restores it to its original size and position. An application should specify this flag when restoring a minimized window.
SW_SHOW			Activates the window and
displays it in its current size and position.
SW_SHOWDEFAULT		Sets the show state based
on the SW_ flag specified in the STARTUPINFO structure passed to the CreateProcess function by the program that started the application. An application should call ShowWindow with this flag to set the initial show state of its main window.
SW_SHOWMAXIMIZED		Activates the window and
displays it as a maximized window.
SW_SHOWMINIMIZED		Activates the window and
displays it as a minimized window.
SW_SHOWMINNOACTIVE	Displays the window as a
minimized window. The active window remains active.
SW_SHOWNA			Displays the window in its
current state. The active window remains active.
SW_SHOWNOACTIVATE		Displays a window in its
most recent size and position. The active window remains active.
SW_SHOWNORMAL		Activates and displays a
window. If the window is minimized or maximized, Windows restores it to its original size and position. An application should specify this flag when displaying the window for the first time.

Return Value

If the window was previously visible, the return value is TRUE. If the window was previously hidden, the return value is FALSE.

Remarks

As noted in the discussion of the nCmdShow parameter, an application should call ShowWindow with nCmdShow set to SW_SHOWDEFAULT to use application startup information that affects how a window is displayed. For example, Program Manager specifies that applications start with a minimized main window. Win32-based applications also use the application startup information when calling ShowWindow for the first time and set nCmdShow to SW_SHOW. This behavior is designed for the following situations:

·	Applications that create their main window by calling
CreateWindow with the WS_VISIBLE flag set.
·	Applications that create their main window by calling
CreateWindow with the WS_VISIBLE flag cleared, and later call ShowWindow with the SW_SHOW flag set to make it visible.

StartDoc

Starts a print job. This function replaces the STARTDOC printer escape.

Syntax

int StartDoc(
 HDC hDC,
 char *DocName,
 char *FileName
);

Parameters

DC			Identifies the device context for the print job.
DocName		The name of the document file.
FileName		Points to a null-terminated string that specifies
the name of an output file. If this pointer is NULL, the output will be sent to the device identified by the DC parameter.

Return Value

If the function succeeds, the return value is greater than zero. This value is the job identifier for the document. If the function fails, the return value is SP_ERROR. To get extended error information, call GetLastError.

Remarks

Applications should call the StartDoc function immediately before beginning a print job. Using this function ensures that multipage documents are not interspersed with other print jobs.

See Also

EndDoc

StartPage

Prepares the printer driver to accept data.

Syntax

int StartPage(
 HDC hDC
);

Parameters

hDC			Identifies the device context for the print job.

Return Value

If the function succeeds, the return value is greater than zero. If the function fails, the return value is SP_ERROR. To get extended error information, call GetLastError.

StretchBlt

Copies a bitmap from a source rectangle into a destination rectangle, stretching or compressing the bitmap to fit the dimensions of the destination rectangle, if necessary. Windows stretches or compresses the bitmap according to the stretching mode currently set in the destination device context.

Syntax

BOOL StretchBlt(
 HDC DestDC,
 int X,
 int Y,
 int Width,
 int Height,
 HDC SrcDC,
 int XSrc,
 int YSrc,
 int SrcWidth,
 int SrcHeight,
 DWORD Rop
);

Parameters

DestDC		Identifies the destination device context.
X			Specifies the x-coordinate, in logical units, of
the upper-left corner of the destination rectangle.
Y			Specifies the y-coordinate, in logical units, of
the upper-left corner of the destination rectangle.
Width			Specifies the width, in logical units, of the
destination rectangle.
Height		Specifies the height, in logical units, of the
destination rectangle.
SrcDC			Identifies the source device context.
XSrc			Specifies the x-coordinate, in logical units, of
the upper-left corner of the source rectangle.
YSrc			Specifies the y-coordinate, in logical units, of
the upper-left corner of the source rectangle.
SrcWidth		Specifies the width, in logical units, of the
source rectangle.
SrcHeight		Specifies the height, in logical units, of the
source rectangle.
Rop			Specifies the raster operation to be performed.
Raster operation codes define how Windows combines colors in output operations that involve a brush, a source bitmap, and a destination bitmap. See the BitBlt function for a list of common raster operation codes.

Return Value

If the function was successful, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

StretchBlt stretches or compresses the source bitmap in memory and then copies the result to the destination rectangle. The color data for pattern or destination pixels is merged after the stretching or compression occurs.
If the specified raster operation requires a brush, Windows uses the brush currently selected into the destination device context.
The destination coordinates are transformed by using the transformation currently specified for the destination device context; the source coordinates are transformed by using the transformation currently specified for the source device context.
If the source transformation has a rotation or shear, an error occurs.
If destination, source, and pattern bitmaps do not have the same color format, StretchBlt converts the source and pattern bitmaps to match the destination bitmap.

If StretchBlt must convert a monochrome bitmap to a color bitmap, it sets white bits (1) to the background color and black bits (0) to the foreground color. To convert a color bitmap to a monochrome bitmap, it sets pixels that match the background color to white (1) and sets all other pixels to black (0). The foreground and background colors of the device context with color are used.
StretchBlt creates a mirror image of a bitmap if the signs of the WidthSrc and Widtht parameters or of the HeightSrc and Height parameters differ. If WidthSrc and Width have different signs, the function creates a mirror image of the bitmap along the x-axis. If HeightSrc and Height have different signs, the function creates a mirror image of the bitmap along the y-axis.

Not all devices support the StretchBlt function. For more information, see the GetDeviceCaps function.

See Also

BitBlt, SetStretchBltMode

TextOut

Writes a character string at the specified location, using the currently selected font.

Syntax

BOOL TextOut(
 HDC DC,
 int X,
 int Y,
 char *String,
 int Count
);

Parameters

DC			Identifies the device context.
X			Specifies the logical x-coordinate of the reference
point that Windows uses to align the string.
Y			Specifies the logical y-coordinate of the reference
point that Windows uses to align the string.
String		Points to the string to be drawn. The string does
not need to be zero-terminated, since Count specifies the length of the string.
Count			Specifies the number of characters in the string.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

The interpretation of the reference point depends on the current text-alignment mode. An application can retrieve this mode by calling the GetTextAlign function; an application can alter this mode by calling the SetTextAlign function.
By default, the current position is not used or updated by this function. However, an application can call the SetTextAlign function with the wFlags parameter set to TA_UPDATECP to permit Windows to use and update the current position each time the application calls TextOut for a specified device context. When this flag is set, Windows ignores the X and Y parameters on subsequent TextOut calls.

See Also

SetTextAlign

TransferFromHost

Transfers memory block from Windows memory to transputer memory.

Syntax

BOOL TransferFromHost(
 void *Dest,
 HANDLE Src,
 DWORD Count
);

Parameters

Dest			Pointer to transputer memory (have to be already
allocated).
Src			Memory handle to get the data from.
Count			Number of bytes to transfer.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE.

See Also

GlobalAlloc, TransferToHost

TransferToHost

Transfers memory block from transputer memory to Windows memory.

Syntax

BOOL TransferToHost(
 HANDLE Dest,
 void *Src,
 DWORD Count
);

Parameters

Dest			Windows memory handle to accept the data (have to
be already allocated).
Src			Pointer to transputer memory to get the data from.
Count			Number of bytes to transfer.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE.

See Also

GlobalAlloc, TransferFromHost

UnloadProtocolExtension

Unloads protocol extension DLL.

Syntax

BOOL UnloadProtocolExtension(
 char *ModuleName
);

Parameters

ModuleName		File name of protocol extension DLL.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE.

See Also

LoadProtocolExtension

UnpackDDElParam

Unpacks a DDE lParam value received from a posted DDE message.

Syntax

BOOL UnpackDDElParam(
 UINT uMsg,
 LONG lParam,
 UINT *puLow,
 UINT *puHigh
);

Parameters

uMsg			Specifies the posted DDE message.
lParam		Specifies the lParam parameter of the posted DDE
message that was received. The application must free the memory object specified by the lParam parameter by calling the FreeDDElParam function.
puLow			Points to a value the function will set to the low-
order word of lParam.
puHigh		Points to a value the function will set to the
high-order word of lParam.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE.

Remarks

PackDDElParam eases the porting of 16-bit DDE applications to 32-bit DDE applications.

See Also

FreeDDElParam, PackDDElParam

WinExec

Runs the specified application.

Syntax

UINT WinExec(
 char *Command,
 UINT ShowFlag
);

Parameters

Command		Points to a null-terminated character string that
contains the command line (filename plus optional parameters) for the application to be executed. If the name of the executable file in the Command parameter does not contain a directory path, Windows searches for the executable file in this sequence:
The directory from which the application
loaded.
		2. The current directory.
3. The Windows system directory.
			4. The Windows directory.
The directories listed in the PATH environment
variable.
ShowFlag		Specifies how a Windows-based application window is
to be shown. For a list of the acceptable values, see the description of the nCmdShow parameter of the ShowWindow function. For a non-Windows - based application, the PIF file, if any, for the application determines the window state.

Return Value

If the function succeeds, the return value is greater than 31. If the function fails, the return value is one of the following error values:

0				The system is out of memory or resources.
ERROR_BAD_FORMAT		The .EXE file is invalid (non-Win32 .EXE or
error in .EXE image).
ERROR_FILE_NOT_FOUND	The specified file was not found.
ERROR_PATH_NOT_FOUND	The specified path was not found.

Remarks

In Win32, the WinExec function returns when the launched process calls the GetMessage function or a time-out limit is reached. To avoid waiting for the time out delay, call the GetMessage function as soon as possible in any process launched by a call to WinExec.

See Also

ShowWindow

WriteFile

Writes data to a file; starts writing at the position indicated by the file pointer. After the write operation has been completed, the file pointer is adjusted by the number of bytes actually written.

Syntax

BOOL WriteFile(
 HANDLE hFile,
 void *pBuffer,
 DWORD nNumberOfBytesToWrite,
 DWORD *pNumberOfBytesWritten
);

Parameters

hFile				Identifies the file to be written to. The
file handle must have been created with GENERIC_WRITE access to the file.
pBuffer			Points to the buffer containing the data to
be written to the file.
nNumberOfBytesToWrite	Specifies the number of bytes to write to the
file.
Unlike the MS-DOS operating system, Windows NT interprets a value of zero as specifying a null write operation. A null write operation does not write any bytes but does cause the time stamp to change.
Write operations across a network are limited to 65535 bytes.
pNumberOfBytesWritten	Points to the number of bytes written by this
function call. WriteFile sets this value to zero before doing any work or error checking.

Return Value

If the function succeeds, the return value is TRUE. If the function fails, the return value is FALSE. To get extended error information, call GetLastError.

Remarks

If part of the file is locked by another process and the write operation overlaps the locked portion, this function fails.
Characters can be written to the screen buffer using WriteFile with a handle to console output. The exact behavior of the function is determined by the console mode. The data is written to the current cursor position. The cursor position is updated after the write operation.
Unlike the MS-DOS operating system, Windows NT interprets zero bytes to write as specifying a null write operation and WriteFile does not truncate or extend the file.
When writing to a nonblocking, byte-mode pipe handle with insufficient buffer space, WriteFile returns TRUE with *lpNumberOfBytesWritten < nNumberOfBytesToWrite.

When an application uses the WriteFile function to write to a pipe, the write operation may not finish if the pipe buffer is full. The write operation is completed when a read operation (using the ReadFile function) makes more buffer space available.
If the anonymous read pipe handle has been closed and WriteFile attempts to write using the corresponding anonymous write pipe handle, the function returns FALSE and GetLastError returns ERROR_BROKEN_PIPE.
The WriteFile function may fail with ERROR_INVALID_USER_BUFFER or ERROR_NOT_ENOUGH_MEMORY whenever there are too many outstanding asynchronous I/O requests.

See Also

CreateFile, ReadFile

