Windows Server Package 95

Programmer's Guide

Part I Introduction to Writing Windows Applications �� VERZEICHNIS \o "1-3" �
0 Introduction	� GEHEZU _Toc346426346 � SEITENREF _Toc346426346 �
2
��
0.1 About This Guide	� GEHEZU _Toc346426347 � SEITENREF _Toc346426347 �
2
��
0.2 Software and Hardware Requirements	� GEHEZU _Toc346426348 � SEITENREF _Toc346426348 �
3
��
0.3 Using the Sample Applications	� GEHEZU _Toc346426349 � SEITENREF _Toc346426349 �
4
��
1 An Overview of the Windows Environment	� GEHEZU _Toc346426350 � SEITENREF _Toc346426350 �
5
��
1.1 Microsoft Windows and DOS: a Comparison	� GEHEZU _Toc346426351 � SEITENREF _Toc346426351 �
5
��
1.1.1 The User Interface	� GEHEZU _Toc346426352 � SEITENREF _Toc346426352 �
5
��
1.1.2 Queued Input	� GEHEZU _Toc346426353 � SEITENREF _Toc346426353 �
6
��
1.1.3 Device-Independent Graphics	� GEHEZU _Toc346426354 � SEITENREF _Toc346426354 �
7
��
1.1.4 Multitasking	� GEHEZU _Toc346426355 � SEITENREF _Toc346426355 �
7
��
1.2 The Windows Programming Model	� GEHEZU _Toc346426356 � SEITENREF _Toc346426356 �
7
��
1.2.1 Windows	� GEHEZU _Toc346426357 � SEITENREF _Toc346426357 �
8
��
1.2.2 Menus	� GEHEZU _Toc346426358 � SEITENREF _Toc346426358 �
8
��
1.2.3 Dialog Boxes	� GEHEZU _Toc346426359 � SEITENREF _Toc346426359 �
8
��
1.2.4 The Message Loop	� GEHEZU _Toc346426360 � SEITENREF _Toc346426360 �
8
��
1.3 The Windows Libraries	� GEHEZU _Toc346426361 � SEITENREF _Toc346426361 �
9
��
1.4 Building a Transputer Windows Application	� GEHEZU _Toc346426362 � SEITENREF _Toc346426362 �
10
��
1.5 Tips for Writing Transputer Windows Applications	� GEHEZU _Toc346426363 � SEITENREF _Toc346426363 �
10
��
2 A Generic Transputer Windows Application	� GEHEZU _Toc346426364 � SEITENREF _Toc346426364 �
12
��
2.1 The Generic Application	� GEHEZU _Toc346426365 � SEITENREF _Toc346426365 �
12
��
2.2 A Transputer Windows Application	� GEHEZU _Toc346426366 � SEITENREF _Toc346426366 �
12
��
2.3 The Main Function	� GEHEZU _Toc346426367 � SEITENREF _Toc346426367 �
12
��
2.3.1 Data Types and Structures in Windows	� GEHEZU _Toc346426368 � SEITENREF _Toc346426368 �
13
��
2.3.2 Handles	� GEHEZU _Toc346426369 � SEITENREF _Toc346426369 �
13
��
2.3.3 Instances	� GEHEZU _Toc346426370 � SEITENREF _Toc346426370 �
13
��
2.3.4 Creating a Window	� GEHEZU _Toc346426371 � SEITENREF _Toc346426371 �
14
��
2.3.5 Specifying Window Icon and Cursor	� GEHEZU _Toc346426372 � SEITENREF _Toc346426372 �
15
��
2.3.6 Creating the Message Loop	� GEHEZU _Toc346426373 � SEITENREF _Toc346426373 �
15
��
2.3.7 Yielding Control	� GEHEZU _Toc346426374 � SEITENREF _Toc346426374 �
16
��
2.3.8 Terminating an Application	� GEHEZU _Toc346426375 � SEITENREF _Toc346426375 �
16
��
2.3.9 The Application Command-Line Parameter	� GEHEZU _Toc346426376 � SEITENREF _Toc346426376 �
16
��
2.4 The Window Function	� GEHEZU _Toc346426377 � SEITENREF _Toc346426377 �
17
��
2.5 Creating an About Dialog Box	� GEHEZU _Toc346426378 � SEITENREF _Toc346426378 �
18
��
2.5.1 Creating a Dialog-Box Template	� GEHEZU _Toc346426379 � SEITENREF _Toc346426379 �
18
��
2.5.2 Creating a Dialog Function	� GEHEZU _Toc346426380 � SEITENREF _Toc346426380 �
20
��
2.5.3 Defining a Menu with an About Command	� GEHEZU _Toc346426381 � SEITENREF _Toc346426381 �
20
��
2.5.4 Processing the WM_COMMAND Message	� GEHEZU _Toc346426382 � SEITENREF _Toc346426382 �
21
��
2.6 Putting Generic Together	� GEHEZU _Toc346426383 � SEITENREF _Toc346426383 �
22
��
2.7 Using Generic as a Template	� GEHEZU _Toc346426384 � SEITENREF _Toc346426384 �
23
��
��
Introduction

This introduction provides some background information that you should review before you use this guide.

This introduction covers the following topics:

Things you should know before you start
The purpose and contents of this guide
Using the sample applications described in this guide

What Should You Know Before You Start?

To start using this guide, you will need the following:

Experience using Windows and an understanding of the Windows user interface.

Before starting any Windows application development, you should install Windows version 3.0 on your computer and learn how to use it. Be sure to learn the names, purposes, and operation of the various parts of a Windows application (such as windows, dialog boxes, menus, controls, and scroll bars). Because your own Windows applications will incorporate these features, it is very important for you to understand them so that you can implement them properly.

An understanding of the Windows user-interface style guidelines.

One goal of Microsoft Windows is to provide a common user interface for all applications. This ultimately helps the user by reducing the effort required to learn the user interface of a Windows application; it helps you by clarifying the choices you have to make when designing a user interface. To achieve this goal, however, you must base your application's user interface design on the recommended application style guidelines described in the System Application Architecture, Common User Access: Advanced Interface Design Guide.

Experience writing C-language programs and using the standard C run-time functions.

The C programming language is the preferred development language for Windows applications. Many of the programming features of Windows were designed with the C programmer in mind. (Windows applications can also be developed in Pascal and assembly language, but these languages present additional challenges that you typically bypass when writing applications in the C language.)

About This Guide

This guide is intended to help the experienced C programmer make the transition to writing applications that use the Microsoft Windows 3.1, Windows 95 and Windows NT application program interface. It explains how to use Windows functions, messages, and data structures to carry out useful tasks common to all Windows applications, and illustrates these explanations with sample applications that you can compile and run with Windows.

This guide consists of two parts, each of which contain several chapters.

Part 1, “Introduction to Writing Windows Applications,” gives an overview of the Windows environment, and provides an in-depth look at a sample Windows application. Part 1 consists of the following chapters:

Chapter 1, “An Overview of the Windows Environment,” compares Windows to the standard C environment, provides a brief overview of Windows, and describes the Windows programming model and the Windows application-development process.

Chapter 2, “A Generic Transputer Windows Application,” shows how to create a simple Transputer Windows application called Generic. You'll then use this application as a basis for subsequent examples in this learning guide.

Part 2, “Programming Transputer Windows Applications,” explains basic Windows programming tasks, such as creating menus, printing, and using the clipboard. Each chapter covers a specific topic, and provides a sample application that illustrates that topic. Part 2 consists of the following chapters:

Chapter 1, “Output to a Window,” introduces the graphics device interface (GDI) and shows how to use GDI tools to create your own output.

Chapter 2, “Keyboard and Mouse Input,” shows how to process input from the mouse and keyboard.

Chapter 3, “Icons,” shows how to create and display icons for your applications.

Chapter 4, “The Cursor, the Mouse, and the Keyboard,” explains the purpose of the cursor, the mouse, and the keyboard, and shows how to use them in your applications.

Chapter 5, “Menus,” shows how to create menus for your applications and how to process input from menus.

Chapter 6, “Controls,” explains how to create and use controls, such as push buttons and list boxes.

Chapter 7, “Dialog Boxes,” explains how to create and use dialog boxes, and how to fill them with controls.

Chapter 8, “Bitmaps,” shows how to create and display bitmaps.

Chapter 9, “Printing,” shows how to use a printer with Windows.

Chapter 10, “The Clipboard,” explains the clipboard and shows how to use it in your applications.

Chapter 11, “Host Memory Management”, explains how to manage host Windows memory from transputer application

Chapter 12, “Writing Protocol Extensions”, shows how to add new functions, realized oh host computer, to your Windows library

Software and Hardware Requirements

Hardware

Intel 386/486/Pentium-based computer, VGA/SVGA display and card, 6 Mb RAM;
Transputer motherboard;

Software

One of:
 Microsoft MS DOS 5.0/6.x + Windows 3.1x + Win32s (V.1.30 recommended), or
	 Microsoft Windows 95, or
	 Microsoft Windows NT 3.5x;
Inmos ANSI C Toolset IMSD7214;
Any Windows compiler and linker (such as Microsoft C/C++, Borland C/C++ or Symantec
 C/C++) - for writing protocol extension DDLs.

Using the Sample Applications

The sample applications in this guide are written in the C programming language and conform to the user-interface style recommended by Elcom for Windows applications.

The source files for all sample applications are on the disk that comes with the WServer Package. It's a good idea to review the sample application sources while reading the corresponding descriptions in this guide. You can also use the sources as a basis for your own applications. �
An Overview of the Windows Environment

Microsoft Windows has many features that the standard DOS environment does not. Because of this, Windows applications are in some ways more complex than standard DOS programs.

This chapter covers the following topics:

A comparison of Windows applications and standard DOS applications

Features that the Windows environment offers, and the impact these features have on the way you develop and write applications

The Windows programming model

The process you use to develop Windows applications

Microsoft Windows and DOS: a Comparison

Microsoft Windows has many features that the standard DOS environment does not. For this reason, Windows applications may, at first, seem more complex than standard DOS programs. This is understandable when you consider some of the additional features that Windows offers. These include:

A graphical user interface featuring windows, menus, dialog boxes, and controls for applications

Queued input

Device-independent graphics

Multitasking

Data interchange between applications

When writing applications for the DOS environment, most C programmers use the standard C run-time library to carry out a program's input, output, memory management, and other activities. The C run-time library assumes a standard operating environment consisting of a character-based terminal for user input and output, and exclusive access to system memory as well as to the input and output devices of the computer. In Windows, these assumptions are no longer valid. Windows applications share the computer's resources, including the CPU, with other applications. Windows applications interact with the user through a graphics-based display, a keyboard, and a mouse.

The following sections describe some of the major differences between standard DOS applications and Windows applications.

The User Interface

One of the principal design goals of Windows is to provide visual access to most, if not all, applications at the same time. In a multitasking environment, it is important to give all applications some portion of the screen; this ensures that the user can interact with all applications. Some systems do this by giving one program full use of the screen while other programs wait in the background. In Windows, every application has access to some part of the screen at all times.

An application shares the display with other applications by using a “window” for interaction with the user. Technically, a window is little more than a rectangular portion of the system display that the system grants use of to an application. In reality, a window is a combination of useful visual devices, such as menus, controls, and scroll bars, that the user uses to direct the actions of the application.

In the standard DOS environment, the system automatically prepares the system display for your application. Typically, it does so by passing a file handle to the application. You can then use that file handle to send output to the system display using conventional C run-time routines or DOS system calls. In Windows, you must create your own window before performing any output or receiving any input. Once you create a window, Windows provides a great deal of information about what the user is doing with the window. Windows automatically performs many of the tasks the user requests, such as moving and sizing the window.

Another advantage to developing in the Windows environment is that, in contrast to a standard C program, which has access to a single screen “surface,” a Windows application can create and use any number of overlapping windows to display information in any number of ways. Windows manages the screen for you, controls the placement and display of windows, and ensures that no two applications attempt to access the same part of the system display at the same time.

Queued Input

One of the biggest differences between Windows applications and standard C programs is the way they receive user input.

In the DOS environment, a program reads from the keyboard by making an explicit call to a function, such as getchar. The function typically waits until the user presses a key before returning the character code to the program. In contrast, in the Windows environment, Windows receives all input from the keyboard, mouse, and timer, and places the input in the appropriate application's “message queue.” When the application is ready to retrieve input, it simply reads the next input message from its message queue.

In the standard DOS environment, input is typically in the form of 8-bit characters from the keyboard. The standard input functions, getchar and fscanf, read characters from the keyboard and return ASCII or other codes corresponding to the keys pressed. A program can also intercept interrupts from input devices such as the mouse and timer to use information from those devices as input.

In Windows, an application receives input in the form of “input messages” that Windows sends it. A Windows input message contains information that far exceeds the type of input information available in the standard DOS environment. It specifies the system time, the position of the mouse, the state of the keyboard, the scan code of the key (if a key is pressed), the mouse button pressed, as well as the device generating the message. For example, there are two keyboard messages, WM_KEYDOWN and WM_KEYUP, that correspond to the press and release of a specific key. With each keyboard message, Windows provides a device-independent virtual-key code that identifies the key, the device-dependent scan code generated by the keyboard, as well as the status of other keys on the keyboard, such as SHIFT, CONTROL, and NUMLOCK. Keyboard, mouse, and timer messages all have the same format and are all processed in the same manner.

Device-Independent Graphics

In Windows, you have access to a rich set of device-independent graphics operations. This means your application can easily draw lines, rectangles, circles, and complex regions. Because Windows provides device independence, you can use the same functions to draw a circle on a dot-matrix printer or a high-resolution graphics display.

Windows requires “device drivers” to convert graphics output requests to output for a printer, plotter, display, or other output device. A device driver is a special executable library that an application can load and connect to a specific output device and port. A “device context” represents the device driver, the output device, and perhaps the communications port. Your application carries out graphics operations within the “context” of a specific device.

Multitasking

Windows is a multitasking system: more than one application can run at a time. In the standard DOS environment, there are no particular provisions for multitasking. Programs written for the DOS environment typically assume that they have exclusive control of all resources in
the computer, including the input and output devices, memory, the system display, and even the CPU itself. In Windows, however, applications must share these valuable resources with all other applications that are currently running. For this reason, Windows carefully controls these resources, and requires Windows applications to use a specific program interface that guarantees Windows' control of those resources.

For example, in the standard DOS environment, a program has access to all of memory that has not been taken up by the system, by the program, or by terminate-but-stay-resident (TSR) programs. This means that programs are free to use all of available memory for whatever they like and may access memory by whatever method they like.

In Windows, memory is a shared resource. Since more than one application can be running at the same time, each application must cooperatively share memory to avoid exhausting the resource. Applications may allocate what they need from system memory. Windows provides two sources of memory: global memory, for large allocations, and local memory, for small allocations. To make the most efficient use of memory, Windows often moves or even discards memory blocks. This means you cannot assume that objects to which you have assigned a memory location remain where you put them. If there are several applications running, Windows may move and discard memory blocks often.

Another example of a shared resource is the system display. In the standard DOS environment, the system typically grants your application exclusive use of the system display. This means you can use the display in any manner you like, from changing the color of text and background, to changing the video mode from text to graphics. In Windows, your application must share the system display with other applications, so it must not take control of the display.

The Windows Programming Model

Most Windows applications use the following elements to interact with the user:

Windows
Menus
Dialog boxes
The message loop

The rest of this section describes these elements in detail.

Windows

A window is the primary input and output device of any Windows application. It is an application's only access to the system display. A window is a combination of a title bar, a menu bar, scroll bars, borders, and other features that occupy a rectangle on the system display. You specify the features you want for a window when you create the window. Windows then draws and manages the window.

Although an application creates a window and technically has exclusive rights to it, the management of the window is actually a collaborative effort between the application and Windows. Windows maintains the position and appearance of the window, manages standard
window features such as the border, scroll bars, and title, and carries out many tasks initiated by the user that directly affect the window. The application maintains everything else about the window. In particular, the application is responsible for maintaining the “client area” of the window (the portion within the window borders). The application has complete control over the appearance of its window's client area.

To manage this collaborative effort, Windows advises each window of changes that might affect it. Because of this, every window must have a corresponding “window function.” The window function receives window-management messages that it must respond to appropriately. Window-management messages either specify actions for the function to carry out, or are requests for information from the function.

Transputer Windows Library supports two general types of windows: simple and graphics. Main difference that graphics window contains his own device context. Drawing on device context always duplicated on bitmap, and you have no need do process WM_PAINT message (see later).

Menus

Menus are the principal means of user input in a Windows application. A menu is a list of commands that the user can view and choose from. When you create an application, you supply the menu and command names. Windows displays and manages the menus for you, and sends a message to the window function when the user makes a choice. The message is the application's signal to carry out the command.

Dialog Boxes

A dialog box is a temporary window that you can display to let the user supply more information for a command. A dialog box contains one or more “controls.” A control is a small window that has a very simple input or output function. For example, an “edit control” is a simple window that lets the user enter and edit text. The controls in a dialog box let the user supply filenames, choose options, and otherwise direct the action of the command.

The Message Loop

Since your application receives input through an application queue, the chief feature of any Windows application is the “message loop.” The message loop retrieves input messages from the application queue and dispatches them to the appropriate windows.

For example, Windows receives keyboard input when the user presses and releases a key. Windows copies the keyboard messages from the system queue to the application queue. The message loop retrieves the keyboard messages, translates them into an ANSI character message, WM_CHAR, and dispatches the WM_CHAR message, as well as the keyboard messages, to the appropriate window function. The window function then uses the TextOut function to display the character in the client area of the window.

Windows can receive and distribute input messages for several applications at once. Windows collects all input, in the form of messages, in its system queue. It then copies each input message to the appropriate application queue. The message loop in each application retrieves messages and dispatches them, through Windows, to each application's appropriate window function.

In contrast to keyboard input messages, which the application must retrieve from its message queue, Windows sends window-management messages directly to the appropriate window function. For example, after Windows carries out a request to destroy a window, it sends a WM_DESTROY message directly to the window function, bypassing the application queue. The window function must then signal the main function that the window is destroyed and the application should terminate. It does this by copying a WM_QUIT message into the application queue by using the PostQuitMessage function.

Number of messages received by windows created in Transputer Windows Application is strongly limited to prevent message queue overflow (due to bad link speed):

Simple window:

 WM_HSCROLL
 WM_VSCROLL
 WM_COMMAND
 WM_SYSCOMMAND
 WM_QUERYOPEN
 WM_CHAR
 WM_KEYDOWN
 WM_KEYUP
 WM_SYSKEYDOWN
 WM_SYSKEYUP
 WM_TIMER
 WM_TIMECHANGE
 from WM_DDE_FIRST to WM_DDE_LAST
 from WM_USER to WM_USER + 9

Graphics window - all of above plus:

 WM_LBUTTONDOWN
 WM_LBUTTONUP
 WM_RBUTTONDOWN
 WM_LBUTTONDBLCLK
 WM_MOUSEMOVE

The Windows Libraries

Windows functions, like C run-time functions, are defined in libraries. The Windows libraries, unlike C run-time libraries, are special dynamic-link libraries (DLLs) that the system links with your application when it loads your application. DLLs are an important feature of Windows because they minimize the amount of code each application requires.

Windows consists of the following three main libraries:

User	Provides window management. This library manages the overall Windows environment,
as well as your application's windows.

Kernel Provides system services, such as multitasking, memory management, and
resource management.

GDI	Provides the graphics device interface.

Building a Transputer Windows Application

To build a Windows application, follow these steps:

Create C-language or assembly-language source files that contain the main function, window functions, and other application code.

Use the resource editors: SDKPaint and Dialog Editor (from Microsoft SDK), Resource Studio (from Visual C++), Resource WorkShop (from Boarland C++) or any other to create any cursor, icon, bitmap and dialog resources the application will need.

Create a resource script (.RC) file that defines all the application's resources. The resource script file lists and names the resources you created in the preceding step. It also defines menus, dialog boxes, and other resources. Resource script file must be then compiled to .RES file by Resource Compiler (some resource editors can create .RES file directly).

Compile and link all C-language sources.

Tips for Writing Transputer Windows Applications

There are some programming practices that work well for standard C or assembly-language applications, but will not work in the Windows environment.

In general, when writing Windows applications, remember the following rules:

If you’re working under Windows 3.1x with Win32s, do not take exclusive control of the CPU - it is a shared resource. Although Windows 3.1x is a multitasking system, it is non-preemptive (Windows 95 and Windows NT both support preemptive multitasking). This means it cannot take control back from an application until the application releases it. A cooperative application carefully manages access to the CPU and gives other applications ample opportunity to execute.

Do not attempt to directly access memory or hardware devices such as the keyboard, mouse, timer, display, and serial and parallel ports (under Windows NT, that’s impossible at all, but under Windows 3.1x and Windows 95 - yes, but strictly not recommended). Windows requires absolute control of these resources to ensure equal, uninterrupted access for all applications that are running.

When using any standard C compiler for creating Windows application, every program must have a WinMain function. This function is the entry point, or starting point, for the application. It contains statements and Windows function calls that create windows and read and dispatch input intended for the application. In Transputer Windows Application working with Windows Server, it isn't needed. Of course, Windows Server itself is a Windows Application, but Transputer Application isn't - because ALL Windows functions calls goes through Windows Server (and it’s DLLs).

When using Windows functions, be sure to check the return values. It's not a good idea to ignore these return values, since unusual conditions sometimes occur when a function fails. If an error occures, operating system usually sets global error - it can be retrieved using GetLastError function.

You can use C run-time console input and output functions, such as getchar, putchar, scanf, and printf (all console I/O goes through special WServer window), but it's preferable to use Windows functions such as MessageBox, TextOut for output and edit controls for input instead.

Do not use C run-time file input and output functions to access serial and parallel ports. Instead, write a proper Protocol Extension DLL.

You can use the C run-time file input and output functions to access disk files. In particular, use the Windows CreateFile function and the low-level, C run-time input and output functions (ReadFile, WriteFile etc.). Although you can use the C run-time stream input and output functions, you do not get the advantages that CreateFile and other 32-bit function provide.
�A Generic Transputer Windows Application

This chapter explains how to create a simple Microsoft Windows application called Generic, which demonstrates the principles explained in Chapter 1, “An Overview of the Windows Environment.”

This chapter covers the following topics:

The essential parts of a Transputer Windows application
Initializing a Windows application
Writing the message loop
Terminating an application
The basic steps needed to build a Windows application

The Generic Application

Generic is a standard Transputer Windows application; that is, it meets the recommendations for user-interface style given in the System Application Architecture, Common User Access: Advanced Interface Design Guide. Generic has a main window, a border, an application menu, and maximize and minimize boxes, but no other features. The application menu includes a Help menu with an About command, which, when chosen by the user, displays an About dialog box describing Generic.

Generic is important not for what it can do, but for what it provides: a template for writing Transputer Windows applications. Building it helps you understand how Windows applications are put together and how they work.

A Transputer Windows Application

A Transputer Windows application is any application that is specifically written to run with Windows Server and that uses the Windows application program interface (API) to carry out its tasks. A Windows application has the following basic components:

A main function
A window function

The main function is the entry point for the application and is similar to the main function used in the standard C environment.

A window function is something new. It is a “callback function” - a function within your application that Windows calls. Your application never calls its window functions directly. Instead, it waits for Windows to call the window function with requests to carry out specific tasks or to return information.

The Main Function

Much like the main function in standard C programs, the Main function in Transputer Windows Program is the entry point for a Windows application. Every Windows application must have a Main function; no Windows application can run without it. In most Windows applications, the Main function does the following:

Calls initialization functions that create windows and perform any other necessary initializations
Enters a message loop to process messages from the application queue
Terminates the application

Data Types and Structures in Windows

In general, Windows uses many more data types than you would find in a typical C program. Although the Windows data types are often equivalent to familiar C data types, they are intended to be more descriptive and should help you better understand the purpose of a given variable or parameter in an application.

The Windows data types are defined in the WINTYPES.H and WLIB.H include files. The Windows include files is an ordinary C-language source files that contain definitions for all the Windows special constants, variables, data structures, and functions. To use these definitions, you must include the WLIB.H file in each source file. Place the following line at the beginning of your source file:

 #include WLIB.H /* Required for all Windows applications */

The following is a list of some of the more common Windows data types:

WORD - Specifies a 16-bit, unsigned integer.
LONG - Specifies a 32-bit, signed integer.
HANDLE - Identifies a 32-bit, unsigned integer to
be used as a handle.
HWND - Identifies a 32-bit, unsigned integer to
be used as a handle to a window.

The following is a list of some commonly used structures:

TMSG 	- Defines the fields of an input message.
RECT - Defines a rectangle.
POINT - Defines a point.

Handles

A handle is a unique integer that Windows uses to identify an object created or used by an application. Windows uses a wide variety of handles, identifying objects such as application instances, windows, menus, controls, allocated memory, output devices, files, GDI pens and brushes, to name a few.

Most handles are index values for internal tables. Windows uses handle indexes to access the information stored in the table. Typically, your application has access only to the handle, and not to the data. When you need to examine or change the data, you supply the handle and Windows does the rest. This is one way that Windows protects data in its multitasking environment.

Instances

Not only can you run more than one application at a time in Windows, you can also run more than one copy, or “instance” of the same application at a time. To distinguish one instance from another, Windows supplies a unique “instance handle” each time it calls the Main function to start the application. An instance is a separately executing copy of an application, and an instance handle is an integer that uniquely identifies an instance.

If you run multiple instances of the same application, the system loads a fresh copy of the application's code and data into memory and executes it.

Creating a Window

You can create a window by using the CreateWindow function. This function tells Windows to create a window that has the specified style and belongs to the specified class. CreateWindow takes several parameters:

The window title
The window function
The window's style
The window position
The parent window handle

The following example creates a window belonging to the “GenericWClass”
window class:

hWnd = CreateWindow(
hWnd = CreateWindow(
WS_OVERLAPPEDWINDOW | WS_VISIBLE,	/* Window style */
0,						/* No parent */
"Generic Sample Application",		/* Text for window title
bar */
(DWORD)MessageProc,			/* Function to retrieve
messages for window */
CW_USEDEFAULT,				/* Default horizontal
position */
CW_USEDEFAULT, 				/* Default vertical
position */
CW_USEDEFAULT,				/* Default width */
CW_USEDEFAULT);				/* Default height */

This example creates an overlapped window that has the style WS_OVERLAPPEDWINDOW. In this example:

The WS_OVERLAPPEDWINDOW style specifies that the window is a normal “overlapped” window.

When you create a window, you can specify its parent (used with child windows). Because an overlapped window does not have a parent, this parameter is set to 0.

The third parameter of CreateWindow specifies the window caption as “Generic Sample Application”.

MessageProc is pointer to the window function. This means that the application's MessageProc function will then receive any messages that Windows sends to that window, and will be the function that carries out tasks for that window.

To pass the address of the MessageProc function as a parameter for CreateWindow function, you must declare the function somewhere before the assignment statement. The following is the correct prototype for a window function with the name MessageProc:

BOOL MainWndProc(TMessage Msg);

The next four CreateWindow parameters specify the position and dimensions of the window. Since the CW_USEDEFAULT value is specified for the position, width, and height parameters, Windows will place the window at a default position and give it a default width and height. The default position and dimensions depend on the system and on how many other applications have been started.

When CreateWindow successfully creates the window, it returns a handle to the new window. You can use the handle to carry out tasks on the window.

If CreateWindow cannot create the window, it returns NULL. Whenever you create a window, you should check for a NULL handle and respond appropriately. For example, in the main function, if you cannot create your application's main window, you should terminate the
application; that is, return control to Windows Server.

Specifying Window Icon and Cursor

You can specify any standard or user-defined icon and cursor for any window. For detail information, see Chapter 5, “Icons”, and Chapter 6, “The Cursor, the Mouse, and the Keyboard”.

Creating the Message Loop

Once you have created and displayed a window, the main function can begin its primary duty: to read messages from the application queue and dispatch them to the appropriate window. Main does this by using a message loop. A “message loop” is a program loop, typically created by using a while statement, in which main retrieves messages and dispatches them.

Windows does not send input directly to an application. Instead, it places all mouse and keyboard input into an application queue (along with messages posted by Windows and other applications). The application must read the application queue, retrieve the messages, and dispatch them so that the appropriate window function can process them.

The simplest possible message loop consists of the RetrieveMessage and DispatchMessage functions. This loop has the following form:

RetrieveMessage(&Msg);
while (DispatchMessage(&Msg))
RetrieveMessage(&Msg);

In this example, the RetrieveMessage function retrieves a message from the application queue, and the DispatchMessage function directs Windows to send this message to the appropriate window function. Every message an application receives belongs to one of the windows created by the application. Since an application must not call a window function directly, it instead uses the DispatchMessage function to pass each message to the appropriate function.

Windows places input messages in an application queue when the user moves the cursor in the window, presses or releases a mouse button when the cursor is in the window, or presses or releases a keyboard key when the window has the input focus. The window manager first collects all keyboard and mouse input in a system queue, then copies the corresponding messages to the appropriate application queue.

The message loop continues until RetrieveMessage returns 0, which it does only if one of the windows functions of your application returns FALSE. This is a signal to terminate the application, and usually FALSE returned by the window function of the application's main window.

Yielding Control

Windows 3.1 is a non-preemptive multitasking system, while the Windows 95 (as well as Windows NT) is. This means that Windows 3.1 cannot take control from an application. The application must yield control before Windows can reassign control to another application.

To make sure that all applications have equal access to the CPU, the DispatchMessage function automatically yields control when there are no messages in an application queue. This means that if there is no work for the application to do, Windows can give control to another application. Since all applications have a message loop, this implicit yielding of control guarantees sharing of control.

Again, this is true only for 16-bit Windows. In Windows 95 and Windows NT you need not to do something special to free system resources and give the control to other applications. In addition, Windows Server 95 places all messages coming to user windows to their own queues and can’t enter to infinite loop. And transputer DispatchMessage function returns (with TRUE as a result) immediately when there are no messages in the appropriate queue. Anyway, having the infinite loop in your application is not a good practice.

Terminating an Application

Your application terminates when the main function returns control to Windows Server. You can return control at any time before starting the message loop. Typically, an application checks each step leading up to the message loop to make sure each window class is registered and each window is created. If there is an error, the application can display a message before terminating.

Once the main function enters the message loop, however, the only way to terminate the loop is to return FALSE from ANY (!) windows function.

Although standard C programs typically clean up and free resources just prior to termination, Windows applications should clean up as each window is destroyed. Typically, you must destroy all your windows (or only the main window if all other ones are child windows) before terminating your application. If you do not clean up as each window is destroyed, you lose some data. For example, when Windows itself terminates, it destroys each window, but does not return control to the application's message loop. This means that the statements after the loop are not executed. (Windows does send each application a message before terminating, so an application does have an opportunity to carry out tasks before terminating.)

The Application Command-Line Parameter

You can examine the command line that starts your application by using the same parameters as with standard C program:

int main(int argc, char **argv);

Here argc is a number of command-line parameters, and argv parameter points to the array of pointers to parameters themself. Thus, to extract filenames or options from the command line, you don't need to parse the command line into individual values.

The Window Function

Every window must have a window function. The window function responds to input and window-management messages received from Windows.

A window function has the following form:

BOOL MessageProc(UINT Message, WPARAM WParam, LPARAM LParam)
 {
 switch (Message)
 {
 case WM_COMMAND :
 if (!LOWORD(LParam)		/* Menu item selected */
 {
 switch (WParam) 		/* Menu item IDs */
 {
 case IDM_ABOUT: 	/* “About” menu item selected */
 ...
 break;
 ...
 }
 }
 else 	/* Some control activated */
 switch(WParam) 		/* Control IDs */
 {
 case IDM_BUTTON: 	/* Button with named ID pressed */
 ...
 break;
 ...
 }
 case WM_VSCROLL : 	/* Vertical scroller activated */
 ...
 break;
 case WM_HSCROLL : 	/* Horizontal scroller activated */
 ...
 break;
 }
 return TRUE;
 }

The window function receives messages from Windows. These may be input messages that have been dispatched by the main function or window management messages that come directly from Windows. The window function must examine each message; it then either carries out some specific action based on the message, or just passes the message back to Windows for default processing.

The Message parameter defines the message type. You use this parameter in a switch statement to direct processing to the correct case. The WParam and LParam parameters contain additional information about the message. The window function typically uses these values to carry out the requested action.

To terminate your application (to exit main message loop), you must simply return FALSE somewhere in window function.

Creating an About Dialog Box

The System Application Architecture, Common User Access: Advanced Interface Design Guide recommends that you include an About dialog box with every application. A “dialog box” is a temporary window that displays information or prompts the user for input. The About dialog box displays such information as the application's name and copyright information. The user tells the application to display the About dialog box by choosing the About command from a menu (see the System Application Architecture, Common User Access: Advanced Interface Design Guide for more information about design conventions for the About dialog box).

You create and display a dialog box by using the CreateDialogIndirect function. This function takes a dialog-box template, a dialog function address, and a handle to a parent window, and creates a dialog box through which you can display output and prompt the user for input.

To display and use an About dialog box, follow these steps:

Create a dialog-box template and add it to your resource script file.

Add a dialog function to your C-language source file.

Add a menu to your application's resource script file.

Process the WM_COMMAND message in your application code.

Once you have completed these steps, the user can display the dialog box by choosing the “About” command from your application's menu. The following sections explain these steps in more detail.

Creating a Dialog-Box Template

A dialog-box template is a textual description of the dialog style, contents, shape, and size. You can create a template by hand or by using the Microsoft SDK Dialog Editor or Borland Resource Workshop. In this example, the template is created by hand.

You create a dialog-box template by creating a resource script file. A resource script file contains definitions of resources to be used by the application, such as icons, cursors, and dialog-box templates. To create an About dialog-box template, you use a DIALOG statement and fill it with control statements, as shown in the following example:

GENERICABOUT DIALOG 22, 17, 144, 75
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CLASS "OWLZDialog0000"
CAPTION "About Generic"
{
 CTEXT "Transputer Windows Library", -1, 4, 5, 135, 8
 CTEXT "Generic Application", -1, 4, 14, 135, 8
 CTEXT "Version 3.00", -1, 4, 34, 135, 8
 DEFPUSHBUTTON "OK", IDOK, 56, 59, 32, 14
}

In this example:

The DIALOG statement starts the dialog-box template. The name, ABOUT, identifies the template when the CreateDialogIndirect function is used to create the dialog box. The box's upper-left corner is placed at the point (22,17) in the parent window's client area. The box is 144 units wide by 75 units high. The horizontal units are 1/4 of the dialog base width unit; the vertical units are 1/8 of the dialog base height unit. The current dialog base units are computed from the height and width of the current system font.

The STYLE statement defines the dialog-box style. This particular style is a window with a framed border, a caption bar, and a system menu, which is the typical style used for modal dialog boxes.

The CLASS statement defines dialog-box class. In Transputer Windows Application, class always should be "OWLZDialogXXXX", where XXXX - any for characters (otherwise, Windows Server may crash in unexpected place).

The BEGIN and END statements mark the beginning and end of the control definitions. The dialog box contains text and a default push button. The push button lets the user send input to the dialog function to terminate the dialog box.

The statements, strings, and integers contained between the BEGIN and END statements describe the contents of the dialog box.

CTEXT creates a rectangle with the quoted text centered in a rectangle. This statement appears several times for the various texts that appear in the dialog box.

DEFPUSHBUTTON creates a push button that allows the user to give a default response; in this case, to choose the “OK” button, causing the dialog box to disappear.

The DS_MODALFRAME, WS_CAPTION, WM_SYSMENU, IDOK, and WS_GROUP constants used in the dialog-box template are defined in the standard Windows include file (available with Microsoft SDK, Borland C++ or with any other Windows compiler/tool). You should include this file in the resource script file by using the #include directive at the beginning of the script file.

The statements in this file were created with a text editor, and were based on a dialog box used in another application. You can create many such resources by copying them from other applications and modifying them using a text editor.

2.5.2 Creating an Include File

It is often useful to create an include file in which to define constants and function prototypes for your application. Most applications consist of at least two source files that share common constants: the C-language source file and the resource script file. Since the Resource Compiler (RC) carries out the same preprocessing as the C Compiler, it is useful and convenient to place constant definitions in a single include file and then include that file in both the C-language source file and the resource script file.

For example, for the Generic application, you can place the function prototypes for the main, MessageProc and AboutProc functions, and the definition of the menu ID for the About command, in the GENERIC.H include file. The file should look like this:

#define IDM_EXIT 100
#define IDM_ABOUT 500

int 	main(void);
BOOL 	MessageProc(UINT Message, WPARAM WParam, LPARAM LParam);
BOOL 	AboutProc(UINT Message, WPARAM WParam, LPARAM LParam);

Since GENERIC.H refers to Windows data types, you must include it after WLIB.H, which defines those data types. That is, the beginning of your source files should look like this:

#include “WLIB.H” /* required for all Windows applications */
#include “GENERIC.H” /* specific to this program */

Creating a Dialog Function

A “dialog box” is a special kind of window whose window procedure is built into Windows. For every dialog box an application has, the application must have a dialog function. Windows' built-in window procedure calls a dialog function to handle input messages that can be interpreted only by the application.

The function that processes input for Generic's About dialog box is called AboutProc. This function, like other dialog functions, uses the same parameters as a window function, but processes only messages that are not handled by Windows' default processing. As with a window function, you must not call a dialog function directly from your application.

Unlike a window function, a dialog function usually processes only user-input messages, such as WM_COMMAND. In addition, each dialog windows receives WM_INITDIALOG message. Generic's dialog function, About, looks like this:

 BOOL AboutProc(UINT Message, WPARAM WParam, LPARAM LParam)
 {
 switch(Message)
 {
 case WM_INITDIALOG:		/* initialization message */
 break;
 case WM_COMMAND:			/* received a command */
 if (LOWORD(LParam))		/* message from control */
 if (WParam == IDOK)		/* OK button pressed */
 DeleteWindow(hDialog);	/* exits the dialog box */
 break;
 }
 return TRUE;
 }

The About dialog function processes two messages: WM_INITDIALOG and WM_COMMAND. Windows sends the WM_INITDIALOG message to a dialog function to let the function prepare before displaying the dialog box. In this case, the “focus” will be passed to the first control in the dialog box that has the WS_TABSTOP bit set (this control will be the default push button).

In contrast to WM_INITDIALOG messages, WM_COMMAND messages are a result of user input. About responds to input to the OK button by calling the DeleteWindow function with handle of About dialog as parameter, which directs Windows to remove the dialog box and continue execution of the application.

Defining a Menu with an About Command

Now that you have an About dialog box, you need some way to let the user tell your application when to display the dialog box. In most applications, the About command would appear as the last command on the application's Help menu. If the application does not have a Help menu, then it usually appears in the first menu, most often the File menu. In Generic, About is the only command, so it appears as the only item on the Help menu.

The most common way to create a menu is to define it in the resource script file. Put the following statements in GENERIC.RC:

 GENERICMENU MENU
 BEGIN
 POPUP “&File”
 BEGIN
 MENUITEM “&Exit”, IDM_EXIT
 END
 POPUP “&Help”
 BEGIN
 MENUITEM “&About Generic...”, IDM_ABOUT
 END
 END

These statements create a menu named “GENERICMENU” with two commands on it, “File” and “Help.” The command “File” displays pop-up menu with “Exit” item. The command “Help” displays a pop-up menu with the single menu item “About Generic...”.

Notice the ampersand (&) in some strings. This character immediately precedes the command mnemonic. A mnemonic is a unique letter or digit with which the user can access a menu or command. It is part of Windows' direct-access method. If a user presses the key for the mnemonic, together with the ALT key, Windows selects the menu or chooses the command. In the case of “&Help”, Windows removes the ampersand and places an underscore under the letter “H” when displaying the menu.

When the “Exit” menu item selected, application terminates.

The user will see the “About” command when he or she displays the “Help” menu. If the user chooses the About command, Windows sends the window function a WM_COMMAND message containing the About command's menu ID; in this case, IDM_ABOUT.

Processing the WM_COMMAND Message

Now that you've added a command to Generic's menu, you need to be able to respond when the user selects the command. To do this, you need to process the WM_COMMAND message. Windows sends this message to the window function when the user chooses a command from the window's menu. Windows passes the menu ID identifying the command in the WParam parameter, so you can check to see which command was chosen. (In this case, you can use “if” and “else” statements to direct the flow of control depending on the value of the WParam. As your application's message-processing becomes more complex, you may want to use a switch statement instead.) You want to display the dialog box if the parameter is equal to IDM_ABOUT, the About command's menu ID.

The WM_COMMAND case should look like this:

 case WM_COMMAND:
 if (!LOWORD(LParam)) 	/* Menu item selected */
 {
 switch (WParam) 		/* Menu item IDs */
 {
 case IDM_ABOUT: 		/* “About” menu item selected */
 hDialog = CreateDialogIndirect("GENERIC.RES", "GENERICABOUT",
 hWnd, (DWORD)AboutProc, TRUE);
 break;
 case IDM_EXIT: 		/* “Exit” menu item selected */
 DeleteWindow(hWnd); 	/* Destroying main window */
 return FALSE; 		/* Terminating message loop */
 break;
 }
 }

The CreateDialogIndirect function creates and displays the dialog box. It requires the name of the resource file and the name of dialog-box template. It uses this information to load the dialog-box template from the resource file (.RES). Function also requires the handle of the parent window (the window to which the dialog box belongs) and the address of the dialog function.

Typically, the dialog box contains at least a push-button control to permit the user to close the box.

Putting Generic Together

At this point you are ready to put the sample application, Generic, together.

To create the Generic application, you need to do the following:

Create the C-language source (.C) file.

Create the header (.H) file.

Create the resource script (.RC) file.

Compile the resource script (.RC) file to resource (.RES) file using Resource Compiler.

Compile and link the application.

You can use the following makefile (for Borland C++ resource compiler and Inmos ANSI C Toolset):

 generic.res: generic.rc
 brc32 -i..\..\lib -r generic.rc

 generic.btl: generic.lku
 icollect /t generic.lku

 generic.lku: generic.tco
 ilink generic.tco wlib.lib /f startup.lnk

 generic.tco: generic.c
 icc generic.c

Using Generic as a Template

Generic provides essentials that make it an appropriate starting point for your applications. It conforms to the standards given in the System Application Architecture, Common User Access: Advanced Interface Design Guide for appearance and cooperation with other applications. It contains all the files an application can have: .H, .RC and .C. The About dialog box, an application standard, is included, as is the About Generic... command on the Help menu.

You can use Generic as a template to build your own applications. To do this, copy and rename the sources of an existing application, such as Generic, then change relevant function names, and insert new code. All sample applications in this guide have been created by copying and renaming Generic's source files, then modifying some of the function and resource names to make them unique to each new application.

The following procedure explains how to use Generic as a template and adapt its source files to your application:

Choose your application's filename.

Copy the following Generic source files, renaming them to match your application's filename: GENERIC.C, GENERIC.H and GENERIC.RC.

Use a text editor to change each occurrence of “Generic” in your application's C-language source files to your application's name.

Use a text editor to change each occurrence of “Generic” in your application's resource script file to your application's name.

As you add new resources and include files to your applications, be sure to use your application's filename to ensure that these names are unique.

�SEITE �

�SEITE �
1
�
� AKTUALDAT \l �
16.01.1996
�		

