
i

X3T9.3/
X3T9.3/Project 702/REV 4.4

HIGH-PERFORMANCE PARALLEL INTERFACE -
Framing Protocol

(HIPPI-FP)
maintenance copy of

American National Standard
for Information Systems

X3.210-1992

May 31, 1995

Secretariat:

Computer & Business Equipment Manufacturers Association

ABSTRACT: The described protocol provides framing for the High-Performance Parallel Interface, a simple
high-performance point-to-point interface for transmitting digital data at peak data rates of 800 or 1600 Mbit/s
between data-processing equipment.

NOTE:

This document is an X3T11 maintenance copy of American National Standard X3.210-1992. A list of the
proposed changes since approval of the standard is included. Some or all of these changes may be included
in a future erratum, amendment, interpretation, or revision to the standard. The committee lists included in
the approved standard, and some other boilerplate, have been omitted in this draft. For current information
on the status of this document contact the individual shown below.

POINT OF CONTACT:

Roger Cummings (X3T11 Chairman) Carl Zeitler (X3T11 Vice-Chairman)
Storage Technology Corporation IBM Corporation, MS 9440
2270 South 88th Street 11400 Burnet Road
Louisville, CO 80028-0268 Austin, TX 78758
 (303) 661-6357, FAX (303) 684-8196 (512) 838-1797, FAX (512) 838-3822
 E-mail: Roger_Cummings@Stortek.com E-mail: zeitler@ausvm6.vnet.ibm.com

Don Tolmie (HIPPI-FP Technical Editor)
Los Alamos National Laboratory
C-5, MS-B255
Los Alamos, NM 87545
 Phone (505) 667-5502
 FAX (505) 665-7793
 Internet address = det@lanl.gov

ii

Proposed changes to ANSI X3.210-1992 – (and which have been incorporated in this draft)

Proposed technical changes are preceded with (T), proposed editorial changes are preceded with (E).

Rev 4.4, March 25, 1993 - These changes are both technical and editorial, and have been submitted as an
Amendment to HIPPI-FP X3.210-1992.

1. (E) In the Introduction, page iii, deleted the 19th through 28th lines, i.e., from "The information in this
document..." through "Clause 7 specifies the data, header, and packet formats."

2. (E) In the Introduction, page iii, replaced figure 1 showing the relationship of HIPPI-FP with other
documents. Replaces HIPPI-MI with HIPPI-FC, and replaces HIPPI / IPI-3 with IPI-3 Disk and IPI-3 Tape.

3. (T) In 5.4.1, page 4, change both ULP-id assignments 00000010 = Memory Interface, and 00000011 =
Memory Interface Initialization to Reserved. These ULP-ids are no longer needed since we dropped the
HIPPI-MI project.

4. (E) In 5.4.1, page 4, clarify the ULP-id assignments for IPI-3 Slave and IPI-3 Master by adding "i.e., IPI-3
Master to Slave" and "i.e., IPI-3 Slave to Master" respectively. This clarification change is to avoid mix
ups as happened on an implementation.

5. (T) In 5.4.1, page 4, assign the ULP-id value 00001000 = IPI-3 Peer. This change is needed to support
systems conforming to the new IEEE Mass Storage Reference Model.

6. (T) In 5.4.1, page 4, assign the ULP-id value 00001010 = HIPPI-FC. This change is needed to support
upper-layer Fibre Channel protocols (FC-4s) for use with the HIPPI-FP and HIPPI physical layer.

Items 2,3, and 4 Change 5.4.1 from:

00000010 = Memory Interface
00000011 = Memory Interface Initialization
00000100 = ISO 8802.2 Link Encapsulation
00000110 = IPI-3 Slave
00000111 = IPI-3 Master
1xxxxxxx = Locally assigned

To:

00000010 = Reserved
00000011 = Reserved
00000100 = ISO 8802.2 Link Encapsulation
00000110 = IPI-3 Slave, i.e., IPI-3 Master to Slave
00000111 = IPI-3 Master, i.e., IPI-3 Slave to Master
00001000 = IPI-3 Peer
00001010 = HIPPI-FC mapping to Fibre Channel ULPs
1xxxxxxx = Locally assigned

7. (E) Add a bibliography in informative Annex C, page 16, to contain the references to the documents that
use HIPPI-FP, i.e., have been assigned ULP-id's in 5.4.1.

i

i

Contents
Page

Foreword... ii

Introduction... iii

1 Scope.. 1

2 Normative references... 1

3 Definitions and conventions... 1
3.1 Definitions.. 1
3.2 Editorial conventions.. 1

4 HIPPI structure.. 2
4.1 Structure.. 2
4.2 Error detection mechanisms.. 2
4.3 Error detection limitations... 2

5 HIPPI-FP service interface to upper layers... 3
5.1 Service primitives... 3
5.2 Sequences of primitives... 3
5.3 HIPPI-FP service primitive summary... 3
5.4 ULP data transfer service primitives... 4
5.5 Control service primitives.. 6
5.6 Status service primitives... 6

6 HIPPI-PH to HIPPI-FP services.. 7

7 HIPPI data formats.. 8
7.1 Word and byte formats.. 8
7.2 HIPPI-FP packet format... 8

Annexes

A State transitions and pseudo-code ... 10
A.1 General... 10
A.2 State exit... 10
A.3 Interlocks... 10
A.4 Source pseudo-code... 10
A.5 Destination pseudo-code... 12

B Implementation observations... 14
B.1 Data transfer service primitive.. 14
B.2 Classes of packets... 14

C Bibliography... 16

Alphabetical index... 17

Tables

1 Byte assignments.. 8

Figures

1 HIPPI-FP relationship to other entities .. vi
2 Logical framing hierarchy... 2
3 HIPPI-FP service interface... 3
4 Data transfer service primitives... 4
5 Control service primitives.. 6
6 Status service primitives... 6
7 Ordered byte stream to HIPPI-PH.. 8
8 Bit significance within a byte.. 8
9 HIPPI-FP packet format... 9

ii

Foreword (This Foreword is not part of American National Standard X3.210-1992.)

This High-Performance Parallel Interface, Framing Protocol (HIPPI-FP)
standard defines the data framing for an efficient simplex high-performance
point-to-point interface. This interface was previously named the "High-
Speed Channel" (HSC). The name was changed October, 1989, to avoid
infringing on an existing trademark.

The HIPPI is designed for transmitting digital data at peak data rates of 800
or 1600 Mbit/s between data-processing equipment. This standard responds
to an industry market need (expressed both by users and manufacturers) to
standardize the interconnection of data processing equipment at these data
rates.

This standard was developed by Task Group X3T9.3 of Accredited Standards
Committee X3 during 1988, 1989 and 1990. The standards approval
process started in 1991.

The American convention of numbering is used i.e., four digit numbers do
not include a space and a period is used as the decimal point. This is
equivalent to the ISO convention of a space and comma.

ISO American
0,6 0.6

1 600 1600
1 323 462,9 1,323,462.9

This document includes annexes which are informative and are not
considered part of the standard.

Requests for interpretation, suggestions for improvement or addenda, or
defect reports are welcome. They should be sent to the X3 Secretariat,
Computer and Business Equipment Manufacturers Association, 1250 Eye
Street, NW, Suite 200, Washington, DC 20005.

This standard was processed and approved for submittal to ANSI by
Accredited Standards Committee on Information Processing Systems, X3.
Committee approval of the standard does not necessarily imply that all
committee members voted for approval. At the time it approved this
standard, the X3 Committee had the following members:

(List of X3 Committee members included in published standard)

Subcommittee X3T9 on Computer Input/Output Interfaces, which reviewed
this standard, had the following members:

(List of X3T9 committee members included in published standard)

Task Group X3T9.3 on Device Level Interfaces, which developed this
standard, had the following participants:

(Listof X3T9.3 committee participants included in published standard)

iii

Introduction

This High-Performance Parallel Interface, Framing Protocol (HIPPI-FP)
standard defines the data framing for an efficient simplex high-performance
point-to-point interface.

Characteristics of HIPPI-FP include

– Large block data transfers with framing to split the data into smaller
bursts.

– Separation of user control and data information, and early delivery of the
control information.

– Identifiers for multiple upper-layer protocols (ULPs).

– Support for simplex topology.

– Support for ULP non-word-aligned and an arbitrary number of byte
transfers.

– Error notifications, from the underlying physical layer, e.g., HIPPI-PH, are
passed through this framing protocol to notify the upper layers of damaged
data.

– Provides a connection-less data service.

– Best effort delivery of data, i.e., datagram.

– Connection control information, which may be used for physical layer
switching, is supported.

Figure 1 shows the relationship of this standard (in the solid rectangle) to the
other entities shown.

HIPPI-LE
Link Encapsulation

Mechanical, Electrical, and Signalling
Protocol

HIPPI-PH

(physical layer)

HIPPI-SC
Switch Control

(control of HIPPI physical layer switches)

(mapping to IEEE 802.2)

HIPPI-FC IPI-3 Disk

(mapping to Fibre
Channel ULP's)

IPI-3 Tape

HIPPI-FP

(generic disk
command set)

(generic tape
command set)

Framing Protocol

Figure 1 – HIPPI-FP relationship to other entities

X3T9.3 maintenance copy of AMERICAN NATIONAL STANDARD ANSI X3.210-1992

1

American National Standard
for Information Systems –

High-Performance Parallel Interface –
Framing Protocol (HIPPI-FP)

1 Scope

This American National Standard provides data framing for a
high-performance point-to-point interface between data-
processing equipment. This standard does not protect
against certain errors which might be introduced by
intermediate devices interconnecting multiple HIPPI-PHs.

The purpose of this standard is to facilitate the development
and use of the HIPPI in computer systems by providing
common data framing. The standard provides an efficient
framing protocol for interconnections between computers,
high-performance display systems, and high-performance,
intelligent block-transfer peripherals.

2 Normative references

The following American National Standard contains
provisions which, through reference in this text, constitute
provisions of this standard. At the time of publication, the
edition indicated was valid. All standards are subject to
revision, and parties to agreements based on this standard
are encouraged to investigate the possibility of applying the
most recent edition of the standard listed below.

ANSI X3.183-1991, High-performance parallel interface,
mechanical, electrical, and signalling protocol specification
(HIPPI-PH) .

3 Definitions and conventions

3.1 Definitions

For the purposes of this standard, the following definitions
apply.

3.1.1 burst: A group of words sent by the Source to the
Destination. Bursts contain 1 to 256 words. Bursts that
contain less than 256 words are called short bursts. On a
32-bit HIPPI-PH, bursts contain an even number of 32-bit
words.

3.1.2 byte: A group of eight bits. Bytes are packed four
per 32-bit word, or eight per 64-bit word.

3.1.3 connection: Condition of the HIPPI-PH when
data transfers from Source to Destination are possible.

3.1.4 connection control information (CCI): A
parameter sent as part of the sequence of operations
establishing a connection from a Source to a Destination.
(The HIPPI-SC document includes examples of CCIs and
topologies.)

3.1.5 Destination: The equipment at the end of the
interface that receives the data.

3.1.6 optional: Features that are not required by the
standard. However, if any optional feature defined by the
standard is implemented, it shall be implemented according
to the standard.

3.1.7 packet: A data set sent from Source to Desti-
nation. A packet is composed of one or more bursts. The
HIPPI specification does not limit the maximum packet size,
but a maximum size may be imposed by a given HIPPI
implementation, or by a ULP. A packet consists of a
header, one or two optional ULP data sets, and optional fill.

3.1.8 service interface (SI): Connection points to
the ULP.

3.1.9 Source : The equipment at the end of the interface
that transmits the data.

3.1.10 state: The current condition of the interface,
excluding transitions, as indicated by the control primitives.

3.1.11 station management (SMT): The supervi-
sory entity that monitors and controls the HIPPI.

3.1.12 ULP data set: The data transferred between
the ULP and the HIPPI-FP.

3.1.13 upper-layer protocol (ULP): A protocol
immediately above the HIPPI-FP service interface.

3.1.14 word: A unit of information, consisting of 32 or 64
bits, matching the HIPPI-PH word size. Words contain an
ordered set of four or eight bytes.

3.2 Editorial conventions

In this standard, certain terms that are proper names of
signals or similar terms are printed in uppercase to avoid
possible confusion with other uses of the same words (e.g.,
CLOCK). Any lowercase uses of these words have the
normal technical English meaning.

A number of conditions, sequence parameters, events,
states, or similar terms are printed with the first letter of
each word in uppercase and the rest lowercase (e.g., In,
Out, Enabled). Any lowercase uses of these words have
the normal technical English meaning.

X3T9.3 maintenance copy of ANSI X3.210-1992

2

4 HIPPI structure

4.1 Structure

The HIPPI-FP has been designed in a modular fashion to
support simplex or dual simplex configuration require-
ments.

A compliant HIPPI network shall maintain packet and burst
structures from the original Source to the final Destination.

Figure 2 shows the basic organization of the information on
the HIPPI.

Connection
Established

Packet Packet Packet

Burst Burst Burst

256 words of 32 or 64 bits each

Connection
Established

Connection
Established

Figure 2 – Logical framing hierarchy

As specified in HIPPI-PH, once a connection is established
a packet (or multiple packets) can be sent from the Source
to the Destination. Each packet contains one or more
bursts. Bursts contain 1 to 256 words. Words contain four
or eight bytes. Bursts that contain less than 256 words are
called short bursts. A packet contains no more than one
short burst. A short burst may be either the first or last
burst of a multiburst packet. For error detection HIPPI-PH
uses byte parity and a parity-based checksum on each
burst.

On a 32-bit HIPPI-PH, bursts shall contain an even number
of 32-bit words. Words shall contain an ordered set of bytes
as specified in 7.1.

4.2 Error detection mechanisms

4.2.1 Byte parity

The HIPPI physical layer (HIPPI-PH) uses bit-parallel word
transfers, using 32-bit words for an 800 Mbit/s data rate and
64-bit words for a 1600 Mbit/s data rate. An odd-parity bit is
also transmitted with each 8-bit byte of a word, i.e., four
parity bits are transmitted with each 32-bit word. Hence an
undetected error in a word would require a 2-bit error, with
both bits being in the same byte.

4.2.2 LLRC

The Length-Longitudinal Redundancy Check (LLRC)
implements even parity across the individual bits of multiple
words in a burst. For example, bit 23 of the LLRC is the
even parity of bit 23 of each word in the burst. A burst is
nominally 256 words in length (1 Kbytes or 2 Kbytes), but
short bursts may contain fewer words. Hence the LLRC
would not detect errors where the same bit in an even
number of words was incorrect.

In addition, the LLRC calculation includes the length of the
burst. Hence, the LLRC would detect cases where a word
was dropped or added, i.e., the length received was not the
same as what was transmitted.

4.2.3 Packet length

A packet is composed of one or more bursts. In HIPPI-FP a
length field specifying the number of bytes in the packet is
specified. This length field provides a check for dropped or
extra bursts. A special case where the packet length is not
used is provided for such things as video data to a frame
buffer, data collection from experimental equipment, etc.

4.3 Error detection limitations

The parity and LLRC will only fail on 4-bit errors in a
rectangular pattern. That is, two bits in a byte must fail
(undetected by the byte parity check) and the same two bits
must fail in another word of the burst (undetected by the
LLRC).

Use of the HIPPI-FP packet header length field permits the
detection of lost bursts within a packet; however no
mechanism of either HIPPI-FP or HIPPI-PH allows the
detection of data corruption caused by the substitution of
one burst, with good parity and LLRC, for another burst of
the same length.

X3T9.3 maintenance copy of ANSI X3.210-1992

3

5 HIPPI-FP service interface to upper layers

This clause describes the services provided by HIPPI-FP.
The intent is to provide the formalism necessary to relate
this interface to other HIPPI interfaces. How many of the
services described herein are chosen for a given
implementation, and whether others may be required, is up
to the implementer; however, a set of HIPPI-FP services
must be supplied sufficient to satisfy the ULP(s) being
used. The services as defined herein do not imply any
particular implementation, or any interface.

In this standard the ULP and station management protocol
(SMT) are service users, and the HIPPI-FP is the service
provider to the ULP and SMT. The interfaces consist of the
ULP primitives, prefixed with FP_, and the SMT primitives,
prefixed with FPSM_.

The HIPPI-FP is also the service user of the HIPPI-PH
services, prefixed with PH_.

Figure 3 shows the relationship of the HIPPI-FP interfaces.

HIPPI-FP

Upper-Layer
Protocols

(ULPs)

Station
Management

(SMT)

HIPPI-PH
Physical Layer

(PH_...)

(FPSM_...)

(PHSM_...)

(FP_...)

Figure 3 – HIPPI-FP service interface

5.1 Service primitives

All of the primitives and parameters are considered as
required except where explicitly stated otherwise.

HIPPI service primitives are of four types.

– Request primitives are issued by a service user to
initiate a service from the service provider. In this stan-
dard, a second Request primitive of the same name shall
not be issued until the Confirm for the first request is
received.

– Confirm primitives are issued by the service provider to
acknowledge a Request.

– Indicate primitives are issued by the service provider to
notify the service user of a local event. This primitive is
similar in nature to an unsolicited interrupt. Note that the
local event may have been caused by a service Request.
In this standard, a second Indicate primitive of the same
name shall not be issued until the Response for the first
Indicate is received.

– Response primitives are issued by a service user to
acknowledge an Indicate.

5.2 Sequences of primitives

The order of execution of service primitives is not arbitrary.
Logical and time sequence relationships exist for all
described service primitives. Time sequence diagrams, as
in figure 4, are used to illustrate a valid sequence. Other
valid sequences may exist. The sequence of events
between peer users across the user/provider interface is
illustrated. In the time sequence diagrams the HIPPI-FP
users are depicted on either side of the vertical bars while
the service provider is in the center. A ULP or SMT
implementation may present multiple requests for services,
but the requests shall be serviced one at a time and in the
order presented.

5.3 HIPPI-FP service primitive summary

ULP Data Transfer
FP_TRANSFER.Request (CCI, ULP-id, D1_Size,

D1_Data_Set, D2_Size, D2_Data_Set,
Keep_Connection, Start_D2_on_Burst_Boundary)

FP_TRANSFER.Confirm
FP_TRANSFER_D1.Indicate (ULP-id, CCI, Status,

D2_Size, D2_Offset, D1_Area_Size, D1_Data_Set)
FP_TRANSFER_D2.Indicate (ULP-id, CCI, Status,

D2_Size, D2_Offset, D2_Data_Set)
FP_TRANSFER.Response

Control Link
FPSM_CONTROL.Request (Command, Command_

Parameter)
FPSM_CONTROL.Confirm (Status)

Link Status
FPSM_STATUS.Request
FPSM_STATUS.Confirm (Status)
FPSM_STATUS.Indicate
FPSM_STATUS.Response

X3T9.3 maintenance copy of ANSI X3.210-1992

4

5.4 ULP data transfer service primitives

These primitives, as illustrated in figure 4, shall be used to
transfer ULP data from the Source ULP to the Destination
ULP.

5.4.1 ULP Identifiers

The ULP-id of the HIPPI-FP header designates the Destina-
tion ULP to which the data set is to be delivered.

NOTE - Identifiers registered at the time this standard was
approved include the following (shown in binary notation). Later
registrations will be added as amendment to this standard.

Processing of packets with unlisted ULPs is undefined.

00000010 = Reserved
00000011 = Reserved
00000100 = ISO 8802.2 Link Encapsulation
00000110 = IPI-3 Slave, i.e., IPI-3 Master to Slave
00000111 = IPI-3 Master, i.e., IPI-3 Slave to Master
00001000 = IPI-3 Peer
00001010 = HIPPI-FC mapping to Fibre Channel ULPs
1xxxxxxx = Locally assigned

5.4.2 FP_TRANSFER.Request

Issued by the Source ULP to request a data transfer. If a
connection to the Destination specified by the CCI does not
currently exist, then a connection will be established. At
the completion of the transfer the connection may be
broken unless Keep_Connection was specified. The packet
format is defined in 7.2, and shown in figure 9.

.Response

.Indicate

HIPPI-FP
Source

ULP
Destination

ULP

.Request

.Confirm

FP_TRANSFER_D1

FP_TRANSFER

FP_TRANSFER

FP_TRANSFER

.Response

.Indicate
FP_TRANSFER_D2

FP_TRANSFER

Figure 4 – Data transfer service primitives

Semantics – FP_TRANSFER.Request (CCI, ULP-id,
D1_Size, D1_Data_Set, D2_Size, D2_Data_Set,
Keep_Connection, Start_D2_on_Burst_Boundary)

The CCI is passed directly to the underlying HIPPI-PH.

The ULP-id identifies the Destination ULP. See 5.4.1.

D1_Size is the length, in bytes, of the ULP
D1_Data_Set to be placed in the first burst of the
packet. The maximum D1_Size shall be 1016 bytes. A
value of D1_Size equal to zero indicates a null
D1_Data_Set and shall cause the FP header
D1_Data_Set_Present bit to be set to 0. See 7.2.2.

D1_Data_Set is the ULP data set to be placed in the
first burst, and delivered separately from the
D2_Data_Set. The D1_Data_Set is intended for control
information.

D2_Size is the length, in bytes, of the ULP data set to
be placed in the remainder of the packet. The maximum
determinate D2_Size is 4,294,967,294 bytes (232 - 2).
A D2_Size of hexadecimal FFFFFFFF shall mean that
the length is indeterminate at the start of the transfer.
Indeterminate length packets may be longer or shorter
than the maximum determinate size. See B.1 for
suggestions on transferring larger size, or
indeterminate size, packets. The D2_Size shall be set
to zero to indicate the absence of the D2_Data_Set.

D2_Data_Set is the ULP data set to be sent.
Placement of the D2_Data_Set shall be governed by
the Start_D2_on_Burst_Boundary parameter. The
D2_Data_Set is intended for user data, or the whole
data set if separate control information is not used. A
ULP may deliver the D2_Data_Set to HIPPI-FP in
multiple segments. To decrease latency and conserve
buffers, implementations may start transmission before
receiving all of these segments.

Keep_Connection true says that another ULP data set
with the same routing information is coming, and the
physical HIPPI-PH connection should be maintained if
possible. When Keep_Connection is false, the
connection may be broken after this packet. Servicing
FP_TRANSFER.Requests from other ULPs may also
cause the connection to be broken, e.g., requests to
different Destinations, or requests with
Keep_Connection false. Keep_Connection is a local
control parameter and is not passed to the Destination.

Start_D2_on_Burst_Boundary controls the starting
location for the D2_Area. If true, then the D2_Area
shall start at the beginning of the second HIPPI-PH
burst. If false, then the D2_Area may start in the first
burst.

Issued – The Source ULP issues this primitive to the
Source HIPPI-FP to request the transfer of the ULP data
set to the Destination.

Effect – The Source HIPPI-FP shall accept the ULP data
set for transmission. The HIPPI-FP shall build an HIPPI-
FP header, as specified in 7.2, and send the packet as a
series of bursts to the Destination. If (1) the
D1_Data_Set does not completely fill the first burst, and
(2) Start_D2_on_Burst_Boundary = true, and (3) the
underlying HIPPI-PH supports short first bursts, then this
HIPPI-FP shall use a short first burst whose length is
sufficient to completely contain the D1_Data_Set. If any
of the above conditions are not met, then a 256-word first
burst shall be used.

X3T9.3 maintenance copy of ANSI X3.210-1992

5

5.4.3 FP_TRANSFER.Confirm

This primitive acknowledges the FP_TRANSFER. Request
from the Source ULP.

Semantics – FP_TRANSFER.Confirm (Status)

Status shall be:

– Accept – the HIPPI-PH has completed the connection
and accepted the packet for transmission.

– Reject – the Destination has rejected the connection
request, no bursts were transmitted.

– Timeout – the Destination did not respond to the
connection request within the timeout period. No bursts
were transmitted. See A.4.7

Issued – The HIPPI-FP shall issue this primitive to the
Source ULP to acknowledge the FP_TRANSFER.Request.

Effect – Unspecified

5.4.4 FP_TRANSFER.Indicate

These primitives indicate to the Destination ULP that the
D1_Data_Set, or D2_Data_Set, of a packet, addressed to
this particular ULP has been received from the Source.

Semantics –
FP_TRANSFER_D1.Indicate (ULP-id, CCI, Status,

D2_Size, D2_Offset, D1_Area_Size,
D1_Area)

FP_TRANSFER_D2.Indicate (ULP-id, CCI, Status,
D2_Size, D2_Offset, D2_Data_Set)

ULP-id is the ULP to receive the data. See 5.4.1.

CCI is the CCI for the current connection, i.e., received
with the PH_RING.Indicate connection request.

Status denotes whether the data set being delivered
was received with errors. Status includes, but is not
limited to, errors in the packet.

D2_Size is the length of the D2_Data_Set, in bytes, as
received in the FP_Header. If D2_Size equals hex-
adecimal FFFFFFFF, then it is up to the ULP to deter-
mine the validity and actual length of the D2_Data_Set.

D2_Offset is the number of unused bytes from the start
of the D2_Area to the first byte of the D2_Data_Set.
The D2_Offset is used by the Source and Destination to
keep proper word alignment on the D2_Data_Set so as
to avoid shifting and copying the data to achieve align-
ment at the Destination. The D2_Offset allows the
Source memory image of the D2_Data_Set, even if it
does not start on a 64-bit word boundary, to be
reproduced at the Destination.

D1_Area_Size is the size of the D1_Area being passed
to the ULP. The actual size of the D1_Data_Set is self
defining within the D1_Area.

D1_Area contains the D1_Data_Set. It is up to the
Destination ULP to determine the size of the D1_Data_
Set and extract it from the D1_Area. See 7.2.2.

The D2_Data_Set is the D2 ULP data being delivered to
the ULP.

Issued – The Destination HIPPI-FP shall issue this primi-
tive to the Destination ULP when a ULP data set has been
received. A packet containing both the D1_Data_Set and
the D2_Data_Set shall generate primitives for both the
D1_Data_Set and the D2_Data_Set.

Effect – Unspecified

5.4.5 FP_TRANSFER.Response

This primitive acknowledges a FP_TRANSFER.Indicate for
either the D1_Data_Set or the D2_Data_Set.

Semantics – FP_TRANSFER.Response

Issued – The Destination ULP issues this primitive to
acknowledge receipt of the FP_TRANSFER.Indicate.

Effect – The Destination HIPPI-FP is enabled to issue
another FP_TRANSFER. Indicate.

X3T9.3 maintenance copy of ANSI X3.210-1992

6

5.5 Control service primitives

These primitives, as illustrated in figure 5, shall be used to
set parameters and control the interface. Note that a
Control primitive can be initiated from either the Source or
Destination.

Source or
Destination

SMT

.Request
FPSM_CONTROL

Other End
SMT

.Confirm
FPSM_CONTROL

HIPPI-FP

Figure 5 – Control service primitives

5.5.1 FPSM_CONTROL.Request

Issued by either the Source SMT or Destination SMT to set
parameters, or otherwise control the local HIPPI-FP.
Several functions are specified and others are left to
specific implementations.

Semantics – FPSM_CONTROL.Request (Command,
Command_Parameter)

The Command specifies the function to be performed.
The parameters are specific to each function.

The Commands and Command_Parameters for the
Source side include but are not limited to

Reset
Break Connection
Indicate Enable/Disable

Reset resets the HIPPI-FP, breaks any existing
connections, and cancels any pending .Request
primitives.

Break Connection breaks any existing connections.

Indicate Enable/Disable allows/disallows issuance of
FPSM_ STATUS.Indicate primitives.

The Commands and Command_Parameters for the
Destination side include but are not limited to

Reset
Break Connection
Allow/Disallow/Reject Connection
Indicate Enable/Disable

Reset resets the HIPPI-FP, breaks any existing
connections, and cancels any pending .Request
primitives.

Break Connection breaks any existing connections.

Allow/Disallow/Reject Connection. Sets Connection
_Enable. Allow enables the Destination to make a
connection. Disallow instructs the Destination to
ignore connection requests. Reject instructs the
Destination to respond to connection requests with
rejected connection sequences.

Indicate Enable/Disable allows/disallows the HIPPI-

FP to issue FPSM_ STATUS.Indicate primitives.

Issued – The Source or Destination SMT issues this primi-
tive to perform some control function over the interface as
a whole.

Effect – The HIPPI-FP shall perform the function
specified.

5.5.2 FPSM_CONTROL.Confirm

This primitive acknowledges the FPSM_CONTROL.Re-
quest to the issuing SMT.

Semantics – FPSM_CONTROL.Confirm (Status)

Status reports the success or failure of the
FPSM_CONTROL.Request commands.

Issued – The HIPPI-FP shall issue this primitive to the
SMT when the command specified in the FPSM_
CONTROL.Request has been accepted.

Effect – Unspecified

5.6 Status service primitives

These primitives, as illustrated in figure 6, shall be used to
obtain status information from the local HIPPI-FP. Note that
a Status primitive can be initiated from either the Source or
Destination, and shall only affect the local end of the
interface.

Source or
Destination

SMT
Other End

SMT

.Request
FPSM_STATUS

.Confirm
FPSM_STATUS

.Response
FPSM_STATUS

.Indicate
FPSM_STATUS

HIPPI-FP

Figure 6 – Status service primitives

5.6.1 FPSM_STATUS.Request

Issued by either the Source SMT or Destination SMT to
request a status report.

Semantics – FPSM_STATUS.Request

Issued – The SMT issues this primitive when it wishes to
obtain the status of the HIPPI-FP.

Effect – The HIPPI-FP shall respond with a
FPSM_STATUS.Confirm.

X3T9.3 maintenance copy of ANSI X3.210-1992

7

5.6.2 FPSM_STATUS.Confirm

This primitive replies to the previous FPSM_STATUS
.Request with status information.

Semantics – FPSM_STATUS.Confirm (Status)

The Source side Status shall contain, but is not limited
to

Errors
Current state of HIPPI connection
FPSM_STATUS.Indicates Enabled/Disabled

The Destination side Status shall contain, but is not
limited to

Errors
Current state of HIPPI connection
Last CCI Received
Connections Allowed/Disallowed/Rejected
FPSM_STATUS.Indicates Enabled/Disabled

Issued – The HIPPI-FP shall issue this primitive to the
SMT in response to a FPSM_STATUS.Request.

Effect – Unspecified

5.6.3 FPSM_STATUS.Indicate

This primitive informs the SMT entity that a major event has
occurred that affects the operation of the HIPPI-FP.

Semantics – FPSM_STATUS.Indicate

Issued – The HIPPI-FP, when enabled, shall issue this
primitive to the SMT whenever a major event is detected.
Major events include but are not limited to

Detection of an illegal state transition

NOTE – If a FPSM_CONTROL.Request was accepted success-
fully but not completed, then an FPSM_STATUS .Indicate could
be used to indicate completion.

Effect – Unspecified

NOTE – Upon receipt of this primitive the local SMT entity should
issue a FPSM_STATUS.Request to read status and determine
which event occurred.

5.6.4 FPSM_STATUS.Response

This primitive acknowledges the FPSM_STATUS.Indicate.

Semantics – FPSM_STATUS.Response

Issued – The SMT issues this primitive to acknowledge
receipt of the FPSM_STATUS.Indicate.

Effect – The HIPPI-FP, if enabled, is allowed to issue
another FPSM_STATUS.Indicate.

6 HIPPI-PH to HIPPI-FP services

A summary of the primitives used to connect the HIPPI-FP
to the HIPPI-PH is included here. The complete specifica-
tion of the primitives is contained in the HIPPI Mechanical,
Electrical, and Signalling Protocol Specification (HIPPI-PH)
document.

Initiate a Connection
PH_RING.Request (CCI)
PH_RING.Confirm
PH_RING.Indicate (CCI)
PH_RING.Response

Complete the Connection
PH_ANSWER.Request (Accept/Reject)
PH_ANSWER.Confirm
PH_ANSWER.Indicate (Accept/Reject)
PH_ANSWER.Response

Packet Control
PH_PACKET.Request (Begin/End)
PH_PACKET.Confirm (Accept/Reject)
PH_PACKET.Indicate (Begin/End,Status)
PH_PACKET.Response

Burst Transfer
PH_TRANSFER.Request (Length,Burst)
PH_TRANSFER.Confirm (Accept/Reject)
PH_TRANSFER.Indicate (Status,Length,Burst)
PH_TRANSFER.Response

Terminate the Connection
PH_HANGUP.Request
PH_HANGUP.Confirm
PH_HANGUP.Indicate
PH_HANGUP.Response

X3T9.3 maintenance copy of ANSI X3.210-1992

8

7 HIPPI data formats

7.1 Word and byte formats

The data transferred between the HIPPI-PH and the HIPPI-
FP shall be 32-bit or 64-bit words. The words shall consist
of 32 or 64 signals labeled D00 through D31 or D00 through
D63. The size of the words shall match the HIPPI-PH.

NOTE – The HIPPI-PH defined in the HIPPI Mechanical, Electrical
and Signalling Protocol Specification (HIPPI-PH) uses 32-bit words
for the 800 Mbit/s option and 64-bit words for the 1600 Mbit/s
option.

The data transferred between the HIPPI-FP and the ULP
shall be an ordered byte stream. The byte positions within
the HIPPI words, for both the 32-bit and 64-bit HIPPI-PHs,
shall be as shown in table 1. Byte 0 is the first byte in the
ordered byte stream, byte 1 is the second byte, etc.

Table 1 – Byte assignments

Byte Data signals on Data signals on
No. 32-bit HIPPI 64-bit HIPPI

0 D31-D24 D31-D24
1 D23-D16 D23-D16
2 D15-D08 D15-D08
3 D07-D00 D07-D00
4 D31-D24 D63-D56
5 D23-D16 D55-D48
6 D15-D08 D47-D40
7 D07-D00 D39-D32

Figure 7 shows the complete mapping of a 16-byte ordered
byte stream on an 32-bit HIPPI-PH, and the same ordered
byte stream on a 64-bit HIPPI-PH. Byte 0 is the first byte of
the byte stream.

12 13 14 15

(Cable-A)

D00D31

8 9 10 11

4 5 6 7

0 1 2 3 word 0

word 1

word 2

word 3

32-bit
HPPI-PH

64-bit
HPPI-PH

8 9 10 11 12 13 14 15

(Cable-A) (Cable-B)

D63D00 D32 D31

0 1 2 3 4 5 6 7 word 0

word 1

Figure 7 – Ordered byte stream to HIPPI-PH

Within each byte of the interface, the highest numbered
signal shall be the most significant bit of the byte. An
example byte is shown in figure 8.

01234567
2 2 2 2 2 2 2 2

D31 D30 D29 D28 D27 D26 D25 D24

Figure 8 – Bit significance within a byte

7.2 HIPPI-FP packet format

The packet data presented by the Source ULP with a
FP_TRANSFER.Request primitive shall be transferred to the
Destination with an HIPPI-FP header as shown in figure 9.
The image is shown as it would appear on Cable-A of a 32-bit
HIPPI-PH. The most-significant bit of the individual fields
shown in figure 9 is at the left end of the field.

The HIPPI-FP packets shall be composed of three areas,
(1) Header_Area, (2) D1_Area, and (3) D2_Area, each
starting and ending on a 64-bit boundary. If the
D1_Data_Set is used as control information, the
D2_Data_Set is intended as the data associated with that
control information. See B.2 for packet examples.

7.2.1 Header_Area

The Header_Area shall be the first 64 bits of the packet, and
shall be completely contained in the first burst of the
packet.

ULP-id (8 bits) designates the Destination ULP to which the
packet is to be delivered. See 5.4.1.

P = D1_Data_Set_Present (1 bit) = 1 designates that a
D1_Data_Set is present in this packet.

B = Start_D2_on_Burst_Boundary (1 bit) = 0 designates
that the D2_Area starts at or before the beginning of the
second burst of the packet. B = 1 designates that the
D2_Area starts at the beginning of the second HIPPI-PH
burst of the packet.

D1_Area_Size (8 bits) designates the size of the D1_Area,
i.e., the number of 64-bit words between the end of the 64-
bit Header_Area and the start of the D2_Area.

D2_Offset (3 bits) designates the number of Offset bytes
from the start of the D2_Area to the first byte of the
D2_Data_Set.

NOTE – The concatenation of the D1_Area_Size and D2_Offset,
referenced to the end of the header area, points to the first byte of
the D2_Data_Set.

Reserved (11 bits). All of the reserved bits shall be
transmitted as zeros.

D2_Size (32 bits) is the length, in bytes, of the
D2_Data_Set portion of the packet. The D2_Size does not
include the bytes contained in the D2_Offset, or in the Fill
following the D2_Data_Set. A D2_Size of hexadecimal
FFFFFFFF specifies that the D2_Data_Set size is unknown
at the start of the packet transfer. This means that packets

X3T9.3 maintenance copy of ANSI X3.210-1992

9

with an unknown D2_Data_Set size cannot be terminated at
arbitrary byte boundaries, only at 64-bit HIPPI -PH burst
boundaries. A D2_Size of zero (0) specifies that the
D2_Area and the D2_Data_Set do not exist.

7.2.2 D1_Area

The D1_Area shall immediately follow the Header_Area,
shall be completely contained in the first burst, shall contain
an integral number of 64-bit words, and shall contain the
D1_Data_Set (if present).

If present, the D1_Data_Set shall be the first information in
the D1_Area. If the P bit of the Header_Area = 0, then the
D1_Data_Set is not present, and the contents of the
D1_Area may be ignored. The D1_Data_Set is intended for
control information that may be delivered to the Destination
ULP on receipt, without waiting for the arrival of other bursts
of the packet.

The size of the D1_Data_Set shall be self-defining. For
example, the HIPPI-IPI, identified by ULP-id = 00000111,
uses a variable length D1_Data_Set byte string with the
length imbedded in the byte string. The maximum size of
the D1_Data_Set shall be 1016 bytes, i.e., the maximum
size that fits in the first burst of a 32-bit HIPPI-PH.

NOTE – The Source and Destination are not symmetrical. At the
Source, the ULP determines the D1_Data_Set size, but the HIPPI-
FP determines the size of the D1_Area. At the Destination, the
whole D1_Area is passed to the ULP, and the ULP must extract the
D1_Data_Set from the D1_Area. The D1_Data_Set, if present, is
completely contained within the D1_Area. However, the D1_Area
may be larger than the D1_Data_Set, for example, to complete the
first burst of a class 3a packet (see B.2.3). A D1_Area with no
D1_Data_Set, i.e., P = 0, is also permitted.

7.2.3 D2_Area

The D2_Area, if D2_Size is not zero, shall immediately
follow the D1_Area, shall start and end on a 64-bit bound-
ary, and shall contain the D2_Data_Set. If the B bit of the
Header_Area = 1, then the D2_Area shall start at the begin-
ning of the second HIPPI-PH burst.

The Offset is the unused bytes from the start of the
D2_Area to the first byte of the D2_Data_Set.

The D2_Data_Set may range in size from zero to an indeter-
minate number of bytes (see D2_Size in 7.2.1).

Fill is the unused bytes between the end of the
D2_Data_Set and the end of the D2_Area, i.e., the end of
the packet. If a D2_Size of all binary ones is used, then
there is no Fill.

Word 0

Bit 31 071523
| |

ULP-id Reserved D1_Area_SizeP

D2_Size

Byte 0 Byte 1 Byte 2 Byte 3

B
D2_
OffsetHeader

 _Area

D1_Data_Set resides in the D1_Area
Size of D1_Data_Set is self-defining (0 - 1016 bytes)

 Offset (0 - 7 bytes)

D2_Data_Set resides in D2_Area
0 < D2_Size < 4,294,967,294 (4 GBytes - 2)

(The size is indeterminate if D2_Size = FFFFFFFF hex)

Fill (0 - 2047 bytes)

D1_Area

D2_Area

Figure 9 – HIPPI-FP packet format

X3T9.3 maintenance copy of ANSI X3.210-1992

10

Annex A
(informative)

State transitions and pseudo-code

A.1 General

The framing protocol service interface and the HIPPI-PH
service interface are tied together by the state transition
pseudo-code. The flow diagrams are included as a
convenience for the user, the pseudo-code is more
complete.

The state transitions and flow diagrams do not describe the
means or specific implementation by which the functions
are provided. However, other implementations with fewer or
additional states should behave in a manner which is
compatible with peer protocols implemented identical to the
model.

Source states start with the letter S, Destination states with
the letter D. Source states within this document are
numbered 2Jx0 where J = 0 - 4. Destination states within
this document are numbered 2Kx0 where K = 5 - 9. This
numbering scheme is used to avoid confusion between the
Source and Destination states, and between states in this
document and states in the HIPPI-PH physical layer
document.

A.2 State exit

Within a state that is testing for some condition, the
pseudo-code is assumed to loop indefinitely within the state
until some exit condition is met.

In the event that control sequence errors are detected, the
state machine breaks any existing connection and returns
to the disabled state (S2000 or D2500). For the purposes of
reporting errors, control sequence errors take precedence
over data errors.

A.3 Interlocks

The implementer is cautioned that interlock flags or queues
may be necessary to enforce the requirement of 5.1 that a
second .Indicate or .Request primitive may not be issued by
the HIPPI-FP until a .Response or .Confirm primitive of the
same name has been received. These interlocks are not
illustrated in the pseudo-code.

A.4 Source pseudo-code

The Source flow diagram in figure A.1 gives an overview of
the Source pseudo-code.

A.4.1 S2000

Disabled state; initialize the HIPPI-FP. Enter on Power-up,
system master reset, or illegal state transition.

Initialize
Issue PH_HANGUP.Request
Set Connection_Present = false
Goto S2010

A.4.2 S2010

Wait for any connections to be broken. Time T1, specified
in the HIPPI-PH document, is the round-trip propagation
delay plus action time.

IF time T1 timeout
THEN Goto S2020

A.4.3 S2020

Idle; wait for a transfer request from the ULP.
IF PH_HANGUP.Indicate

THEN Issue PH_HANGUP.Response
Set Connection_Present = false

IF FP_TRANSFER.Request
THEN Goto S2030

A.4.4 S2030

Build the FP header based on the parameters in the
FP_TRANSFER.Request primitive, and form up bursts for
transmission.

Set D2_Size and D2_Offset as appropriate
Maintain_Connection = Keep_Connection
IF D1_Size not = 0

THEN D1_Data_Set_Present = true
Put D1_Data_Set in first burst

ELSE D1_Data_Set_Present = false
Set D1_Area_Size = n

(where D1_Size ≤ n ≤ Max_Burst_Size - 8)
IF Start_D2_on_Burst_Boundary = true

THEN the D2_Data_Set starts in second burst
ELSE the D2_Data_Set can start in first burst

Form up bursts for transmission
Goto S2040

X3T9.3 maintenance copy of ANSI X3.210-1992

11

S2000

Power-up or
system master reset

S2050

S2070

S2020

Idle, wait for
transfer request

S2040

Check connection,
may break connection

S2080

Send the packet as
one or more bursts

S2010

Allow time for
connection to break

S2030

Build FP header,
form up bursts

S2060

Connection complete,
mark the packet start

S2100

Mark the packet end,
may break connection

Check results of the
connection request

Wait for connection to
break, request a new one

S2110

Wait for connection
to break

S2090

Wait for physical to
accept the burst

Figure A.1 – Source flow diagram

A.4.5 S2040

Check the connection. If no connection exists, then initiate
a connection sequence. If a connection already exists to
this Destination, then omit the connection sequence and go
on to the data transfer. If a connection to a different
Destination exists, then break that connection and initiate a
connection sequence to the new Destination.

IF Connection_Present = false
THEN Issue PH_RING.Request (CCI)

Goto S2060
IF PH_HANGUP.Indicate

THEN Issue PH_HANGUP.Response
Set Connection_Present = false
Issue PH_RING.Request (CCI)
Goto S2060

IF CCI = Old_CCI
THEN Goto S2070

Issue PH_HANGUP.Request
Goto S2050

NOTE – Breaking the connection and state S2050 are optional
when using the HIPPI with non-switched dedicated interfaces.

A.4.6 S2050

Wait for the original connection to be broken before
requesting a new connection to this Destination.

IF PH_HANGUP.Indicate
THEN Issue PH_HANGUP.Response

Set Connection_Present = false
Issue PH_RING.Request (CCI)
Goto S2060

A.4.7 S2060

Wait for the Destination to respond to the connection
request. Time T2 is the maximum time to wait for a
connection to be completed and is used to avoid hanging
the HIPPI-FP. No assumptions are made as to where or how
timer T2 is implemented. It could be done in the Source
HIPPI-FP or the ULP, with hardware, software or a mix of the
two. The suggested default value of T2 is 10 seconds.

IF PH_ANSWER.Indicate (Accept)
THEN Set Connection_Present = true

Set Old_CCI = CCI
Goto S2070

IF PH_ANSWER.Indicate (Reject)
THEN Issue FP_TRANSFER.Confirm (Reject)

Goto S2020
IF time T2 timeout

THEN Issue FP_TRANSFER.Confirm (Timeout)
Issue PH_HANGUP.Request
Goto S2010

A.4.8 S2070

A connection now exists; send the packet. Mark the
beginning of the packet and inform the ULP that the transfer
request has been accepted.

Issue FP_TRANSFER.Confirm (Accept)
Issue PH_PACKET.Request (Begin)
Goto S2080

NOTE – The FP_TRANSFER.Confirm is shown being issued
before the packet is sent to the Destination. An implementation
may optionally move this primitive so that the
FP_TRANSFER.Confirm occurs after the packet has been sent.

X3T9.3 maintenance copy of ANSI X3.210-1992

12

A.4.9 S2080

Transfer a burst of the packet. If the ULP is delivering data
to the HIPPI-FP in segments, make sure that a complete
burst of data is available before issuing the
PH_TRANSFER.Request primitive.

IF PH_HANGUP.Indicate
THEN Issue PH_HANGUP.Response

Set Connection_Present = false
Goto S2020

ELSE Issue PH_TRANSFER.Request (Length,Burst)
Decrement burst count
Goto 2090

A.4.10 S2090

Wait for the HIPPI-PH to accept the burst, or for the
Destination to break the connection. If all of the bursts
have not been transmitted, then go back to transmit another
burst.

IF PH_HANGUP.Indicate
THEN Issue PH_HANGUP.Response

Set Connection_Present = false
Goto S2020

IF PH_TRANSFER.Confirm
THEN IF all bursts have been transmitted

THEN Goto S2100
ELSE Goto S2080

A.4.11 S2100

All of the bursts have been transmitted, mark the end of the
packet. The connection is broken at the completion of the
packet unless Keep_Connection was specified in the
FP_TRANSFER.Request.

Issue PH_PACKET.Request (End)
IF Maintain_Connection = true

THEN Goto S2020
Issue PH_HANGUP.Request
Goto S2110

A.4.12 S2110

Wait for the connection to be broken.
IF PH_HANGUP.Indicate

THEN Issue PH_HANGUP.Response
Set Connection_Present = false
Goto S2020

A.5 Destination pseudo-code

The Destination flow diagram in figure A.2 gives an overview
of the Destination pseudo-code.

A.5.1 D2500

Disabled state; initialize the HIPPI-FP and break any
connections that may exist. Enter on Power-up, system
master reset, or illegal state transition.

Initialize
Issue PH_HANGUP.Request
Goto D2510

A.5.2 D2510

Wait for the hangup to complete or time T1 to expire. Time
T1, specified in the HIPPI-PH document, is the round-trip
propagation delay plus action time.

IF PH_HANGUP.Indicate
THEN Issue PH_HANGUP.Response

Goto D2520
IF time T1 timeout

THEN Goto D2520

A.5.3 D2520

Idle; wait for a connection request from the Source HIPPI.
Save the CCI for later FP_TRANSFER.Indicate primitives.

IF PH_RING.Indicate (CCI)
THEN Issue PH_RING.Response

CCI_Received = CCI
Goto D2530

A.5.4 D2530

Accept or reject the connection request from the Source.
IF Connection_Enable = Disallow

THEN Goto D2540
IF Connection_Enable = Reject

THEN Goto D2550
IF CCI_Received = Unknown or illegal

THEN Goto D2550
Issue PH_ANSWER.Request (Accept)
Goto D2560

A.5.5 D2540

Connections are disallowed, wait for the Source to abort
this connection request.

IF PH_HANGUP.Indicate
THEN Issue PH_HANGUP.Response

Goto D2520

A.5.6 D2550

The connection is being rejected.
Issue PH_ANSWER.Request (Reject)
Goto D2520

A.5.7 D2560

A connection is established. Wait for the start of a packet
or a disconnect.

Set Packet_Error = false
Set First_Burst_Error = false
IF PH_PACKET.Indicate (Begin)

THEN Issue PH_PACKET.Response
Goto D2570

IF PH_HANGUP.Indicate
THEN Issue PH_HANGUP.Response

Goto D2520

A.5.8 D2570

A packet has been started. Wait for the first burst.
IF PH_TRANSFER.Indicate

THEN Goto D2580
IF PH_HANGUP.Indicate

THEN Issue PH_HANGUP.Response
Goto D2520

X3T9.3 maintenance copy of ANSI X3.210-1992

13

D2500

Power-up or
system master reset

D2550

Reject the connection
request

D2570

D2520

Idle, wait for a
connection request

D2530

Accept or reject
the connection request

D2560

Connection OK, wait for
a packet or disconnect

D2610

End of packet received

D2580

Process first burst

D2540

Connection disallowed,
wait for a disconnect

D2590

Wait for another burst,
or end of packet

D2600

Process another burst
Start of packet received,
wait for first burst

D2510

Wait for connection
to break

Figure A.2 – Destination flow diagram

A.5.9 D2580

The first burst has just been received. If there are errors in
the first burst, then record it. Extract the FP header
parameters, and if a D1_Data_Set is present then pass the
D1_Area to the ULP. The actual size of the D1_Data_Set is
defined or implied within the D1_Area.

Issue PH_TRANSFER.Response
IF PH_TRANSFER.Indicate (Status) = Error

THEN Set First_Burst_Error = true
Copy values from FP header

ULP-id = header.ULP-id
D2_Size = header.D2_Size
D2_Offset = header.D2_Offset

IF Header.D1_Data_Set_Present = true (i.e., P bit)
THEN Status = PH_TRANSFER.Indicate (Status)

Issue FP_TRANSFER_D1.Indicate (ULP-id,
CCI_Received, Status, D2_Size,
 D2_Offset, D1_Area_Size,
D1_Area)

Goto D2590
ELSE Assemble burst into buffer

Goto D2590

NOTE – There are cases where delivery of the packet, even with
errors, is highly desirable; but the ULP should treat first burst errors
with extreme caution. A first burst error could be in the FP header,
e.g., any of the ULP-id, D1_Data_Set_Present, D1_Area_Size,
D2_Offset, D2_Size, or Start_D2_on_Burst_Boundary, fields may
be incorrect.

A.5.10 D2590

Wait for more bursts for this packet, or an end of packet
indication.

IF PH_TRANSFER.Indicate
THEN Goto D2600

IF PH_PACKET.Indicate (End)
THEN Goto D2610

IF PH_HANGUP.Indicate
THEN Issue PH_HANGUP.Response

Goto D2520

A.5.11 D2600

Another burst has been received. Packet_Error indicates
an error in other than the first burst of a packet.

Issue PH_TRANSFER.Response
IF PH_TRANSFER.Indicate (Status) = Error

THEN Set Packet_Error = true
Assemble burst into buffer
Goto D2590

A.5.12 D2610

The end of packet indication has been received. If the
D2_Data_Set is present, then pass the D2_Data_Set to the
ULP.

IF D2_Size not equal 0
THEN Status = First_Burst_Error, Packet_Error

Issue FP_TRANSFER_D2.Indicate (ULP-id,
CCI_Received, Status, D2_Size,
D2_Offset, D2_Data_Set)

Issue PH_PACKET.Response
Goto D2560

X3T9.3 maintenance copy of ANSI X3.210-1992

14

Annex B
(informative)

Implementation observations

B.1 Data transfer service primitive

The data transfer service primitive as defined in 5.4
assumes that the Source ULP knows the packet size. This
may not always be the case. The primitives are an abstrac-
tion intended to clarify the operation of HIPPI-FP, they do
not represent an implementation.

For example, the HIPPI-FP header D2_Size field has the
option of denoting a packet of indefinite size by using the
hexadecimal value of FFFFFFFF. This may be useful for
transferring such things as pictures, where the interface is
started and left running with one packet supplying many
frames of picture data. Another example is transferring
data from a magnetic tape of unknown format.

In these cases, the Source ULP may not know the complete
size when it starts, and the Destination ULP does not care
about the size. The Source would need some way to keep
feeding data to the interface, and then signalling the end
when complete. The Destination ULP would also probably
accept the data in smaller portions, and not worry about
receiving the end of packet before processing the data.

B.2 Classes of packets

Packets can be organized in a variety of ways to take best
advantage of the hardware, firmware, and software imple-
mentations used, and the applications being supported.
The HIPPI-PH define the different classes. This HIPPI-FP
document supports all of the classes. Particular
implementations may operate more efficiently with some
classes than with others.

The abbreviations used in the figures are:
H = FP header (8 bytes)
D1_A = D1_Area (contains D1_Data_Set, if present)
(O) = 0 - 7 optional Offset bytes
D2_D = D2_Data_Set
(F) = Optional Fill

The D1_Area contains the D1_Data_Set, if present, and
may contain additional pad bytes to fill out to the end of the
D1_Area. It is assumed that the D1_Data_Set contains
control information that is associated with the information in
the D2_Data_Set.

The optional Offset bytes are used to start the
D2_Data_Set at other than a 64-bit boundary. It is assumed
that the D2_Data_Set contains user data.

The optional Fill bytes are used to pad out the D2_Data_Set
to the end of a physical burst.

A full burst is either 1 Kbytes with the 32-bit HIPPI-PH, or 2
Kbytes with the 64-bit HIPPI-PH option.

B.2.1 Class 1 – Single short burst

Figure B.1 illustrates class 1 transfers, in which a packet is
composed of a single short burst, minimizing the number of
CLOCK periods required to transfer data.

H

H D1_A

H D1_A (O) D2_D (F)

H (O) D2_D (F)

Class 1a

Class 1b

Class 1c

Class 1d

Figure B.1 – Class 1, single short burst

Class 1a shows only the FP header being transmitted. This
may be useful for diagnostic or HIPPI-FP to HIPPI-FP
communications.

Class 1b includes just the D1_Area, and is useful for
passing short messages. Here the information is less than
1016 bytes, starts immediately after the FP header, and the
information length is implied or self-defining.

Class 1c includes both the D1_Area and D2_Data_Set.
Optional Offset and Fill bytes may be use to start and
terminate the D2_Data_Set at other than 64-bit boundaries.

Class 1d is also useful for passing short messages. Here
the information is whatever will fit in the first burst, e.g., less
than 2040 bytes on a 1600 Mbit/s HIPPI. It may use the
optional Offset and Fill bytes to start and end at other than
64-bit boundaries. The information length is defined in the
FP header.

X3T9.3 maintenance copy of ANSI X3.210-1992

15

B.2.2 Class 2 – short burst with full burst(s)

Figure B.2 illustrates class 2 transfers, in which packets are
composed of a short first burst followed by one or more full
bursts.

H

Class 2a (O) D2_D

 D2_D (F)

H D1_A

Class 2b (O) D2_D

 D2_D (F)

Figure B.2 – Class 2, short burst with full
burst(s)

Class 2a is useful for separating the FP header from the
user data in the D2_Data_Set. Here the D2_Data_Set is
easy to separate since it starts in the second burst.

Class 2b shows the inclusion of the D1_Area for containing
control information associated with the user data starting in
the second burst.

B.2.3 Class 3 – full burst(s) with short burst

Figure B.3 illustrates class 3 transfers, in which packets
are composed of one or more full bursts followed by a short
burst as the last burst.

Class 3a

 (O) D2_D

H D1_A

D2_D (F)

Class 3b

 D2_D

H D1_A (O) D2_D

D2_D (F)

Class 3c

 D2_D

H (O) D2_D

D2_D (F)

Figure B.3 – Class 3, full burst(s) with short
burst

Class 3a is useful for separating the control information
(contained in the D1_Area) from the D2_Data_Set user
data, and for transmitting a D2_Data_Set that does not fill
an integral number of bursts.

Class 3b includes both the D1_Area and the first portion of
the D2_Data_Set within the first burst.

Class 3c omits the D1_Area and starts the D2_Data_Set in
the first burst.

B.2.4 Class 4 – full burst(s)

Figure B.4 illustrates class 4 transfers, in which packets are
composed of one or more full bursts and no short bursts.
Class 4 may be well suited to connections where the
Destination operates most efficiently with full bursts.

Class 4a

 (O) D2_D

H D1_A

D2_D (F)

Class 4b

 D2_D

H D1_A (O) D2_D

D2_D (F)

Class 4c

 D2_D

H (O) D2_D

D2_D (F)

Figure B.4 – Class 4, full burst(s)

Class 4a shows starting the D2_Data_Set in the second
burst for ease of separation, and putting the D1_Area in the
first burst (even if the D1_Data_Set control information
does not completely fill the first burst).

Class 4b includes both the D1_Area control information and
the start of the D2_Data_Set user data within the first burst.
This may be useful if the D2_Data_Set does not completely
fill an integral number of bursts.

Class 4c omits the D1_Area entirely, and starts the
D2_Data_Set in the first full burst.

X3T9.3 maintenance copy of ANSI X3.210-1992

16

Annex C
(informative)

Bibliography

The following documents are upper-layer protocols of
HIPPI-FP and are assigned ULP identifiers in 5.4.1:

ANSI X3.218-1993, Information systems, High-
performance parallel interface - Encapsulation of ISO
8802-2 (IEEE Std 802.2) logical link control protocol data
units (HIPPI-LE).1)

ANSI X3.xxx-199x, Information systems, High-
performance parallel interface - Mapping of fibre channel
signalling protocol (HIPPI-FC).2)

ANSI/ISO 9318-3-1990, Information technology,
Intelligent peripheral interface - Part 3: Device generic
command set for magnetic and optical disk drives (IPI-3
Disk).3)

ANSI/ISO 9318-4-1990, Information technology,
Intelligent peripheral interface - Part 4: Device generic
command set for magnetic tape drives (IPI-3 Tape).4)

1) Uses ULP-id = ISO 8802.2 Link Encapsulation.
2) Uses ULP-id = HIPPI-FC, which provides HIPPI physical layer transport for Fibre Channel upper level, FC-4, protocols.
3) A revision to this standard uses ULP-id's = IPI-3 Slave, IPI-3 Master, and IPI-3 Peer.
4) A revision to this standard uses ULP-id's = IPI-3 Slave, IPI-3 Master, and IPI-3 Peer

X3T9.3 maintenance copy of ANSI X3.210-1992

17

Alphabetical index

B bit.................................. 7.2.1, 7.2.3
Bit ordering........................ 7.1
Burst................................ 3.1.1, 4

receiving first burst.......... A.5.9
receiving other bursts....... A.5.10, A.5.11
sending......................... 7.2.2, A.4.4, A.4.9, A.4.10
short burst..................... 3.1.1, 4, 5.4.2, B.2
Start_D2_on_Burst_........ 5.3, 5.4.2, 7.2.1, A.4.4,
 Boundary A.5.9

Byte................................. 3.1.2, 4, 7.1

CCI................................... 3.1.4, 5.3, 5.4.2, 5.4.4,
A.4.5, A.4.6, A.4.7, A.5.3

CCI_Received................. 5.6.2, A.5.3, A.5.4, A.5.9,
A.5.12

Old_CCI......................... A.4.5, A.4.7
Characteristics................... Introduction
Classes of packets.............. B.2
Connection........................ 3.1.3, 4

abort............................. A.5.5
accept........................... A.4.7, A.5.4
allow............................. 5.5.1, 5.6.2
break............................ 5.4.2, 5.5.1, A.2, A.4.2,

A.4.5, A.4.6
disallow......................... 5.5.1, 5.6.2, A.5.4, A.5.5
make............................. 5.4.2, A.4.5, A.4.6
reject............................ 5.5.1, 5.6.2, A.4.7, A.5.4,

A.5.6
Connection_Enable.......... 5.5.1, A.5.4
Connection_Present........ A.4.1, A.4.3, A.4.5, A.4.6,

A.4.7, A.4.9, A.4.10, A.4.12
Keep_Connection............ 5.3, 5.4.2, A.4.4, A.4.11
Maintain_Connection........ A.4.4, A.4.11

Control primitives................ 5.5

D1_Area............................ 5.4.4, 7.2, 7.2.2, 7.2.3,
A.5.9, B.2, B.2.1, B.2.2,
B.2.3, B.2.4

D1_Area_Size.................... 5.3, 5.4.4, 7.2.1, A.4.4, A.5.9
D1_Data_Set...................... 5.3, 5.4.2, 5.4.4, 5.4.5, 7.2.1,

7.2.2, 7.2.3, A.4.4, A.5.9,
B.2, B.2.4

D1_Data_Set_Present......... 5.4.2, 7.2.1, A.4.4, A.5.9
D1_Size............................ 5.3, 5.4.2, A.4.4
D2_Area............................ 5.4.2, 7.2, 7.2.1, 7.2.3
D2_Data_Set...................... 5.3, 5.4.2, 5.4.4, 5.4.5, 7.2.1,

7.2.3, A.4.4, A.5.12, B.2,
B.2.1, B.2.2, B.2.3, B.2.4

D2_Offset.......................... 5.3, 5.4.4, 7.2.1, A.4.4,
A.5.9, A.5.12

D2_Size............................ 5.3, 5.4.2, 5.4.4, 7.2.1, 7.2.3,
A.4.4, A.5.9, A.5.12

Data transfer primitives........ 5.4
receiving at Destination.... 5.4.4, A.5.8, A.5.9, A.5.10,

A.5.11
sending from Source........ 5.4.2, A.4.3, A.4.4

Disabled state.................... A.2, A.4.1, A.5.1

Errors............................... Introduction, 1, 5.4.4, 5.6.2,
A.2, A.5.9

detection mechanisms..... 4.2
First_Burst_Error............ A.5.7, A.5.9, A.5.12
limitations...................... 4.3
Packet_Error................. A.5.7, A.5.11, A.5.12
sequence errors............. 5.6.3, A.2, A.4.1, A.5.1

Fill................................... 7.2.1, 7.2.3, B.2, B.2.1
Format.............................. 4

bit................................ 7.1
byte............................. 7.1
header.......................... 7.2
word............................. 7.1

Header............................. 7.2, A.4.4

Idle state.......................... A.4.3, A.5.2

Master reset...................... A.4.1, A.5.1

Offset.............................. 7.2.1, 7.2.3, B.2, B.2.1

P bit................................. 7.2.1, 7.2.2, A.5.9
Packet............................. 3.1.7, 4, 7.2

begin............................ A.4.8, A.5.7, A.5.8
classes of packets.......... B.2
end.............................. 7.2, 7.2.1, 7.2.3, A.4.11,

A.5.10, A.5.12
indefinite size................. 5.4.2, 5.4.4, 7.2.1, B.1

Primitives.......................... 5.1
cancel.......................... 5.5.1
from HIPPI-PH................ 6
interlocks...................... 5.1, 5.2, A.3

Reserved.......................... 7.2.1

Segment........................... 5.4.2, A.4.9
Short burst........................ 3.1.1, 4, 5.4.2, B.2
Simplex............................ Introduction, 4
SMT................................. 3.1.11, 5, 5.2, 5.5.1, 5.5.2,

5.6.1, 5.6.2, 5.6.3, 5.6.4
State notation.................... A.1

state exit....................... A.2
Status primitives................ 5.6

Timeouts........................... 5.4.3, A.4.2, A.4.7, A.5.2

ULP................................. 3.1.12, 3.1.13
ULP-id.......................... 5.3, 5.4.1, 5.4.2, 5.4.4, 7.2.1,

7.2.2, A.5.9, A.5.12

Word................................ 3.1.1, 3.1.2, 3.1.14, 4, 5.4.4,
7.1, 7.2.1, 7.2.2

