
National HPC Facilities at EPCC
Exploiting Massively Parallel Architectures for

Scientific Simulation

Dr Andy Turner, EPCC

a.turner@epcc.ed.ac.uk

Outline

• HPC architecture state of play and trends

• National Services in Edinburgh:

• HECToR

• ARCHER

• DiRAC Bluegene/Q

• HPC Software Challenges

• Final Thoughts

What is EPCC?

• A leading European centre of novel and high-performance

computing expertise based at the University of Edinburgh

• Formed in 1990 and involved in:

• Research

• Collaboration

• Training

• Service provision

• Technology transfer

• Around 70 staff

• Provide national services on behalf of RCUK

Concurrent Programming and HPC

HPC Architectures

State of play and trends

HPC == Parallel Computing

• Scientific simulation and modelling drive the need for

greater computing power.

• Single systems can not be made that had enough

resource for the simulations needed.

• Making faster single chip is difficult due to both physical limitations

and cost.

• Adding more memory to single chip is expensive and leads to

complexity.

• Solution: parallel computing – divide up the work among

numerous linked systems.

Processors
• Not many HPC processors any more

• Use components designed for server and games industries

• Exceptions: IBM Power, IBM BlueGene

• Trends:

• More concurrency – higher core counts per socket

• Longer SIMD – vector-like instructions

• Gating – to reduce power usage

• Stabilisation of clock speeds – no increase but the downwards trend

has slowed (at least for multicore processors)

• Splitting into a number of classes

• Complex multicore (2-3 GHz, Intel Xeon, IBM Power, AMD Opeteron)

• Simpler manycore (1-2 GHz, Intel Xeon Phi IBM BG)

• Heterogeneous processing (AMD Fusion, NVIDIA Denver)

Accelerators

• NVIDIA GPGPU and Intel Xeon Phi
• Even more FP SIMD capability than CPUs

• Simplified memory architectures (no NUMA, limited cache)

• Simplified logic – limited support for branching, etc.

• Usually linked to CPU via PCI express
• Separate memory spaces – makes it difficult to get high

performance

• Some systems support socket-mounting of accelerators
• Move from multi-core to many-core

• Trend for convergence of CPU and accelerator
technologies

Memory

• Amount of memory per processing element is generally

reducing

• Memory is expensive both in terms of cost and power

• Often in a NUMA setup which can cause difficulties in extracting

best performance

• Trends:

• Memory performance is increasing: reduction in latency, increase in

bandwidth…

• …but not as quickly as increases in concurrency

• Accelerators are leading to a simplification of memory architecture

but adding more constraints on realising performance

IO

• Local disk is being abandoned in favour of global, parallel

filesystems

• Often designed for high performance writing of a small

number of large files – other modes do not give best

performance

• Trend is to larger parallel filesystems with more aggregate

bandwidth

• Moving data is now one of the most expensive operations

• Lot of interest in mobile compute – bring the compute to the data

• HPC systems must be collocated with long-term data storage

Interconnects

• Various interconnect technologies are converging on

common hardware performance

• Not much difference between commodity (Infiniband) and

proprietary (Cray, IBM) hardware

• Differences now come in the topologies, software stack, and

support for alternative parallel models

• Trends:

• Moving network interfaces directly on to silicon

• Using spare cores, hardware threads to support/control

communications (core specialisation)

National Services in Edinburgh

HECToR

Modelling dinosaur gaits
Dr Bill Sellers, University of Manchester

Fractal-based models of turbulent flows
Christos Vassilicos & Sylvain Laizet,

Imperial College

Dye-sensitised solar cells
F. Schiffmann and J. VandeVondele
University of Zurich

HECToR Applications

Chemistry/Mat
erials Science

53%

Earth
Science/Climat

e
11%

Physics
2%

Engineering
6%

Other/Unknow
n

28%

% CPU Time

MPI
61%

MPI+OpenMP
21%

OpenMP
4%

MPI+Threads
2%

Other/None
12%

% Applications

HECToR Changes

Phase 1

(‘07-’09)

Phase 2a

(‘09-’10)

Phase 2b

(‘10-’11)

Phase 3

(‘11-now)

Cabinets 60 60 20 30

Cores 11,328 22,656 44,544 90,112

Clock Speed 2.8 GHz 2.3 GHz 2.1 GHz 2.3 GHz

Cores/Node 2 4 24 32

Memory/Node 6 GB

(3 GB/core)

8 GB

(2 GB/core)

32 GB

(1.3 GB/core)

32 GB

(1 GB/core)

Interconnect 6 μs

2 GB/s

6 μs

2 GB/s

1 μs

5 GB/s

1 μs

5 GB/s

HECToR Jobs

0 5 10 15 20 25

32
64

128
256
512

1024
2048
4096
8192

16384
32768
65536

% CPU Hours Used

C
o

re
s

Phase 3

Phase 2b

Phase 2a

% Total CPU Hours

Example: CP2K Development

J. VandeVondele, ETHZ

DiRAC BlueGene/Q

BlueGene/Q: Co-design
• 18 core, 1.6 GHz BGQ Chip, quad DP SIMD instructions,

4 hardware threads per core

• Low-latency, high-bandwidth interconnect: 5D torus

• Designed in collaboration with Quantum Chromodynamics

researchers

• Runs QCD applications extremely well…

• …but it can be difficult to get good performance for other

applications

• Non-commodity processors actually cause a problem

here:

• Compilers are not as well developed and key to getting

performance is being able to generate SIMD instructions

HPC Software Development

Challenges for now and the future

Exposing Parallelism

• To be able to exploit modern HPC systems you need to

be able to expose all levels of parallelism in your code:

• SIMD/vector Instructions

• Multicore (shared-memory)

• Distributed memory

• Data decomposition over distributed memory is the really

hard part

• Compilers do a good job of exploiting SIMD instructions and shared

memory

• Very hard for compilers to do the high-level analysis required so

this is done by hand

Parallel Programming Models

• MPI is still dominant model

• Performance is not ideal but it is very flexible – almost any

combination of task and/or data parallelism can be implemented

• Very portable – it is well supported on all HPC machines

• Hybrid MPI+OpenMP has proven to be a useful model to

get performance but introduces a lot of complexity

• Which thread passes messages?

• Process/thread placement becomes very important

• Trends:

• Domain-specific languages

• Autotuning

• Single-sided communications

Legacy Code

• Some HPC codes are older than me - there is a lot of time

and expertise invested.

• Should these be rewritten from scratch?

• Can we improve the fundamental dependencies (e.g. MPI, PETSc,

ScaLAPACK) to allow them to scale on modern/future

architectures?

• How can you encourage communities to migrate to new codes?

• The parallel programming model and decomposition is

often implicitly assumed throughout the code

• Difficult to refactor or add additional levels of parallelism

• Much effort spent in new parallel models but single

biggest gain would be MPI improvement

Other Issues

• Memory Efficiency:

• Amount of memory per core is decreasing but often want to run

more complex simulations

• Need to use multithreading to increase memory available without

wasting compute resources

• Accelerators:

• Still need hand-crafted code to exploit them efficiently

• How can we make these resources generally useful

• Parallel IO:

• 10,000 processes reading/writing at once?

• How can you checkpoint PB of data?

Final Thoughts

2013 2017 2020

System Perf. 34 PFlops 100-200 PFlops 1 EFlops

Memory 1 PB 5 PB 10 PB

Node Perf. 200 GFlops 400 GFlops 1-10 TFlops

Concurrency 64 O(300) O(1000)

Interconnect BW 40 GB/s 100 GB/s 200-400 GB/s

Nodes 100,000 500,000 O(Million)

I/O 2 TB/s 10 TB/s 20 TB/s

MTTI Days Days O(1 Day)

Power 20 MW 20 MW 20 MW

What will future systems look like?

Summary

• Advances in hardware are outstripping ability of software

to keep up

• Hardware currently talking about exascale…

• …struggling to get most codes to tera-/peta-scale

• All about parallelism

• High level parallelism is still constructed by hand. Efforts to expose

this to the compiler underway.

• Need to be memory efficient

• Think carefully about data distribution

• Is legacy code working or do you need to start over?

Any questions?

a.turner@epcc.ed.ac.uk

