All of Peter Welch’s senders get \texttt{xchan-ready} (true) when the connection with the receiver was committed. After \texttt{xchan-ready} (true) the sender must send, and this is the only place to send. This algorithm also fully implements the original XCHAN semantics. We could call this the «\textit{preconfirmed}» solution.

The original XCHAN paper may start sending any time, but if sending fails then the \texttt{xchan-ready} is signalled when the connection with the receiver is fully committed. So, this «\textit{classic}» solution only uses \texttt{xchan-ready} to send after an initial failure.

\textit{(*)} The model was presented at the \textit{fringe} at CPA-2103 (the year after)

\textbf{An occam Model of XCHANs}
Peter H. WELCH (a) and Øyvind TEIG (b)
(a) School of Computing, University of Kent, UK
(b) Autronica Fire and Security AS, Trondheim, Norway
See http://wotug.org/cpa2013/programme.shtml#paper63
Attempt to model in CSPm with FDR2

- A model of this has been (attempted) to be developed in CSPm, verified with FDR2
- It also models the **preconfirmed** solution
- Since the **classic** solution probably also includes modeling the scheduler as well as the internal synchronization of the ALT. Much more complicated
- Did not succeed with simulating PRI ALT in CSPm, but Thomas Gibson-Robinson and Michael Goldsmith today told that «prioritise(..)>> will do it

(*) Lecture NTNU
“Becoming textual: attempting to model ‘XCHAN’ with CSPm”
“Using FDR2 and ProBE tools when state-ing is not enough”

Presented in a blog note at http://www.teigfam.net/oyvind/home/technology/063-lecture-ntnu/
Read presentation at http://www.teigfam.net/oyvind/blog_notes/063/Teig_at_NTNU_2013_08.pdf
«Feathering» (tomorrow)

- I think can only be done with the classic XCHAN solution