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Abstract. In this paper the performance gain obtained by combining parallel peri-
odic real-time processes is elaborated. In certain single-core mono-processor config-
urations, for example embedded control systems in robotics comprising many short
processes, process context switches may consume a considerable amount of the avail-
able processing power. For this reason it can be advantageous to combine processes,
to reduce the number of context switches and thereby increase the performance of the
application. As we consider robotic applications only, often consisting of processes
with identical periods, release times and deadlines, we restrict these configurations
to periodic real-time processes executing on a single-core mono-processor. By graph
theoretical concepts and means, we provide necessary and sufficient conditions so that
the number of context switches can be reduced by combining synchronising processes.
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Introduction

In certain single-core mono-processor configurations, for example embedded control sys-
tems in robotics comprising many short processes, process context switches may consume a
considerable amount of the available processing power.

Li et al. [1] show, that the average cost of a context switch varies from 3.8 µs to over
1 ms. Veldhuizen [2] shows that the cost of a context switch is on average 7.7 µs. Clearly
these figures depend on the hardware and software being used3. To what extent a system is
suffering from context switches depends roughly on the ratio between the context switch and
the process action; the higher the time consumption of an action, the less relevant the time
consumption of the context switch.

As we are considering systems with many short processes, it can be advantageous to
combine processes, in order to reduce the number of context switches, thereby increasing the
performance of the application. In this paper we restrict these configurations to robotic appli-

1Corresponding Author: Ton Boode, Robotics and Mechatronics, Faculty EEMCS, University of Twente, P.O.
Box 217 7500 AE Enschede, The Netherlands. E-mail: A.H.Boode@utwente.nl.

2funded by InHolland University of Applied Sciences, Alkmaar, The Netherlands
3occam-π context switch overheads, under the KRoC CCSP multicore scheduler [3], are of the order of 100

nanoseconds.
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cations. We consider periodic real-time processes executing on a single-core mono-processor,
because robotic applications (like embedded control systems) often consist of processes with
identical periods, release times and deadlines. The processes typically have a period of 1
ms. This observation makes it reasonable to assume that the release time, the periods and
the deadlines for the constituent processes of the application are the same. As we consider
periodic real-time processes, for every process activity (i.e. action), there must be an upper
bound for which the action has finished executing; otherwise one cannot guarantee the time-
liness of the process. As an example, consider 100 very short processes, containing in av-
erage 3 actions, running at 1 KHz, so a period of 1 ms. Using the minimum context switch
time consumption given by Li [1], the 300 context switches will need more than the available
processing time in one period.

When looking at programs, we distinguish between the specification level and the ex-
ecution level. On the one hand, there is the specification of a set of parallel processes (for
example, in CSP [4]); on the other hand, there is the execution of processes representing the
specification, on a computer system, running under an operating system.

On specification level, a process defines a series of actions. Processes sharing the same
action can only perform this action if all processes sharing this action are ready to perform
this action; this is atomic and performed as one action.

On execution level, as soon as a process has to synchronise with another process4, a
context switch has to be executed, to let the execution be continued by that other process.
Such a context switch consumes time. One can reduce the number of these synchronisation
related context switches by combining communicating processes.

At specification level, a set of parallel real-time processes can be represented by a graph
consisting of several components. A single process is represented by one component, which
is a finite labelled weighted directed multi-graph5, consisting of vertices, arcs between pairs
of vertices and labels associated with the arcs. A label is a string representing the (name
of an) action and a number representing the worst-case execution time of the action. With
each name exactly one worst-case execution time value is associated. Our interpretation of a
component, representing a process, is that the vertices represent states and the arcs together
with their labels represent the actions that are necessary to move from one state to another.
Components have different arc sets, but some of their arcs may have the same labels, meaning
that they represent the same action.

The execution of a process is, from a graph-theoretical point of view, represented by a
series of arcs: a path through the graph. In process terms this is called a trace. Such a path
has a length, which is the summation over the worst-case execution time values of the labels
associated with the arcs in the path. Our goal is to reduce the worst-case execution time
of the set of parallel processes, which is represented by the summation over the maximum
path length of each graph, by combining synchronising processes. In graph-theoretical terms
this leads to combining graphs, using notions like the Cartesian product of graphs and the
synchronised product of graphs.

Via a design methodology, a process specification has to be transformed into a program.
We insert into this transformation three steps, of which this paper describes the second one.
Firstly, we transform the process specification into a set of graphs, secondly, where possible
and meaningful (in terms of performance gain), we take synchronised products of subsets of
the set of graphs, and thirdly, this set of synchronised products is transformed into a process
specification.

4To synchronise actions, both processes have to do extra work and at least one of them will have to yield the
processor (assuming single-core execution), causing a context switch.

5These graphs are (slightly) more general than labelled transition systems in that they may have more than
one starting and finishing points (used in intermediate stages of the graph transformations described later).
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The paper is organised as follows. Before we specify the model that we use to analyse the
performance of periodic real-time processes, we introduce the necessary graph-theoretic and
process algebra terminology in Section 1. In Section 2, we introduce periodic real-time pro-
cesses as finite labelled weighted directed acyclic multi-graphs, and we present an overview
of synchronised products. In Section 3, we discuss the transformation of a set of graphs to its
Cartesian product, where we show that the longest path length for a set of graphs is identi-
cal to the longest path length of the Cartesian product of this set of graphs. In Section 4 the
synchronisation constraints (disregarded by the Cartesian product) are met by means of the
weak synchronised product of a set of parallel processes. In Section 5 the reduced weak syn-
chronised product of a set of parallel processes is introduced, where not-specified behaviour
represented by the Cartesian product is removed. In Section 6 the synchronised product is
introduced and necessary and sufficient conditions are proved for the longest path length of
that product to be less than the longest path length from the original set of graphs (represent-
ing parallel processes). We finish with Section 7, where we give our conclusions followed by
a discussion and ideas for future work.

1. Terminology

We use [5] and [6] for terminology and notation on graphs and processes not defined here
and consider finite labelled weighted directed acyclic multi-graphs only.

So, if we use H to denote a graph, we will always mean a finite labelled weighted directed
acyclic multi-graph. Thus H consists of a set of vertices V , a multi-set of arcs A, and a
mapping λ : A Ñ L, where L is a set of label pairs6. An arc a P A which is directed from
a vertex u P V (the tail) to a vertex v P V (the head) will usually be denoted as a “ uv; the
reverse arc will be denoted as vu. Note that we allow multiple arcs from u to v, but that we
do not allow uv and vu to be present in the same graph. For each arc a P A, λ paq P L consists
of a pair plpaq, tpaqq, where lpaq is a string representing an action and tpaq is a positive real
number representing the worst-case execution time of the action represented by lpaq. If an
arc has multiplicity k ą 1, then all copies have different labels, otherwise we could replace
two copies of an arc with identical labels by one arc, because they represent exactly the same
action at the same stage of the process. If two arcs a,b P A have labels λ paq “ plpaq, tpaqq
and λ pbq “ plpbq, tpbqq such that lpaq “ lpbq, then this implies that tpaq “ tpbq; this follows
since lpaq “ lpbq means that the arcs a and b represent the same action at different stages of
a process.

A directed path in H is a sequence of distinct vertices v1v2 . . .vk of H such that v jv j`1 PA

for j“ 1, . . . ,k´1. The length of a path v1v2 . . .vm is defined as
m´1
ř

i“1
tpvivi`1q. A directed path

defines a total ordering on its arcs: v1v2 ă v2v3 ă . . .ă vk´1vk.
A directed cycle is a directed path v1v2 . . .vk together with an additional arc vkv1, and is

denoted by v1v2 . . .vkv1. An acyclic graph does not contain any directed cycles.
We consider finite acyclic graphs, H, only. In general, such a graph consists of several

components, where each component, Hi, is weakly connected (i.e. all vertices are connected
by sequences of arcs, ignoring arc directions) and corresponds to one sequential process.
For such components, `pHiq is defined as the maximum length taken over all directed paths
in Hi. For the whole graph, which corresponds to a parallel set of sequential processes that
must each run to completion, the maximum path length, `pHq, is the sum of all the individual
`pHiq. A partial ordering on the arcs of a weakly connected graph is induced from the total
orderings of its directed paths: a ă b if and only if a and b are so ordered in some directed
path within the graph.

6We shall also use the notation V pHq and ApHq to denote the vertices and arcs for any graph H.
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Time and processes are thoroughly described in CSP (for example, by Schneider [6]).
Our view of time in a process is that each action takes some time to execute and this time is
directly linked to the label of the action. For every process Pi, the actions of the process con-
stitute the process alphabet set APi , which consists of labels. A label in a process is identical
to a label in a graph: both are identical strings of characters with identical associated values.

For components Hi and H j, an arc ai with label λ paiq in component Hi is a synchronising
arc with respect to components Hi and H j, if and only if there exists an arc a j with label
λ pa jq in component H j and λ paiq “ λ pa jq. If it is clear from the context, we omit the ‘with
respect to components Hi and H j’ part of the definition.

Viewed as CSP processes, components are combined in parallel using the CSP alphabe-
tised parallel operator with alphabet sets defined by the labels on their respective arcs. For an
arc of a component Hi whose label does not occur on an arc of another component H j, the
corresponding action is not blocked from execution.

For a set of parallel processes that contains a deadlock, the graph H representing this
set is said to be ill-defined or inconsistent. An example of such a set of parallel processes is
called a pathological case.

Components Hi “ pVi,Ai,tλ paq|a P Aiuq and H j “ pVj,A j,tλ paq|a P A juq are said to be
independent if and only if tλ paq|a P Aiu

Ş

tλ paq|a P A ju “H.
The in-degree (out-degree) of a vertex v in a graph H is defined as the number of arcs

with head v (tail v) and denoted by d´H pvq pd
`
H pvqq.

The Cartesian product H1ˆH2 of H1 and H2 is defined as the graph on vertex set V1,2 “

V1 ˆV2 (the Cartesian product of the vertex sets) with two types of arcs. Arcs of type 1
(type 2) are between pairs pv1,v2q P A1,2 and pw1,w2q P A1,2 with pv1,w1q P A1 and v2 “ w2
(with v1 “ w1 and pv2,w2q P A2), so arcs of type 1 and 2 correspond to arcs of H1 and H2,
respectively. For k ě 3, the Cartesian product H1ˆH2ˆ . . .ˆHk is defined recursively as
ppH1ˆH2qˆ . . .qˆHk.

Since we only consider labelled weighted directed acyclic graphs, paths, etc., for conve-
nience we skip the adjective finite labelled weighted directed acyclic where possible in the
sequel.

2. Periodic Real-time Processes as Labelled Weighted Directed Acyclic Graphs

The rationale behind modelling processes by graphs is, that a process is always in a certain
state, where via performing an action another state is reached. Similarly, from a specific
vertex in a graph another vertex can be reached by passing through the arc between them.
A process can be defined as a labelled weighted directed acyclic graph, therefore a periodic
real-time process also can be defined as a weakly connected labelled directed graph [6]. If
the process specification contains cycles, due to the real-time constraints (timeliness, leading
to an upper bound for the number of cycles), one can unfold the cycles leading to an acyclic
path, which is a directed acyclic graph.

Hence, a set of parallel real-time periodic processes can be modelled as a graph H with
components Hi. For our purpose of improving the performance of real-time periodic appli-
cations, we are going to show how execution time is reduced by combining components of
graphs. A set of parallel processes and its combination into one process has to have identical
behaviour (i.e. the traces and failures7 of the set of parallel processes must be the same as
those of the combined process).

Several products have been defined in the literature, like strong products, synchronised
products, etc. None of these products are sufficient. The strong product as defined by [5] is a

7There are no divergences as the processes being combined are finite (repeated periodically by the real-time
application).
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labelled acyclic directed graph that is order preserving, but the arcs that produce a synchro-
nised arc are not removed from the graph. In other words, behaviour is added to the origi-
nal process set. Synchronised products have been defined by authors like Aiguier et al. [7],
Caucal and Hassen [8], Hammal [9] and Wöhrle and Thomas [10]. The definition by [9] does
not take into account that for a certain graph a certain label may occur more than once in a
path, so the definition does not preserve the order. The definition of [8] is used to synchronise
languages where the synchronised product of languages G and H is the disjunction of these
languages and is also not order preserving.

For these reasons, these definitions do not meet our requirements, as the definition of the
synchronised product has to be order preserving and our graphs have to reflect the behaviour
of the processes on which the graphs are based. The definition by Aiguier et al. [7] stems from
Input Output Symbolic Transition Systems and is almost similar to our product, although the
terminology is different. Also we allow the source of the graph to be a set of vertices and
Aiguier et al. require a single start state. Even the definition by Wöhrle and Thomas [10] does
not fit our needs, although this product preserves the order as shown in Figure 1 (the dashed
arc is the synchronising arc). In their approach it is possible for the synchronised product
of two weakly connected graphs to contain again two weakly connected graphs (where the
diamond-shaped component represents states and transitions unreachable according to the
synchronisation rules).

⇒
v1

v3

v2

u1 u2 u
3

u
3

u
3
v
2

v
3

v3v3

v2 v2

v1 v1u1

u1

u1

u2

u2

u2

Figure 1. Synchronising product according to Wöhrle and Thomas.

At first sight, the Cartesian product seems to be a good way to express the combination
of parallel processes. However, this product does not take care of necessary synchronisations.
Therefore, we propose a modification of the product by [10] that will be developed in a
number of steps. Figure 2 shows an example, where dashed arcs are synchronising actions. It
shows five steps, where a synchronised product is built from a set of graphs. These five steps
are elaborated in Sections 3 through 6.

The first diagram (H1
Ř

H2) shows state-action transition graphs for two parallel pro-
cesses, synchronising on one common action.

The second diagram (H1lH2) shows the Cartesian product of those two graphs. The
vertices are the cross-product of the original vertices and the transitions between them are
in one of two dimensions (one for each of the original graphs). This corresponds to the CSP
interleaving of the two processes (i.e. where each is free to engage in actions, regardless of
whether they are held in common). Clearly, this is not a suitable serialisation of the original
parallel system. This is presented in Section 3.

The third diagram (H1 a H2) is called the Weak Synchronised product of the (original)
two graphs. It is derived from the Cartesian product by removing arcs representing common
actions, if those arcs proceed from a vertex in only one of the dimensions (i.e. the action was
engaged in by only one of the original processes). Common arcs remain always in the form
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H2

H 2H 1

H1 

H2H1 H2H1 

⇒

⇐

H2H1 +

H2H1 

⇒

⇒

Figure 2. Transformations from parallel (
Ř

) through Cartesian (l), weak synchronised (a), reduced weak
synchronised (d) to synchronised (n) product.

of two dimensional parallelograms (one dimension for each original process engaging in the
action). If there is deadlock in the system, this will appear as vertices with no out-flowing
arcs. This is in Section 4.

The fourth diagram (H1 d H2) is called the Reduced Weak Synchronised product. It is
derived from the third by (iteratively) removing all vertices that have been left with no in-
flowing arcs (other than those in the Cartesian product that had none – i.e. the starting points),
together with the out-flowing arcs from those removed vertices. This is Section 5.

Finally, the fifth diagram (H1 nH2) is the Synchronised product. This collapses the com-
mon action parallelograms into single action arcs across the diagonal, leaving the two iso-
lated vertices. The same iterative process from the fourth stage (for removing vertices with
no in-flowing arcs and their out-flowing arcs) cleans up. This is Section 6.

3. The Cartesian Product of a Set of Parallel Processes

To visualise all our transformations we use a simplified version of an untimed example
by [11] given in Listing 1, shown in Figure 3. The example contains three serial processes
running in parallel, synchronising on their common actions respectively. Clearly they can be
serialised simply by concatenating them , removing the middle SKIPs and merging the com-
mon actions to a single occurrence. The example is chosen to illustrate the stages of trans-
formation and kept simple for this purpose. In the Appendix, Listing 2 and the related graph
transformation in Figure 12 give a (slightly) more complex, and interesting example.

The process SEQUENCE CONTROL is tail recursive, each element of the recursion being
one period of the control logic. We use the constituent processes of this period for our trans-
formations (starting in Figure 4). We assume that the actions have a given upper bound time
value. We abbreviate the actions and their related upper bound time values in the several prod-
uct figures: for example, (read distance sensors, 120 µsq will become rds. As before, a
dashed arc represents a synchronising arc.
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Figure 3. Untimed sequence control processes of a mobile robot.

1 OBJECT_DISTANCE = read_distance_sensors Ñ

2 compute_object_distance Ñ distance_meas Ñ SKIP

3
4 ROBOT_SPEED = distance_meas Ñ compute_robot_speed Ñ robot_speed Ñ SKIP

5
6 MOTOR_SPEED = robot_speed Ñ

7 compute_motor_speed Ñ write_motor_speed_setpoint Ñ SKIP

8
9 SEQUENCE_CONTROL = (OBJECT_DISTANCE ‖ ROBOT_SPEED ‖ MOTOR_SPEED);

10 SEQUENCE_CONTROL;

Listing 1. Description of the SEQUENCE CONTROL process.

The graph SQ “MS`RS`OD representing the processes MS “ MOTOR SPEED, RS “
ROBOT SPEED and OD“ OBJECT DISTANCE and using abbreviated actions is given by:

MS “ pV pH1q,ApH1q,tλ paq|a P ApH1quq

= (tv1,v2,v3,v4u,tv1v2,v2v3,v3v4u,tpv1v2,rsq,pv2v3,cmsq,pv3v4,wmssquq

RS “ pV pH2q,ApH2q,tλ paq|a P ApH2quq

= (tv5,v6,v7,v8u,tv5v6,v6v7,v7v8u,tpv5v6,dmq,pv6v7,crsq,pv7v8,rsquq

OD“ pV pH3q,ApH3q,tλ paq|a P ApH3quq

= (tv9,v10,v11,v12u,tv9v10,v10v11,v11v12,u,tpv9v10,rdsq,pv10v11,codq,pv11v12,dmquq

The Cartesian product of the graph SQ, MSlRSlOD, contains 64 states; therefore, we
do not show the formal definition of the graph. From Figure 4, it may be checked that `pMS`
RS`ODq, which is `pMSq``pRSq``pODq, is equal to `pMSlRSlODq. Next, we will show
that this holds in the general case for finite labelled weighted directed acyclic multi-graphs.
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Figure 4. Sequence control processes of a mobile robot, from ` to l.

In the Cartesian product H1lH2 of H1 and H2, we distinguish between two types of arcs.
Arcs of type H1 (type H2) are between pairs pv1,w1q PV pH1lH2q and pv2,w2q PV pH1lH2q

with v1v2 P ApH1q and w1 “ w2 (with v1 “ v2 and w1w2 P ApH2q), so arcs of type H1 and type
H2 correspond to (are in fact copies of) arcs of H1 and H2, respectively.

For k ě 3, the Cartesian product lk
i“1Hi “ H1lH2l . . .lHk is defined recursively as

ppH1lH2ql . . .qlHk. If no ambiguity can arise, we write lHi for lk
i“1Hi. In this product of

k directed graphs, we distinguish between arcs of type Hi for i “ 1, . . . ,k, analogously as for
the case k “ 2. Note that in case the Hi are labelled, the labels of the arcs of type Hi in lHi
correspond to the labels of the arcs of Hi: each copy of arc a P ApHiq in lHi has label λ paq.
If Hi is a multi-graph, an arc a P ApHiq can appear more than once in Hi, but in that case the
copies of a in Hi have distinct labels, so each of the copies can be identified by its label. In
lHi similarly, we can distinguish the copies of a by their labels (λ1paq, λ2paq, ...).

For the sequel, we need a number of useful properties of acyclic directed graphs. Most
of these properties are straightforward and easy to prove – see [12].
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Let G be an acyclic directed (multi-)graph. Then G has at least one vertex v1 with in-
degree 0. If we delete v1 and all the arcs with tail v1 from G, we obtain a new acyclic directed
(multi-)graph, so we can again find a vertex v2 with in-degree 0, etc. We can repeat this
procedure as long as there are vertices, and we obtain a so-called acyclic ordering v1,v2, . . .
of the vertex set of G. It is important to observe that this ordering implies that arcs of G can
only exist from vi to v j with i ă j. We will use a slightly different (partial) ordering for our
purposes, as follows.

We assume throughout that all our graphs Hi are acyclic directed multi-graphs. For the
moment, we disregard the labels and weights, so in the following paragraphs the length of a
directed path is just the number of arcs.

For each Hi we define Si
0 to denote the set of vertices with in-degree 0 in Hi, Si

1 the
set of vertices with in-degree 0 in the graph obtained from Hi by deleting the vertices of Si

0
and all arcs with tails in Si

0, and so on, until the final set Si
ti contains the remaining vertices

with in-degree 0 and there are no arcs in the remaining graph. As in the acyclic ordering,
this ordering implies that arcs of Hi can only exist from a vertex in Si

j1 to a vertex in Si
j2 if

j1 ă j2. This also implies that the vertices of Si
ti have out-degree 0 in Hi, and that ti is the

length of a longest directed path in Hi, so ti “ `pHiq. In fact, all longest directed paths of Hi
have their starting vertex in Si

0 and their terminating vertex in Si
ti . If a vertex v P V pHiq is in

the set Si
j in the above ordering, we also say that v is at level j in Hi. Note that a vertex v of

level j ą 0 can only be reached from a vertex of level smaller than j, and that there always
exists at least one vertex u of level j´ 1 with uv P ApHiq. Similarly, there exists a directed
path of length p between some (not any) vertex at level j and some (not any) vertex at level
j` p, but no longer directed paths (but possibly shorter directed paths). So, in particular, if
there is a directed path of length p from a vertex u to a vertex v, and u is at level j, then v is
at level at least j` p.

Apart from the inheritance of (copies of) the arcs and labels, the Cartesian product pre-
serves some other important properties for our analysis. First of all, we show that the Carte-
sian product of a series of acyclic graphs H1,H2, . . . ,Hk is again an acyclic graph, and that
the length of a longest path in the Cartesian product is the sum of the lengths of longest
paths in Hi, i “ 1,2, . . . ,k. In fact, we prove the stronger statement that each longest path P
in lHi corresponds to longest paths in all Hi, in the sense that P contains exactly one copy
of each of the arcs of a longest path Qi in Hi, i “ 1,2, . . . ,k. We say that P is the interleaved
concatenation of these Qi.

Lemma 1. Let Hi be an acyclic graph for i “ 1,2, . . . ,k, where k ě 2. Then lHi is acyclic
and every longest path in lHi is the interleaved concatenation of longest paths Qi in Hi,
i“ 1,2, . . . ,k. In particular, `plHiq “ `pH1q` `pH2q` . . .` `pHkq.

Proof. First note that it suffices to prove the statements for k “ 2, since for integers k ě 3,
H1lH2l . . .lHk is ppH1lH2ql . . .qlHk, hence H 11lH 12, and the result follows by induction.
So we want to prove that H1lH2 is acyclic and that every longest path in H1lH2 is the
interleaved concatenation of longest paths Q1 and Q2 in H1 and H2, respectively.

It is easy to show that there exists a path in H1lH2 that is the interleaved concatenation
of two longest paths Q1 and Q2 in H1 and H2, respectively. In fact, if P “ p1 p2 . . . pk1 and
Q “ q1q2 . . .qk2 are two vertex-disjoint (longest) paths, then clearly PlQ contains the path
pp1,q1qpp1,q2q . . . pp1,qk2qpp2,qk2q . . .ppk1,qk2q with a length that is the sum of the lengths
of P and Q.

The keys to the remaining part of the proof are the following observations on paths in
H1lH2. Consider a (longest) path P in H1lH2 that starts with a subpath Q1 of type H1 arcs
only, followed by a subpath R1 with a first arc of type H2 (and with R1 possibly containing
arcs of type H1 as well). Then Q1 corresponds directly to a path Q11 in H1 (with the first
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coordinates of the vertex pairs corresponding to the vertices in Q1 as the vertices of Q11; all
the second coordinates are identical and equal to one particular vertex of V pH2q), while the
vertex pairs corresponding to the two vertices of the arc connecting the end of Q1 to the
beginning of R1 have the same first coordinate x PV pH1q. The vertex pairs corresponding to
the vertices of R1 keep this first coordinate x as long as the arcs are of type H2. In case these
arcs are followed by an arc of type H1, this arc of type H1 corresponds to an arc in H1 starting
from x. So, all the subsequent subpaths of P with only arcs of type H1 correspond directly to
paths Q11,Q

1
2, . . . in H1, and similarly all the subsequent subpaths of P with only arcs of type

H2 correspond directly to paths R11,R
1
2, . . . in H2. Moreover, there is an arc in H1 between the

end vertex of Q11 and the first vertex of Q12 (if any), and so on, and similarly for R11 and R12,
and so on (if any) in H2. By symmetry, the same observations can be made if the path P starts
with an arc of type H2, and contains arcs of both types.

To prove that H1lH2 is acyclic, suppose that it is not and contains a cycle C. Then
the first and last vertices of C are identical, say equal to pp1,q1q. It is clear that C contains
arcs of both types; otherwise C corresponds directly to a cycle in H1 or H2, contradicting
our assumption that H1 and H2 are both acyclic. Assuming, without loss of generality, that
the first k ě 1 arcs of C are of type H1, p1 is the first vertex of a path Q11 “ p1 p2 . . . pk`1
in H1, with the corresponding subpath of C in H1lH2 consisting of vertex pairs ppi,q1q,
i“ 1, . . . ,k`1. Then the first arc of type H2 in C we encounter is from ppk`1,q1q to ppk`1,q2q

for some q1q2 P ApH2q, and so on, so q1 is the first vertex of a path R11 in H2, as in the above
argumentation. Since pp1,q1q also appears as the last vertex of C, by similar arguments p1
and q1 both appear as the last vertex of two paths Q1t and R1s in H1 and H2, respectively. Since
by the above argumentation all the subpaths of type Q1i are connected, this implies that H1
contains a cycle: a contradiction. This proves that H1lH2 is acyclic.

Suppose now that P is a longest path in H1lH2. Assume that P has length `pH1lH2q ą

`pH1q` `pH2q. Using the above argumentation and the fact that H1lH2 is acyclic, the two
paths Q and R formed by the Q1i in H1 and the R1i in H2, respectively, together have length
`pH1lH2q ą `pH1q` `pH2q, but this contradicts that the length of Q is at most `pH1q and the
length of R is at most `pH2q. Together with the above arguments, this shows that P has length
exactly `pH1q` `pH2q and that P is the interleaved concatenation of the two longest paths Q
and R in H1 and H2, respectively. This completes the proof of Lemma 1.

Remark 3.1

The expression in Lemma 1 on the length of longest paths in the Cartesian product is not valid
if we drop the condition that each of the Hi is acyclic. It is easy to present counterexamples.
For instance, consider H1lH2, where H1 consists of two arcs connecting 3 vertices and H2
has two arcs between two vertices, but in opposite directions (i.e. a cycle). As can be observed
in Figure 5, the longest directed path lengths of H1 and H2 are 2 and 1, respectively8, making
their sum 3. However, H1lH2 contains a directed path of length 5.

H1+H2

⇒

H1 H2

1

2
3

4
5

Figure 5. Cyclic graph counterexample.

8The vertices in a directed path must be distinct – see Section 1.
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Remark 3.2

The notion of the level of a vertex in an acyclic directed graph, that we introduced be-
fore, has a natural extension to the Cartesian product, in the following sense. For a vertex
pv1,v2, . . . ,vkq P V plHiq we define the level vector p f1, f2, . . . , fkq, in which fi denotes the
level of vertex vi in Hi. Then the vertices with in-degree 0 in lHi are precisely all ver-
tices with level vector p0,0, . . .0q, whereas level vector pt1, t2, . . . , tkq with ti “ `pHiq corre-
sponds to all vertices that are terminals of some longest path in lHi. For each integer vector
px1,x2, . . . ,xkqwith 0ď xiď fi, there exists a vertex in lHi with this level vector, and if xiă fi,
there also exists an arc of type Hi between a vertex with level vector px1,x2, . . . ,xi, . . . ,xkq

and px1,x2, . . . ,xi` 1, . . . ,xkq. This implies there are several longest paths in lHi, each rep-
resented by adding one of the total of t1` . . . tk units to one of the coordinates in the level
vector between subsequent vertices on the path. On the other hand, there cannot be any arcs
in lHi between a vertex with level vector px1,x2, . . . ,xi, . . . ,xkq and a vertex with level vector
py1,y2, . . . ,xi´1, . . . ,ykq; all arcs imply an increase (by 1 or more) in precisely one entry of
the level vector, while the other entries remain the same.

This shows how the partial ordering on the vertices of an acyclic directed graph has a
natural extension to the Cartesian product. The same holds for the partial ordering on the
arcs. Since the Cartesian product is again acyclic, we can define the same ordering there. So
we define that for a,b P AplHiq, a ă b if and only if a precedes b on some directed path in
lHi. From the structure it then follows that the ordering of the arcs in the individual Hi is
preserved in the Cartesian product, in the following sense. If aă b for two arcs a,b P AplHiq

of the same type Hi, then for the corresponding arcs a1 of a in Hi and b1 of b in Hi, it holds that
a1 ă b1 in Hi. The simplest way to see this is by the level vectors: if b1 ă a1, then the level of
the head of b1 in Hi is smaller than the level of the tail of a1 in Hi, but then the corresponding
coordinate in the level vector of the head (and thus of the tail) of b is also smaller than that of
the tail (and thus of the head) of a in lHi, contradicting that there is a directed path in lHi
in which a precedes b.

Remark 3.3

In the above proof, we did not specifically consider the possibility of having multiple arcs,
and we did not use the labels and weights in our arguments, for convenience. It is obvious
that the proof is the same if we allow multiple arcs, because any directed path can contain at
most one of these arcs, and we have already indicated how we can identify the corresponding
arc in Hi from the inherited labels. It is also rather straightforward how the proof should be
adapted if we consider weighted arcs and the length of a path is the sum of the weights of its
arcs. The crucial observation is that every arc with a specific weight in H1lH2 corresponds to
either an arc in H1 or an arc in H2 with exactly the same weight, so instead of a contribution
of 1 (which can be interpreted as weight 1) of an arc to the length of a path, we then have to
use this specific weight. The weights have no influence on the level vectors, since the levels
of the vertices are determined by the (non)existence of arcs, not by their weights. Of course,
longest paths in terms of the highest total weight do not necessarily coincide with longest
paths in terms of the largest number of arcs, so longest paths in the weighted sense may jump
more than one unit in one of the coordinates of the level vector. Note, however, that these
paths still start in a vertex with level vector p0,0, . . . ,0q and terminate in a vertex with level
vector pt1, t2, . . . , tkq (where the ti refer to the unweighted case of Remark 3.2 above).

Remark 3.4

An (acyclic) directed graph can have an exponentially high number of longest paths in terms
of its number of vertices n. Consider for instance such a graph G with a square number of
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vertices, with
?

n vertices of level i for all i“ 1,2, . . . ,
?

n, and arcs between any two vertices
from a lower level to a higher level, all with weight 1. Then the number of longest paths in G
is
?

n
?

n, so clearly exponential in n.

4. The Weak Synchronised Product of a Set of Parallel Processes

The Cartesian product of graphs is an adequate model for the interleaved execution of pro-
cesses as long as the graphs represent independent processes. The model fails if the processes
are not independent, for instance in case the processes must synchronise over certain actions.
The different paths in the Cartesian product represent all possible (interleaved) traces of the
constituent processes, thereby also representing behaviour that is simply impossible, due to
synchronisation. For this reason we need a more restrictive notion than the Cartesian prod-
uct of graphs. As for the Cartesian product, this has to be order-preserving. This product
we are going to introduce next is based on the synchronised product by [10]. Figure 6 gives
for our example the transformation of SQ consisting of the Cartesian product of the graphs
MSlRSlOD to the weak synchronised product MS a RS a OD.

The weak synchronised product H1 a H2 of H1 and H2 is defined as the graph on vertex
set V pH1qˆV pH2q (the Cartesian product of the vertex sets) and arc set A1,2 with four types
of arcs.

The first two types correspond to arcs in H1 and H2 that have labels that only appear in
one of H1 and H2. We call this set of arcs the asynchronous arc set and denote it by Aa

1,2.
Therefore, Aa

1,2 is the set of all pairs pv1,xqpv2,xq with x P V pH2q and the associated label
λ pv1v2q (a-type H1 arcs) or py,w1qpy,w2q with y P V pH1q and the associated label λ pw1w2q

(a-type H2 arcs), where for arcs v1v2 P ApH1q label λ pv1v2q does not appear in H2 and for
arcs w1w2 P ApH2q label λ pw1w2q does not appear in H1.

The other types correspond to arcs in H1 and H2 with the same label. We call this set
of arcs the synchronous arc set and denote it by As

1,2. Therefore, As
1,2 is the set of all arcs

pv1,w1qpv2,w1q, pv1,w1qpv1,w2q, pv1,w2qpv2,w2q, pv2,w1qpv2,w2q, with the associated label
λ pv1v2q, where for arcs v1v2 P ApH1q and w1w2 P ApH2q label λ pv1v2q “ λ pw1w2q. The first
and third are s-type H1-arcs and the others are s-type H2-arcs.

For k ě 3, the weak synchronised product H1 a H2 a . . .a Hk is defined recursively as
ppH1 a H2qa . . .qa Hk. If no confusion can arise, we denote it as aHi.

Although this weak synchronised product, like the Cartesian product, might represent
behaviour that is not allowed by the original process specification, we will use it as an inter-
mediate result. For example, in Figures 2 and 6, it is possible in both the Cartesian product
and the weak synchronised product to reach a vertex that represents a non-reachable state in
the process specification, by using only one of the synchronous arcs of a parallelogram.

We will first show that longest paths cannot be longer than in the Cartesian product, and
that this new product also preserves acyclicity and the order on the arcs.

Lemma 2. Let Hi be an acyclic graph for i “ 1,2, . . . ,k, where k ě 2. Then aHi is acyclic
and `paHiq ď `plHiq.

Proof. As in the proof of Lemma 1, it suffices to prove the statements for k “ 2, since for
integers k ě 3, the weak synchronised product H1 a H2 a . . .a Hk is defined recursively as
ppH1 a H2qa . . .qa Hk, hence H 11 a H 12, and the result follows by induction.

It is obvious from the definitions that H1 aH2 is a spanning subgraph of H1lH2 (i.e. that
the vertex set of H1lH2 equals the vertex set of H1 a H2, and that the arc set of H1 a H2 is a
subset of the arc set of H1lH2). From this observation, it follows by Lemma 1 that H1 a H2
is acyclic and that `pH1 a H2q ď `pH1lH2q.
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Figure 6. Sequence control processes of a mobile robot, from l to a.

Remark 4.1

It is not difficult to give examples of labelled directed acyclic graphs H1 and H2 with `pH1 a

H2q ă `pH1lH2q. For example, Figure 7 shows H1 consisting of one directed path v1v2v3
with labels λ pv1v2q “ a and λ pv2v3q “ b, and H2 also consisting of one directed path w1w2w3
with λ pw1w2q “ b and λ pw2w3q “ a. In the context of processes, this example is ill-defined
in the sense that it is immediately clear that the two processes are deadlocked from the start.
The graph representing this pathological example is inconsistent. In Figure 8, we give a three
dimensional example where we show that such a pathological case can occur distributed over
several graphs, although only the final step reduces the out-degree of the source to zero. The
source vertex in Figure 8 is marked by a circle around the vertex. From three dimensions it
is not difficult to extend to n-dimensions. A set of graphs H is said to be consistent if it does
not contain a (possibly n-dimensional) pathological case.



70 A.H. Boode et al. / Improving the Performance of Periodic Real-time Processes

⇒ ⇒
a b

b

a

b

a

b

a

b

a

a

a

a

b

b

b a

b

a

b
a

a

b

b

H2H1 

H2

H1 
H2H1 

H2H1 +

Figure 7. Two-dimensional pathological case.

⇒

a b

b

c

b
a b

H2H1 

H2

H1 

c

a

c

a

H1 + H2 + H3

H3

+ H3

c

b b
b

b

H   )2(H1 H3

a

c

c

a

b b
b

b

H 2 H1 H3

cc

a

a

a

a

c
c

b b
a b

b

H2H1 + H3

c

a

c

⇐

⇒

⇒

Figure 8. Three-dimensional pathological case.

We are now going to show that inconsistency can always be concluded if `paHiq ă

`plHiq. By induction, we can again restrict our attention to the case that k “ 2.
Let P be a longest path in H1lH2. Then P is the interleaved concatenation of two longest

paths R and Q in H1 and H2, respectively. Let R“ r1r2 . . .rk1 and Q“ q1q2 . . .qk2 . If P is not
a longest path in H1 a H2, there is at least one label λ that appears on arcs in both R and Q.
Consider the first label on R (starting from r1) that also appears in Q – say this is label λ1 that
appears on r j. If λ1 is also the first label on Q that appears in both Q and R, say on qt , then
R a Q contains a path of length j` t corresponding to the subpath of P of length j` t from
the starting vertex.

Continuing this way, if all labels that appear in both Q and R also appear in the same
order in Q and R (with possible repetitions, also in the same order), then H1 a H2 contains a
path with the same length as P. So, if `pH1 aH2q ă `pH1lH2q, we may assume there is an ith

instance of a label λr on R that is also the ith instance of that label on Q, and a jth instance of
a label λq on Q that is also the jth instance of that label on R, and such that λr is after λq on R
but before λq on Q. But then the process is ill-defined in a similar way as in the pathological
example, a situation that can and should be avoided.
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For the sequel, we are going to assume that the processes are defined and specified in
such a way, that the above unwanted situation does not occur and that the related graphs
Hi are therefore consistent. This then automatically implies that for consistent graphs Hi,
`paHiq “ `plHiq.

Remark 4.2

From the fact that aHi is a spanning subgraph of lHi, it follows that the ordering of the
arcs in the individual Hi is preserved in the weak synchronised product, in the following
sense. If a ă b for two arcs a,b P ApaHiq of a-type or s-type for the same Hi, then for the
corresponding arcs a1 of a in Hi and b1 of b in Hi, it holds that a1 ă b1 in Hi.

This can be seen by using the level vectors. Suppose b1 ă a1. Then, the level of the head
of b1 in Hi is smaller than the level of the tail of a1 in Hi. This means that the corresponding
coordinate in the level vector of the head (and thus of the tail) of b is also smaller than that of
the tail (and thus of the head) of a in aHi, contradicting that there is a directed path in aHi
in which a precedes b. Therefore, the supposition is false.

Remark 4.3

The weak synchronised product, like the Cartesian product, may still represent behaviour that
is not possible by the specification of the corresponding set of processes, as can be seen in
the examples in Figures 2 and 6 (lña). One obvious thing we can do about this is, that we
iteratively remove vertices (and the related arcs) that have an in-degree ‰ 0 in the Cartesian
product, but have an in-degree “ 0 in the weak synchronised product.

5. The Reduced Weak Synchronised Product of a Set of Parallel Processes

The reduced weak synchronised product H1 d H2 of H1 and H2 is defined as the graph ob-
tained from the synchronised product H1 a H2 by first removing all vertices with level 0 in
H1 a H2 that have level ą 0 in H1lH2, together with all the arcs that have one of these ver-
tices as a tail. This is then repeated in the newly obtained graph, and so on, until there are no
more vertices with level 0 in the current graph that have level ą 0 in H1lH2. The resulting
graph for our standard example is shown in Figure 9.

For k ě 3, the reduced weak synchronised product H1 d H2 d . . .d Hk is defined recur-
sively as ppH1 d H2qd . . .qd Hk, and denoted as dHi if no confusion can arise.

Lemma 3. Let Hi be an acyclic graph and let dHi be the reduced weak synchronised product
of Hi for i“ 1,2, . . . ,k, where k ě 2. Then `pdHiq “ `paHiq.

Proof. One direction is clear: since dHi is a subgraph of aHi, we have that `pdHiqď `paHiq.
For the other direction, consider a longest path P in aHi. By previous arguments, we know
that P starts in a vertex v with level vector p0,0, . . . ,0q and terminates in a vertex w with level
vector pt1, t2, . . . , tkq. For each vertex x ‰ v,w on P, d´pxq ě 1 and d`pxq ě 1. This implies
that none of the vertices of P is removed from aHi, so P is a path and therefore a longest
path in dHi. This completes the proof of Lemma 3.

Remark 5.1

Note that the paths that represent the behaviour of the specified processes, all start in the
source of the graph and end in the sink of the graph. Because we only remove vertices that
are not in the source of the graph and have an in-degree of zero, behaviour not specified by
the original set of processes is removed.
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Figure 9. Sequence control processes of a mobile robot, from a to d.

Remark 5.2

Also note that, although this newly introduced product may filter out vertices and arcs rep-
resenting unwanted process behaviour, it does not filter out all unwanted behaviour, see Fig-
ure 9. In Section 6, we translate additional restrictions into our product.

6. The Synchronised Product of a Set of Parallel Processes

The synchronised product H1 n H2 of H1 and H2 is defined from the reduced weak syn-
chronised product, by first replacing quadruples of arcs that represent synchronised arcs as
follows.
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Replace each parallelogram of arcs pv1,w1qpv2,w1q, pv1,w1qpv1,w2q, pv1,w2qpv2,w2q

and pv2,w1qpv2,w2q, with λ ppv1,w1qpv2,w1qq “ λ ppv1,w1qpv1,w2qq “ λ ppv1,w2qpv2,w2qq “

λ ppv2,w1qpv2,w2qq, by one diagonal arc pv1,w1qpv2,w2q with label λ ppv1,w1qpv2,w2qq “

λ ppv1,w1qpv2,w1qq. These new arcs of H1 n H2 are called synchronous arcs, and the set of
these arcs is denoted as As

1,2. This intermediate stage is shown in Figure 10.
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Figure 10. Sequence control processes of a mobile robot, from d to intermediate stage.

Secondly, all vertices with level 0 in the resulting graph that have level ą 0 in H1lH2
are removed, together with all the arcs that have one of these vertices as a tail. This is then
repeated in the newly obtained graph, and so on, until there are no more vertices with level
0 in the current graph that have level ą 0 in H1lH2. The resulting graph is called the syn-
chronised product and denoted as H1 n H2. The set of arcs consisting of the other remain-
ing (asynchronous) arcs of H1 n H2 is denoted as Aa

1,2. The resulting graph for our standard
example is shown in Figure 11.

For k ě 3, the synchronised product H1 n H2 n . . .n Hk is defined recursively as ppH1 n

H2qn . . .qn Hk, and denoted as nHi if no confusion can arise.

Lemma 4. Let Hi be an acyclic graph and let nHi be the synchronised product of Hi for
i“ 1,2, . . . ,k, where k ě 2. Then `pnHiq ď `pdHiq.

Proof. As in the proof of Lemma 1, it suffices to prove the statement for k “ 2, since for
integers k ě 3, the synchronised product H1 n H2 n . . .n Hk is defined recursively as ppH1 n

H2qn . . .qn Hk, hence H 11 n H 12, and the result follows by induction.
From the definitions of reduced weak synchronised product and synchronised product,

it follows that the vertex set of H1 n H2 is a subset of the vertex set of H1 d H2, and the asyn-
chronous arc set Aa

1,2 of H1 n H2 is a subset of the asynchronous arc set of H1 d H2. For the
synchronous arc set As

1,2 of H1 nH2 every arc replaces a quadruple of arcs in H1 dH2, as fol-
lows: tpv1,w1qpv2,w1q, pv1,w1qpv1,w2q, pv1,w2qpv2,w2q, pv2,w1qpv2,w2qu with an associated
label λ ppv1,w1qpv2,w1qq = λ ppv1,w1qpv1,w2qq = λ ppv1,w2qpv2,w2qq “ λ ppv2,w1qpv2,w2qq
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Figure 11. Sequence control processes of a mobile robot, from intermediate stage to n.

in H1 d H2 is replaced by pv1,w1qpv2,w2q with the associated label λ ppv1,w1qpv2,w2qq

= λ ppv1,w1qpv2,w1qq. Clearly, the length of (a longest path in) the graph with vertex
set tpv1,w1q, pv1,w2q, pv2,w1q, pv2,w2qu and arc set tpv1,w1qpv2,w1q, pv1,w1qpv1,w2q,
pv1,w2qpv2,w2q, pv2,w1qpv2,w2qu is twice the length of the arc pv1,w1qpv2,w2q. This shows
that the length of a longest path in the synchronised product is not greater than the length
of a longest path in the reduced synchronised product (but it will be smaller if synchronisa-
tion occurs between the constituent paths). From these observations it follows that, because
H1 d H2 is acyclic, H1 n H2 is acyclic and `pH1 n H2q ď `pH1 d H2q.

Remark 6.1

The proof of Lemma 4 shows that combining processes may lead to a performance gain,

where the gain G is defined by G “
k

ř

i“1
`pHiq´ `p

k
n

i“1
Hiq. It is clear from the above that a gain

is only guaranteed if `pnHiq ă `pdHiq. Logically, this means that we can only be sure of a
gain if there exist distinct indices i and j such that for every longest path P in Hi and for every
longest path Q in H j, the paths P and Q contain at least one synchronising arc, so there are
arcs a P ApPq and b P ApQq with λ paq “ λ pbq. To get a performance gain we need necessary
and sufficient conditions that will reduce the length of the synchronised product with respect
to the length of its constituent graphs. It is obvious (follows from Lemma 4) that a reduction
can only be achieved by synchronising arcs. As the length of a graph is defined as the size
of its longest paths, we only have to consider the synchronisation of synchronising arcs in
longest paths.

Lemma 5. Let Hi be an acyclic graph for i“ 1,2, . . . ,k, where kě 2. Then `pnHiq “ `pH1q`

`pH2q` . . .``pHkq if and only if every Hi has at least one longest path without synchronising
arcs.
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Proof. First note that it suffices to prove the statement for k “ 2, since for integers k ě
3, H1 n H2 n . . .n Hk is ppH1 n H2qn . . .qn Hk, hence H 11 n H 12, and the result follows by
induction.

ðD By Lemma 1, `pH1lH2q “ `pH1q` `pH2q. If P “ p1 p2 . . . pk1 and Q “ q1q2 . . .qk2
are two vertex-disjoint longest paths without synchronising arcs of H1,H2 respectively, then
clearly PlQ contains the path PQ, where PQ denotes the path PQ “ pp1,q1qpp1,q2q . . .
pp1,qk2qpp2,qk2q . . . ppk1,qk2q. By the definition of H1 a H2, it follows that H1 a H2 contains
the path PQ, even so by definition H1 d H2 and H1 n H2 contain the path PQ. As `pPQq “
`pH1q` `pH2q it follows that `pH1q` `pH2q “ `pH1 n H2q.

ñD The proof is by contra-position. Suppose that all longest paths P“ p1 p2 . . . pk1,Q“
q1q2 . . .qk2 of H1 and H2, without loss of generality, contain one synchronising arc a with
label λ paq, say from pi to pi`1 and q j to q j`1. The synchronised product of paths P and Q is
P1lQ1

Ť

ppi pi`1 nq jq j`1q
Ť

P2lQ2, with P1“ p1 p2 . . . pi, P2“ pi`1 . . . pk1 ,Q1“ q1q2 . . .q j,
Q2 “ q j`1 . . .qk2 . Therefore it follows that `pP n Qq “ `pP1lQ1q ` `pppi pi`1 n q jq j`1qq `

`pP2lQ2q.
Note that pi pi`1 and q jq j`1 have the same label and therefore the same weight

t. Therefore `ppi pi`1lq jq j`1q “ 2 ˆ t “ 2 ˆ `ppi pi`1 n q jq j`1q (due to the synchro-
nisation constraint) and it follows that `pP n Qq “ `pP1lQ1q ` `pppi pi`1 n q jq j`1qq `

`pP2lQ2q “ `pP1lQ1q ` t ` `pP2lQ2q ă `pP1lQ1q ` 2 ˆ t ` `pP2lQ2q “ `pP1lQ1q `
`pppi pi`1lq jq j`1qq``pP2lQ2q, `pPlQq so the synchronised product will reduce the length
of the longest paths in H1 and H2. This leads to `pH1lH2q ą `pH1 n H2q.

We need necessary and sufficient conditions to get to `pnHiq ă `pdHiq.

Lemma 6. Let Hi be an acyclic graph for i“ 1,2, . . . ,k, where kě 2. Then `pnHiq ă `pdHiq

if there exists Hn,Hm, n‰ m,1ď n,mď k, such that each longest path in Hn,Hm, contains at
least one same labelled synchronising arc.

Proof. Again it suffices to prove the statements for k“ 2, since for integers kě 3, H1 nH2 n

. . .n Hk is ppH1 n H2qn . . .qn Hk, hence H 11 n H 12, and the result follows by induction.
From Lemma 5, we have that every Hi has at least one longest path without synchronising

arcs if and only if `pH1 n H2 n . . .n Hkq “ `pH1q ` `pH2q ` . . .` `pHkq, therefore as both
H1 and H2 contain only longest paths with at least one synchronisation arc, both H1 and H2
do not contain a longest path without synchronising arcs. From this observation it follows
that `pH1 n H2q ‰ `pH1q ` `pH2q. By Lemma 4, `pH1 n H2q ď `pH1 d H2q, it follows that
`pH1 n H2q ă `pH1q` `pH2q. Together with the observation that `pH1 d H2q “ `pH1q` `pH2q

this gives `pH1 n H2q ă `pH1 d H2q.

Lemma 6 is rather restrictive. We can loosen the requirements on two graphs containing
only longest paths with synchronisation arcs, to one graph containing only longest paths
with synchronisation arcs and another graph containing at least one longest path containing a
synchronisation arc. The rationale behind it is that a longest path P1 without a synchronisation
arc, and a longest path P2 with a synchronisation arc, both in H1, combined with a longest
path Q with a synchronisation arc in H2, will lead to graphs consisting of the reduced weak
synchronised products of P1 and the part of Q up to the synchronisation arc, and the reduced
weak synchronised products of P2 and Q. It is obvious that `pP1 dQq is smaller than `pP2 dQq.

Theorem 1. Let Hi be an acyclic graph for i “ 1,2, . . . ,k, where k ě 2. Then `pnHiq ă

`pdHiq if there exists Hn,Hm, n‰m,1ď n,mď k, such that each longest path in Hn, contains
at least one synchronising arc and there is at least one longest path with a same labelled
synchronisation arc in Hm.
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Proof. Again it suffices to prove the statements for k“ 2, since for integers kě 3, H1 nH2 n

. . .n Hk is ppH1 n H2qn . . .qn Hk, hence H 11 n H 12, and the result follows by induction.
Let all longest paths of H1 be of the structure P“ p1 p2 . . . pk1 , without loss of generality,

containing one synchronising arc a with label λ paq, say from pi to pi`1. Let there be at
least one longest path Q “ q1q2 . . .qk2 of H2 containing one synchronising arc a with label
λ paq, say from q j to q j`1. Note that pi pi1 and q jq j`1 have the same label and therefore
the same weight t. Let there be at least one longest path R “ r1r2 . . .rk3 of H2 containing no
synchronising arc.

Let P1 “ p1 p2 . . . pi,P” “ pi`1 pi`2 . . . pk1 , Q1 “ q1q2 . . .q j,Q” “ q j`1q j`2 . . .qk2 . Then
`pPnQq “ `pP1nQ1q``ppi pi`1 nq jq j`1q``pP”nQ”q “ `pP1lQ1q`1ˆ t``pP”nQ”q ă
`pP1lQ1q`2ˆ t` `pP” n Q”q “ `pP1d Q1q` `ppi pi`1 d q jq j`1q` `pP” d Q”q “ `pP d Qq.

Because both Q and R are longest paths of H2, `pQq “ `pRq. Due to the synchronisation
constraints, `pP d Rq “ `pP1d Rq “ `pP1q` `pRq ă `pPq` `pRq “ `pPq` `pQq “ `pP d Qq.

These two results, `pP n Qq ă `pP d Qq and `pP d Rq ă `pP d Qq, complete the proof of
Theorem 1.

Remark 6.2

We may have the case that there are no more Hn,Hm that can be combined in the manner
of Theorem 1. Still further synchronisation is possible, if there exists Hmi,mi ‰ n, where for

each longest path in Hn, there is a longest path containing a synchronising arc in
l

l
i“1

Hmi, l ă k.

7. Conclusions

With Theorem 1, we have proved that if one wants to reduce the worst-case performance
of periodic real-time parallel processes, one can combine processes, where all longest traces
for at least one process must contain synchronising actions and at least one other process
must contain at least one longest trace with a synchronising action. To reach this point we
have introduced graph products that can help us to analyse and combine a number of parallel
processes. We were able to identify the pathological case in a natural manner by introducing
the weak synchronised product. This made it visible that a set of parallel processes may
contain unwanted behaviour, for example a deadlocked state. We have shown in the proof of
Lemma 4 and Remark 4.1, that we can filter out this unwanted or ill-defined behaviour.

We informally introduced the notion of a consistent and an inconsistent set of graphs
(representing real-time periodic processes). The latter represents behaviour of processes that
is unwanted, but might appear in a non-trivial process specification. From our proof, it follows
that one can detect whether such a situation occurs in a process specification: one just has to
find paths that shrink when the weak synchronised product is taken.

Finally, we have shown how to get to the synchronised product, which can be used
to improve the worst case performance of parallel processes, and how processes might be
combined on synchronising actions in order to obtain a performance gain.

7.1. Discussion

The performance gain is significant if the set of parallel processes will miss deadlines if
not synchronised, but will meet its deadlines if synchronised. Whether such a significant
performance gain is achieved by combining processes is not clear. Firstly, a tool that will
produce a synchronised product of parallel processes based on the transformations described
in our paper does not exist yet. Secondly, whether or not a significant performance gain is
achieved by combining processes depends on the ratio of the context switch time and the
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calculation time of the processes itself; clearly this depends on the type of hardware and
operating system used.

For context switches, Li [1] distinguishes between direct and indirect costs with respect
to the processing power. The direct costs consist of issues like saving and restoring registers,
translation table look aside buffer entries that need to be reloaded, flushing of the processor
pipe-line, but also kernel code that has to execute. Indirect costs include cache misses caused
when context switches to a process whose cache lines have been reused. Such costs may
degrade performance in a significant way. Li [1] also shows that the average direct cost is
3.8 µs. The indirect cost varies from a few microseconds to more than one millisecond, all on
a 2.0 GHz Intel Pentium Xeon CPU, with 512 kB L2 cache. The operating system is a Linux
2.6.17 kernel with Redhat 9.

Veldhuijzen [2] shows that the cost is on average 7.7µs on a 560 MHz Pentium IV
processor, running under the QNX operating system. A typical control loop as used in [2]
takes 70 µs. Together with the motion profile and the many context switches it takes up to
650 µs. This is well within the boundary of 1 ms, the period of a control loop. Veldhuijzen [2]
gives a gain of 100 - 140 µs. This would mean a gain up to 15 to 20 %.

As a contrast, Ritson et al. [3] show context switch overheads for occam-π , under the
KRoC CCSP multicore scheduler, of the order of 100 nanoseconds - often much less (around
30 nanoseconds). For such systems, the value of the transformations described occurs when
the granularity of concurrency becomes too fine even for that language and scheduler – and
our ambitions for ever-more complex behaviour from systems drive us in that direction.

7.2. Future Work

The graph products we introduced will form the basis for further research. One of the main
aims of further study is to develop exact algorithms and heuristics for optimising the perfor-
mance gain by combining processes. To get the set of all longest paths in a graph is exponen-
tial in n, as shown in Remark 3.4 and therefore not tractable. It is essential that all longest
paths are found. It is obvious that, for example, a breadth-first search will give an answer to
the length of the longest path; but this is not sufficient. If there is a longest path in graph H1
that does not have a synchronising arc in common with a longest path in graph H2, the syn-
chronised product will have the same length as the Cartesian product and no gain is achieved.
If such a situation exists in a hard real-time system, then, if the original parallel specification
has a deadline-miss due to these two (interleaved) traces, also the specification represented
by the synchronised product may have the same deadline-miss.

In our case, robotic applications, although the number of states and the number of ac-
tions in a process is limited, this may lead to the need for a heuristic giving a reasonable
performance gain.

This research is restricted to periodic real-time applications, where the periods, release
time and deadlines are the same. This can be extended to applications where this is not the
case. An issue that will arise is the scheduling of the synchronised product, because this
product will have internal deadlines.

Furthermore the aspect of memory usage is not taken into account. Combining graphs
leads to a state space explosion, although synchronisation may reduce the magnitude of the
explosion. To reduce such an explosion, it might be necessary to combine only a subset of the
set of graphs representing the parallel process specification. Decomposition of the original
graph into its prime factors, will give the optimal set of graphs from which synchronised
products can be taken. This leads to a set of graphs that still fits in the available memory
and has a maximal performance gain. Another application of the decomposition into prime
products is in case the original specification does not fit in the available memory. It might
not always be possible to just extend the available memory. As an example, imagine a robot,
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running around on Mars, needs a software update, but the model just does not fit in the
available memory. It would be difficult to get a memory extension in place. The same is
applicable in robots operating in, for example, nuclear fusion reactors. Maintenance under
these (hot) circumstances of the robot is also difficult. Clearly these situations apply to much
more complex applications than we are considering. For the above mentioned reasons we
have to show the associativity and commutativity of our synchronised product. Furthermore
we have to define the constraints for the prime factors of our synchronised product and give
an algorithm that calculates such factors.

A valid question is: what is the maximum gain that can be achieved by combining pro-
cesses within a certain amount of available memory? With that knowledge, we can improve
the performance of the systems produced with tools like LUNA [13] and TERRA [14]. These
issues are for future research.
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Appendix

In Listing 2, we give an example for the serialisation of two processes containing choice.
Two processes synchronise over the actions a,c, and e. According the process specification
of Listing 2, two traces can occur, d Ñ c Ñ e and a Ñ b Ñ e. The last stage of Figure 12
shows the graph representing these two traces.

1 H1 = (a Ñ b Ñ H 1
1)

2 l

3 (d Ñ c Ñ H 1
1)

4 H 1
1 = e Ñ SKIP

5
6 H2 = (a Ñ H 1

2)

7 l

8 (c Ñ H 1
2)

9 H 1
2 = e Ñ SKIP

10 H = H1 ta,b,c,d,eu‖ta,c,eu H2

Listing 2. Description of the CHOICE in two parallel processes.

Assuming that the weight of all arcs is 1, the graph consisting of the two components
H1 and H2 has 8 vertices and a length `pH1q` `pH2q “ 5, whereas the synchronized product
`pH1 n H2q has 5 vertices and a length `pH1 n H2q “ 3. This example shows a gain for both
the memory occupancy, as the performance of the application.
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Figure 12. Choice in two parallel processes, from
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through n.
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