The Guppy Language: An Update

CPA-2013 Fringe
Fred Barnes
School of Computing, University of Kent, Canterbury

F.R.M.Barnes@kent.ac.uk
http://wuw.cs.kent.ac.uk/ frmb/

University of R
Kent

Com\puting

Programming Languages and Systems



Previously

Last Time ...

m ... at CPA-2011.

m | talked about a possible successor language to occam-pi: Guppy.
m we're still trying to think up a better name...!



Previously

Last Time ...

m ... at CPA-2011.

m | talked about a possible successor language to occam-pi: Guppy.
m we're still trying to think up a better name...!

m We're still using occam-pi, of course.
m adding new things and fixing bugs as we go.



Previously

Last Time ...

m ... at CPA-2011.
m | talked about a possible successor language to occam-pi: Guppy.
m we're still trying to think up a better name...!
m We're still using occam-pi, of course.
m adding new things and fixing bugs as we go.
m Why..?
m occam-pi is a bolt-on (kind of) to occam: and built into the existing
occam compiler (circa 1990s).

m hard to add new things.
m perception issues with the name, too. :-(



Previously

What We Need ... (last time)

m Preserving the useful features of occam/occam-pi:
m embodiment of CSP based concurrency (though may not restrict to
that alone) in the language itself.
m strict parallel usage checks: zero aliasing.
m Preserving the fast execution of the resulting code:
m no heavy run-time checks (e.g. expensive run-time typing, complex
garbage collection).
m using existing CCSP.
m Targetable at just about any architecture in existence:
m by compiling (ultimately) to LLVM (low-level virtual machine).



Previously

What We Would Like ... (last time)

m A language that other people would be happy to (and may even
want to) use:

m successes of Python and Go suggest indentation-based layout and
concurrency are not distasteful.
m Rapid development — nothing overly cumbersome to program with
respect to other languages:

m need some genericity/flexibility in the type system
m automatic ‘SEQ’ behaviour (static checks can spot likely errors)
m may need to sacrifice some of the purity of occam to make this work..

m Automatic mobility (largely a compiler thing), with a couple of
language hints thrown in to help the compiler when automatic static
analysis gets too complex (or wrong).

m A proper ‘string’ type with Unicode support.



Current State

m Have implemented some of the language.

m in the NOCC compiler framework (which also grew an AVR
assembler recently).



Current State

m Have implemented some of the language.

m in the NOCC compiler framework (which also grew an AVR
assembler recently).

m Currently generating C code from Guppy sources:

m a known quantity when it comes to debugging, etc.
m interfaces with the existing run-time system (CCSP [1]) using CIF [2].



Current State

m Have implemented some of the language.

m in the NOCC compiler framework (which also grew an AVR
assembler recently).

m Currently generating C code from Guppy sources:

m a known quantity when it comes to debugging, etc.
m interfaces with the existing run-time system (CCSP [1]) using CIF [2].

m Recently, managed to compile and run the commstime benchmark!
m ... insert live demonstration ...



Comparison with occam-pi

m Not as efficient, but close.

m run-time kernel calls impose some overhead: optimised for occam-pi.
m more memory required, e.g. commstime: 132 words for occam-pi,
434 for Guppy.

m commstime is perhaps not a good benchmark, but not got enough
compiler support for hard-core computational code yet!

m Because we go via CIF into the run-time, can (in principle) co-exist
with occam-pi processes.

m useful in various ways.
m Get it here:

http://github.com/concurrency/kroc
http://github.com/concurrency/nocc
(and then you have to figure out how to make it fly, ...)



—




References

References

[1] C.G. Ritson, A.T. Sampson, and F.R.M. Barnes.
Multicore scheduling for lightweight communicating processes.
Science of Computer Programming, 77(6):727-740, June 2012.

[2] F.RM. Barnes
Interfacing C and occam-pi.

In J.F. Broenink, H.W. Roebbers, J.P.E. Sunter, P.H. Welch, and D.C. Wood, editors, Proceedings of Communicating Process
Architectures 2005. 10S Press, September 2005



	Previously
	Now
	References

