
Service-Oriented

Programming in MPI
Sarwar Alam, Humaira Kamal and Alan Wagner

University of British Columbia

Network

Systems

Security

Lab

Overview

Fine-Grain MPI

Service-Oriented
Programming

Performance Tuning

Problem: How to provide data structures to MPI?

Composition

• Abstraction

• Cohesive

• Low coupling

Hierarchical
Communication

Load-
balancing

Slackness

Scalability

Properties

Issues

Fine-Grain MPI

MPI
• Advantages

• Efficient over many fabrics

• Rich communication library

• Disadvantages

• Bound to OS processes

• SPMD programming model

• Course-grain

Fine-Grain MPI
Program: OS processes with co-routines (fibers)

Multicore Node

MPI process

• Full-fledged MPI “processes”

• Combination of OS-scheduled and user-level light-
weight processes inside each process

Fine-Grain MPI

• One model, inside and between nodes

• Interleaved Concurrency

• Parallel: same node between nodes

Node 1 Node 2

Integrated into MPICH2

Composition

• Abstraction

• Cohesive

• Low coupling

Hierarchical
Communication

Load-balancing Slackness

Scalability

Properties

System Details

Executing FG-MPI

Programs

• Example of SPMD MPI program

• with 16 MPI processes,

• assuming two nodes with quad-core.

8 pairs of processes executing in parallel, where

each pair interleaves execution

mpiexec –nfg 2 –n 8 myprog

Decoupled from Hardware

• Fit the number of processes to the problem

rather than the number of cores

mpiexec –nfg 350 –n 4 myprog

Flexibility

• Move the boundary between light-weight

user scheduled concurrency, and

processes running in parallel.

mpiexec –nfg 1000 –n 4 myprog

mpiexec –nfg 500 –n 8 myprog

mpiexec –nfg 750 –n 4 myprog: -nfg 250 –n 4 myprog

Scalability

• Can have hundreds and thousands of MPI
processes.

• 100 Million processes on 6500 cores

mpiexec –nfg 30000 –n 8 myprog

mpiexec –nfg 16000 –n 6500 myprog

Composition

• Abstraction

• Cohesive

• Low coupling

Hierarchical
Communication

Load-balancing Slackness

Scalability

Properties

Service-Oriented

Programming

• Linked List Structure

• Keys in sorted order

• Similar

• Distributed hash table

• Linda Tuple Spaces

Ordered Linked-List

43 3

27

An MPI process in ordered list
Minimum key value

of items stored in

next MPI process

Stores one or more

key values

Rank of MPI process

with next larger key

values

Previous MPI

process in

ordered list

Next MPI

process in

ordered list

Data associated with

key

Ordered Linked-List

L0 L12 L28
L43 L21 L18 L75 L56

A45 A38 A3

Ordered Linked-List

INSERT

DELETE

FIND

Ordered Linked-List

L0 L12

L75

L28

L56

L43 L21 L18

F30

F65

L75 L56

A12

Shortcuts

F30

M10

L34

L15
L28

Key value Rank (ptr)

23 15

2012 34

5510 28

Free Ranks

24

30

F24

A12

Local Process Ecosystem

Local non-communication operations are ATOMIC

Re-incarnation

F30

M10
L34 L15

L28

Free Ranks

24

30

28

F24
Recv()

A12

Local Process Ecosystem

send() F24

F28

Local non-communication operations

are ATOMIC

Composition

• Abstraction

• Cohesive

• Low coupling

Hierarchical
Communication

Load-balancing

Slackness

Scalability

Properties

Granularity
• Added the ability for each process to

manage a collection of consecutive items.

• Changes to INSERT, changes into a SPLIT

operation

• Changes to DELETE, on delete of last item

• List Traversal consists of:

• Jumping between processes

• Jumping co-located processes

• Search inside a process

Properties
• Total Ordered – operations are ordered by

the order they arrive at the root

• Sequentially Consistent – each application

process keeps a hold-back queue to return

results in order

• No consistency – operations can occur in

any order

 Composition

• Abstraction

• Cohesive

• Low coupling

Hierarchical
Communication

Load-balancing Slackness

Scalability

Properties

Performance Tuning

• G (granularity) the number of keys stored in

each process.

• K (asynchrony) the number of messages in

the channel between list processes.

• W (workload) the number of outstanding

operations

16,000

operations/sec 5793 operations/sec

Steady-StateThroughput

Fixed list size, evenly distributed over O x M core

Granularity (G)

Fixed-size machine (176 cores), Fixed list size (2^20)

Moving work from INSIDE a process to BETWEEN processes

Sequentially Consistent No-consistency

10X larger

W and K
W : Number of outstanding requests (workload)

 K : Degree of Asynchrony

Composition

• Abstraction

• Cohesive

• Low coupling

Hierarchical
Communication

Load-balancing

Slackness

Scalability

Properties

Conclusions

• Reduced coupling and increased cohesion

• Scalability within clusters of multicore

• Performance tuning controls

• Adapt to hierarchical network fabric

• Distributed systems properties pertaining to

consistency

Thank-You

