Service-Oriented
Programming in MPI

Sarwar Alam, Humaira Kamal and Alan Wagner
University of British Columbia

BC Network

sy | SYStEMS
Security

[4
\/ Lab

Overview

Problem: How to provide data structures to MPI?

. Fine-Grain MPI

Service-Oriented
Programming
. Performance Tuning

ISsues

Composition

e Abstraction
 Cohesive

Properties - Low coupling

Hierarchical
Communication

Scalability

Load-

Slackness balancing

Fine-Grain MPI

MP]

® Advantages
® Efficient over many fabrics
® Rich communication library
® Disadvantages
® Bound to OS processes
® SPMD programming model

® Course-grain

Fine-Grain MPI

Program: OS processes with co-routines (fibers)

MP1 process

Multicore Node

® Full-fledged MPI “processes”

® Combination of OS-scheduled and user-level light-
weight processes inside each process

Fine-Grain MPI

® One model, inside and between nodes
® Interleaved Concurrency

® Parallel: same node between nodes

Integrated into MPICH?2

Application | lumpshot |

Fine-Grain MPICHZ2

i]

i |

i |

‘ <| PMPI [I MPE |

MPD . .
i]

i]

ADI3 (Abstract Device Interface)
Hydra CH3 Device IEG IEravI
—_— . Yy y —
SMPO P Sock | SCTP | SHM NE[ﬂEEiE] l
Nemesis Interface]

[_] J%:h[mmﬁﬁﬁp I S) X Il oM |

System Detalls

FG-MPI RUNTIME
~

i (
Free Request HEDULER
(Pool)H L 2 U
Coroutine 1
Unexpected
Gﬂessage n’ZJuEruEDH C \ \: -

Coroutine 2_/ y MPI Communicator

Czﬂgted Heceiuej structures rnar'l.agement and
sharing

Queue 9
/]

MPI message management, FFUQFESS
(Cc:rnmunicatur }é C (de)multiplexing and matching Coroutine
.

Foo Coroutine P
vy

HE
(MPI PROGRESS ENGINE)

(Nemesis Network Interface Hﬂunnediﬂn Routing Table>
I

(Network Module (TCP, etc))

Executing FG-MPI
Programs

mplexec —nfg 2 —n 8 myprog
- J

® Example of SPMD MPI program
® with 16 MPI processes,
® assuming two nodes with quad-core.

8 pairs of processes executing In parallel, where
each pair interleaves execution

Decoupled from Hardware

mplexec —nfg 350 —n 4 myprog

® Fit the number of processes to the problem
rather than the number of cores

Flexibility

[mpilexec —nfg 1000 —n 4 myprog]

[mpiexec —nfg 500 —n 8 myprog]

{ mpilexec —nfg 750 —n 4 myprog: -nfg 250 —n 4 myprog]

® Move the boundary between light-weight
user scheduled concurrency, and
processes running in parallel.

Scalabllity

-

_

mpliexec —nfg 30000 —n 8 myprog

\

J

® Can have hundreds and thousands of MP]

Processes.

_

mplexec —nfg 16000 —n 6500 myprog

® 100 Million processes on 6500 cores

p

Service-Oriented
Programming

® Linked List Structure
® Keys in sorted order
® Similar
® Distributed hash table

® Linda Tuple Spaces

Ordered Linked-List

An MPI process in ordered list

Minimum key value Rank of MPI process

of items stored in with next larger key
next MPI process values

‘ Next MPI

Previous MPI > 43 3 process in

process in ordered list
ordered list 27 -

Data associated with

Stores one or more key
key values

Ordered Linked-List

. Data sent after ‘
- Sequence number_

DELETE

« Success/Failure
* Sequence number

FIND

* Sequence number
* Return datg

Ordered Linked-List

g ™y
MPL COMM WORLD

OS-Processes

INSERT

Step 4: “C" is linked in and
informs application

LEGEND
Node Types:
. ofe e - List Node
e - Free Node
T~ ® - Application Node
S
N i >© ® - Manager Node
o Connection Arrows:
Step 1: “A’ requests for a new node, ‘C’ replies » - Existing Link
) - = — - New Connection
Messaging Arrows:
Y eeseess > - Message Sent
e e — —— —>»- Reply Sent
Tteeeea.. —— — - = - Free Node Service Route
Step 2: A’ sends ‘C’ information about ‘B’
5 *C7 then connects to *B’
o ™
Step 3: “A’ sends terminate to ‘B’
before connecting to *C’
b A
~

D I I I I I LEGEND
Node Types: - List Node
-~ - Free Node
@ e @ - Application Node
e ® - Manager Node
B > e Connection Arrows:
—— - Existing Link
Step 1: *A’ passes delete to ‘B” and waits — — — - New Connection
) Messaging Arrows:
------- > - Message Sent
e ™
e _— {@ — —— —>»- Reply Sent
e L —_— = - Free Node Service Route
Step 2: ‘B’ sends terminate to ‘C” before
acknowledging to A
(. A
- ™
® —— >
Step 3: “A” accepts ‘C” from ‘B’
then *‘B’ informs success to application
. J
-~ ™

Step 4: “B’ converts to a free node

LEGEND

Node Types:

@ - Application Node
® - Manager Node

Connection Arrows:

—— - Existing Link
- = — - New Connection

Messaging Arrows:

_______ > - Message Sent
— — =»-Reply Sent
_——s } - Free Node Service Route

Step 2: If match found or match not possible
‘B” mforms application
(else request passed to "C")

Ordered Linked-List

e 6 e

&

@@

Shortcuts

Local Process Ecosystem

Key value Rank (ptr) Free Ranks

23 15 24
2012 34 30
5510 28

Local non-communication operations are ATOMIC

Re-Incarnation

Local Process Ecosystem

Free Ranks
e
30

|
send (

Local non-communication operations
are ATOMIC

Granularity

® Added the ability for each process to
manage a collection of consecutive items.

® Changes to INSERT, changes into a SPLIT
operation

® Changes to DELETE, on delete of last item
® List Traversal consists of:

® Jumping between processes

® Jumping co-located processes

® Search inside a process

Properties

® Total Ordered — operations are ordered by
the order they arrive at the root

® Sequentially Consistent — each application

process keeps a hold-back queue to return
results in order

® No consistency — operations can occur in
any order

Performance Tuning

® G (granularity) the number of keys stored in
each process.

® K (asynchrony) the number of messages in
the channel between list processes.

® W (workload) the number of outstanding
operations

Steady-StateThroughput

Fixed list size, evenly distributed over O x M core

300000
= O
2 250000 [[]
A 0
3
&0 200000
= [] =—Total Ordering
©
2 150000 B No Consistency
E === Sequentially Consistent
< 100000
-
F 50000 e

h

0
16 48 a0 112 152 192
Number of Cores
16,000

operations/sec 5793 operations/sec

Granularity (G)

Fixed-size machine (176 cores), Fixed list size (2*20)

40000 350000 1 OX I arg e r

= 35000 2 300000

g %
[=] "
o =
g 30000 2 250000
2 25000 g —a
@ = 200000
[=] Q
= 20000)
g = 150000
=

S 15000 2
z = 100000
= =
ED 10000 n E
[=]
= 50000
= 5000

0 0

0 100 200 300 400 500 600 700 800 900 1000 0] 100 200 300 400 500 600 700 800 900 1000
P {Number of processes in an OS-process) P {Number of processes in an OS-process)

Sequentially Consistent No-consistency

Moving work from INSIDE a process to BETWEEN processes

W and K

W : Number of outstanding requests (workload)
K : Degree of Asynchrony

35000
=
S 30000
4 K]
[':_" B — T —
£ 25000
3
= 20000
k)
=
-
-
=1
= 10000
=
=
~000 == =K =1 K=10 =i (=100 e=tpm=[=200
0
0 20 40 60 80 100 120 140

W {Number of outstanding requests allowed per application process)

Conclusions

® Reduced coupling and increased cohesion
® Scalability within clusters of multicore
® Performance tuning controls

® Adapt to hierarchical network fabric

® Distributed systems properties pertaining to
consistency

Thank-You

