
7-Sep-12 Copyright P.H.Welch 1

occam Obviouslyoccam Obviouslyoccam Obviously

Peter Welch (phw@kent.ac.uk)

CPA 2012 (University of Abertay, 27th. August, 2012)

7-Sep-12 Copyright P.H.Welch 2

occam Obviouslyoccam Obviously
If the title of this talk is the answer, we need to know the queIf the title of this talk is the answer, we need to know the question stion ……
I shall assume I shall assume somesome knowledge of occam though knowledge of occam though ……
How about:How about:

Which language most irritates programmers who want to hack?Which language most irritates programmers who want to hack?Which language most irritates programmers who want to hack?

“The stupid compiler keeps refusing to compile my code” /““The stupid compiler keeps refusing to compile my codeThe stupid compiler keeps refusing to compile my code”” //

Which language most supports programmers who want to hack?Which language most supports programmers who want to hack?Which language most supports programmers who want to hack?

“The clever compiler keeps refusing to compile my code” ☺““The clever compiler keeps refusing to compile my codeThe clever compiler keeps refusing to compile my code”” ☺☺

“… but when it does, my code works first time!” ☺“…“… but when it does, my code works first time!but when it does, my code works first time!”” ☺☺

7-Sep-12 Copyright P.H.Welch 3

occam Obviouslyoccam Obviously
If the title of this talk is the answer, we need to know the queIf the title of this talk is the answer, we need to know the question stion ……

Which language has concurrency built into its core design, with a
compositional (wysiwyg) semantics founded on process algebra?
Which language has concurrency built into its core design, with Which language has concurrency built into its core design, with a a
compositional compositional ((wysiwygwysiwyg)) semantics founded on process algebra?semantics founded on process algebra?

occam is almost its own process algebra, with laws and
proof rules supported by a model checker that enables
formal verification to be part of the normal program writing
experience (by programmers who are not mathematicians).

occam is almost its own process algebra, with laws and occam is almost its own process algebra, with laws and
proof rules supported by a model checker proof rules supported by a model checker that enables that enables
formal verification to be part of the normal program writing formal verification to be part of the normal program writing
experienceexperience (by programmers who are not mathematicians).(by programmers who are not mathematicians).

Which language has concurrency safety rules built into its design
that prohibits data races and guarantees sequential consistency?
Which language has concurrency safety rules built into its desigWhich language has concurrency safety rules built into its design n
that prohibits data races and guarantees sequential consistency?that prohibits data races and guarantees sequential consistency?

occam processes are, therefore, immune to instruction re-
ordering tricks played by modern multicore architectures and
exploit the performance gains automatically and safely.

occam processes are, therefore, immune to instruction reoccam processes are, therefore, immune to instruction re--
ordering tricks played by modern multicore architectures ordering tricks played by modern multicore architectures andand
exploit the performance gains automatically and safelyexploit the performance gains automatically and safely. .

7-Sep-12 Copyright P.H.Welch 4

occam Obviouslyoccam Obviously
If the title of this talk is the answer, we need to know the queIf the title of this talk is the answer, we need to know the question stion ……

Which language has a concurrency model that is deterministic by
default, but which can simply and safely build non-deterministic
systems (when needed) by design?

Which language has a concurrency model that is deterministic Which language has a concurrency model that is deterministic by by
defaultdefault, but which can simply and safely build non, but which can simply and safely build non--deterministic deterministic
systems (when needed) systems (when needed) by designby design??

occam PAR is deterministic (like the CSP parallel operator) .
Non-determinism is only introduced through ALT (choice),
SHARED channel-ends, random number generators and any
(foolish) reliance on absolute time.

occam occam PARPAR is deterministic (like the CSP parallel operator) . is deterministic (like the CSP parallel operator) .
NonNon--determinism is only introduced through determinism is only introduced through ALTALT (choice), (choice),
SHAREDSHARED channelchannel--ends, random number generators and any ends, random number generators and any
(foolish) reliance on absolute time. (foolish) reliance on absolute time.

Which language has a concurrency model that is highly dynamic,
allowing process networks to form and break up autonomously?
Which language has a concurrency model that is highly dynamic, Which language has a concurrency model that is highly dynamic,
allowing process networks to form and break up autonomously?allowing process networks to form and break up autonomously?

Thanks to the π-calculus extensions (mobile channel ends,
mobile processes) introduced with occam-π.
Thanks to the Thanks to the ππ--calculuscalculus extensions (mobile channel ends, extensions (mobile channel ends,
mobile processes) introduced with mobile processes) introduced with occamoccam--ππ. .

7-Sep-12 Copyright P.H.Welch 5

occam Obviouslyoccam Obviously
If the title of this talk is the answer, we need to know the queIf the title of this talk is the answer, we need to know the question stion ……

Which language has the fastest and most scalable multicore
scheduler on the planet?
Which language has Which language has the fastest and most scalable multicore the fastest and most scalable multicore
scheduler on the planetscheduler on the planet??

Probably … thanks to Carl / Fred / Adam / Kevin / et al. ProbablyProbably …… thanks to Carl / Fred / Adam / Kevin / et al. thanks to Carl / Fred / Adam / Kevin / et al.

Minimal use of atomic instructions, automatic and dynamic
scheduling of frequently communicating processes to the
same core (minimise cache misses), …

Minimal use of atomic instructions, automatic and dynamic Minimal use of atomic instructions, automatic and dynamic
scheduling of frequently communicating processes to the scheduling of frequently communicating processes to the
same core (minimise cache misses), same core (minimise cache misses), ……

Millions of processes per processor are manageable (with
sufficiently simple processes and enough memory).
Hundreds of thousands or processes are typical (e.g. large-
scale complex systems simulations and research into
emergent behaviour), with 6x speed-up on quad-core i7 with
hyper-threading obtained with no special programming care.

Millions of processes per processor are manageable (with Millions of processes per processor are manageable (with
sufficiently simple processes and enough memory). sufficiently simple processes and enough memory).
Hundreds of thousands or processes are typical (e.g. largeHundreds of thousands or processes are typical (e.g. large--
scale complex systems simulations and research into scale complex systems simulations and research into
emergent behaviour), with 6x speedemergent behaviour), with 6x speed--up on quadup on quad--core i7 with core i7 with
hyperhyper--threading obtained threading obtained with no special programming carewith no special programming care..

7-Sep-12 Copyright P.H.Welch 6

occam Obviouslyoccam Obviously
If the title of this talk is the answer, we need to know the queIf the title of this talk is the answer, we need to know the question stion ……

Which language can be introduced to undergraduates in Fresher
Week so that they can be programming Lego robots to navigate
their environment (reacting to bumps, following tracks) using
concurrent processes for sensor gathering, brain logic and motor
drivers … in one 90 minute class?

Which language can be introduced to undergraduates in Which language can be introduced to undergraduates in Fresher Fresher
WeekWeek so that they can be programming Lego robots to navigate so that they can be programming Lego robots to navigate
their environment (reacting to bumps, following tracks) using their environment (reacting to bumps, following tracks) using
concurrent processes for sensor gathering, brain logic and motorconcurrent processes for sensor gathering, brain logic and motor
drivers drivers …… in one 90 minute class?in one 90 minute class?

Yep …Yep Yep ……

7-Sep-12 Copyright P.H.Welch 7

occam Obviouslyoccam Obviously
If the title of this talk is the answer, we need to know the queIf the title of this talk is the answer, we need to know the question stion ……

Which language can be introduced to undergraduates in Fresher
Week so that they can be programming Lego robots to navigate
their environment (reacting to bumps, following tracks) using
concurrent processes for sensor gathering, brain logic and motor
drivers … in one 90 minute class?

Which language can be introduced to undergraduates in Which language can be introduced to undergraduates in Fresher Fresher
WeekWeek so that they can be programming Lego robots to navigate so that they can be programming Lego robots to navigate
their environment (reacting to bumps, following tracks) using their environment (reacting to bumps, following tracks) using
concurrent processes for sensor gathering, brain logic and motorconcurrent processes for sensor gathering, brain logic and motor
drivers drivers …… in one 90 minute class?in one 90 minute class?

Yep …Yep Yep ……

7-Sep-12 Copyright P.H.Welch 8

occam Obviouslyoccam Obviously
If the title of this talk is the answer, we need to know the queIf the title of this talk is the answer, we need to know the question stion ……

Which language can be introduced to undergraduates in Fresher
Week so that they can be programming Lego robots to navigate
their environment (reacting to bumps, following tracks) using
concurrent processes for sensor gathering, brain logic and motor
drivers … in one 90 minute class?

Which language can be introduced to undergraduates in Which language can be introduced to undergraduates in Fresher Fresher
WeekWeek so that they can be programming Lego robots to navigate so that they can be programming Lego robots to navigate
their environment (reacting to bumps, following tracks) using their environment (reacting to bumps, following tracks) using
concurrent processes for sensor gathering, brain logic and motorconcurrent processes for sensor gathering, brain logic and motor
drivers drivers …… in one 90 minute class?in one 90 minute class?

Yep …Yep Yep ……

Which language had large-scale and successful industrial use
20-25 years ago … but is now mostly forgotten (even as its ideas
are slowly and expensively and painfully being reinvented piece-
by-piece, as they must be)?

Which language had largeWhich language had large--scale and successful industrial use scale and successful industrial use
2020--25 years ago 25 years ago …… but is now mostly forgotten but is now mostly forgotten (even as its ideas (even as its ideas
are slowly and expensively and painfully being reinvented pieceare slowly and expensively and painfully being reinvented piece--
byby--piece, as they must be)piece, as they must be)??

Yep …Yep Yep ……

7-Sep-12 Copyright P.H.Welch 9

A Long Long Time Ago …A Long Long Time Ago …
Computers were invented: programmable calculating machines that Computers were invented: programmable calculating machines that were were
Turing completeTuring complete …… meaning they could do anything any future computer meaning they could do anything any future computer
could do (which was pretty cool).could do (which was pretty cool).

Babbage’s Analytical Engine (1837). Sadly, too far ahead of its
time, not enough funding and a bad choice (in retrospect) of
number representation (decimal).

BabbageBabbage’’s s Analytical EngineAnalytical Engine (1837). Sadly, too far ahead of its (1837). Sadly, too far ahead of its
time, not enough funding and a bad choice (in retrospect) of time, not enough funding and a bad choice (in retrospect) of
number representation (decimal).number representation (decimal).

Working machines had to wait for a better understanding of theorWorking machines had to wait for a better understanding of theory:y:

Russell’s Principia Mathematica (1910-13) …
Godell’s Incompleteness Theorem (1931) …
Church’s Lambda Calculus (1936) …
Turing’s On Computable Numbers (1936) …

RussellRussell’’s s Principia Principia MathematicaMathematica (1910(1910--13) 13) ……
GodellGodell’’ss Incompleteness TheoremIncompleteness Theorem (1931) (1931) ……
ChurchChurch’’s s Lambda CalculusLambda Calculus (1936) (1936) ……
TuringTuring’’s s On Computable NumbersOn Computable Numbers (1936) (1936) ……

And seriously better funding:And seriously better funding:

The Second World War (1939-45) …The The Second World WarSecond World War (1939(1939--45) 45) ……

7-Sep-12 Copyright P.H.Welch 10

A Long Long Time Ago …A Long Long Time Ago …
Following the war, the pace picked up as the commercial potentiaFollowing the war, the pace picked up as the commercial potential l
became obvious became obvious …… in the USA at least (in the USA at least (ENIACENIAC, 1946), but eventually , 1946), but eventually
everywhere.everywhere.

Ideas for hardware and software developed and were put into pracIdeas for hardware and software developed and were put into practice at a tice at a
rate unprecedented for any other technology.rate unprecedented for any other technology.

From 1970 to this day, a new and unfortunate race started. It iFrom 1970 to this day, a new and unfortunate race started. It involves the nvolves the
phenomenon known as phenomenon known as MooreMoore’’s Laws Law. Paraphrasing (and only slightly . Paraphrasing (and only slightly
mismis--quoting) quoting) David MayDavid May (2005):(2005):

“Hardware capabilities double every 18 months. Unfortunately,
software overheads respond by doubling every 17 months …”
““Hardware capabilities double every 18 months. Unfortunately, Hardware capabilities double every 18 months. Unfortunately,
software overheads respond by doubling every 17 months software overheads respond by doubling every 17 months …”…”

We experience this every day. Our laptops/tablets/phones are miWe experience this every day. Our laptops/tablets/phones are millions of llions of
times more powerful than the computers that landed the Apollo astimes more powerful than the computers that landed the Apollo astronauts tronauts
on the moon. But what are they doing most of the time on the moon. But what are they doing most of the time …… why, so often, why, so often,
wonwon’’t they respond to us t they respond to us …… why the why the spinning wheel of deathspinning wheel of death??

7-Sep-12 Copyright P.H.Welch 11

A Long Long Time Ago …A Long Long Time Ago …
Sometime in the late 60s (or early 70s), Sometime in the late 60s (or early 70s), DijkstraDijkstra made a similar point:made a similar point:

“In the beginning when we had no computers, we had no
problems. Then when we had small computers, we had small
problems. Now that we have big computers, we have big
problems …”

““In the beginning when we had no computers, we had no In the beginning when we had no computers, we had no
problems. Then when we had small computers, we had small problems. Then when we had small computers, we had small
problems. Now that we have big computers, we have big problems. Now that we have big computers, we have big
problems problems …”…”

Now (2012), we have tiny computers again Now (2012), we have tiny computers again –– massmass--produced and in most produced and in most
everyoneeveryone’’s pockets.s pockets.

Thanks to the ingenuity of our hardware engineers, their astonisThanks to the ingenuity of our hardware engineers, their astonishing hing
power is barely related to their physical size.power is barely related to their physical size.

Thanks to the ingenuity of our software engineers, we have astonThanks to the ingenuity of our software engineers, we have astonishing ishing
problems problems ……

7-Sep-12 Copyright P.H.Welch 12

Bad News on the Doorstep …Bad News on the Doorstep …
Something went wrong.Something went wrong.

The foundations of computing from the first half of the The foundations of computing from the first half of the 2020thth. Century. Century show show
that that mathematicsmathematics is probably important. The pioneers were mathematicians is probably important. The pioneers were mathematicians
or engineers (who relied on mathematical models of the materialsor engineers (who relied on mathematical models of the materials they they
were engineering).were engineering).

Such foundations seem mostly abandoned today:Such foundations seem mostly abandoned today:

Walk into a class of (say) second-year CS undergraduates in any
(maybe, almost any) university and ask them what a loop invariant
is … or recursion invariant (if they are into functional programming)
or class invariant (if they are into object orientation). Result?

Walk into a class of (say) secondWalk into a class of (say) second--year CS undergraduates in any year CS undergraduates in any
(maybe, almost any) university and ask them what a (maybe, almost any) university and ask them what a loop invariantloop invariant
is is …… or or recursion invariantrecursion invariant (if they are into functional programming) (if they are into functional programming)
or or class invariantclass invariant (if they are into object orientation). Result?(if they are into object orientation). Result?

I did this in my university this academic year (2011I did this in my university this academic year (2011--12). Mostly blank 12). Mostly blank
stares stares –– this is not an uncommon reaction this is not an uncommon reaction –– but gentle further questioning but gentle further questioning
revealed that they really didnrevealed that they really didn’’t know. Some, thank goodness, did express t know. Some, thank goodness, did express
curiosity though.curiosity though.

7-Sep-12 Copyright P.H.Welch 13

Bad News on the Doorstep …Bad News on the Doorstep …
Nailing Nailing invarianceinvariance is one of the most powerful forms of analysis is one of the most powerful forms of analysis –– whether whether
in mathematics or programming. It is necessary before constructin mathematics or programming. It is necessary before construction.ion.

How can (and why do) we teach How can (and why do) we teach loopsloops or or recursionrecursion or or classesclasses without without
teaching the concept of teaching the concept of invarianceinvariance? We must form invariants in our head ? We must form invariants in our head
whenever we program a loop (recursive function, class) whenever we program a loop (recursive function, class) –– otherwise, our otherwise, our
code will just be guessworkcode will just be guesswork. So, why not declare those invariants . So, why not declare those invariants
explicitly in our code (where they could also play a crucial rolexplicitly in our code (where they could also play a crucial role in e in
verification)? We donverification)? We don’’t need to be mathematicians to write invariants t need to be mathematicians to write invariants ––
just good engineers. And we need to be good engineers to develojust good engineers. And we need to be good engineers to develop p
software.software.

Perhaps invariance is taught in a Perhaps invariance is taught in a theorytheory course somewhere? Not good course somewhere? Not good
enough! Programming practice enough! Programming practice cannot becannot be taughttaught independently of theory independently of theory
–– they must be together. Programming practice they must be together. Programming practice cannot be engaged incannot be engaged in
independently of theory independently of theory –– they must be together. Ignoring elementary they must be together. Ignoring elementary
theory means programming blind theory means programming blind …… and the eventual result is and the eventual result is chaoschaos..

7-Sep-12 Copyright P.H.Welch 14

Bad News on the Doorstep …Bad News on the Doorstep …
Missing Missing invarianceinvariance, however, is only one of our problems with software., however, is only one of our problems with software.

DijkstraDijkstra suggested that only wellsuggested that only well--trained mathematicians should be trained mathematicians should be
allowed to program computers.allowed to program computers.

That is not my opinion That is not my opinion …… but I believe that in failing to engineer certain but I believe that in failing to engineer certain
crucial mathematics into the tools provided for programming, we crucial mathematics into the tools provided for programming, we have have
failed as engineers and should not be surprised when things go vfailed as engineers and should not be surprised when things go very ery
wrong.wrong.

// // // // //

Addressing such failure is long overdue Addressing such failure is long overdue ……

7-Sep-12 Copyright P.H.Welch 15

A Generation Lost in Space …A Generation Lost in Space …

Where does concurrency fit in?Where does concurrency fit in?Where does concurrency fit in?

Computer systems Computer systems –– to be of use in this world to be of use in this world –– need need
to model that part of the world for which it is to be used.to model that part of the world for which it is to be used.

If that modeling can reflect the natural concurrency in If that modeling can reflect the natural concurrency in
the system the system …… it should be it should be simplersimpler..

Yet concurrency is thought to be an Yet concurrency is thought to be an advancedadvanced topic, topic,
harderharder than serial computing (which therefore needs than serial computing (which therefore needs
to be taught and mastered first).to be taught and mastered first).

7-Sep-12 Copyright P.H.Welch 16

A Generation Lost in Space …A Generation Lost in Space …

Where does concurrency fit in?Where does concurrency fit in?Where does concurrency fit in?

This This serialserial--firstfirst tradition makes no sense tradition makes no sense ……

…… which has which has (radical)(radical) implications on how we implications on how we
educate people for computer science educate people for computer science ……

…… and on how we apply what we have learnt and on how we apply what we have learnt ……

7-Sep-12 Copyright P.H.Welch 17

A Generation Lost in Space …A Generation Lost in Space …

Where does concurrency fit in?Where does concurrency fit in?Where does concurrency fit in?

This This serialserial--firstfirst tradition makes no sense tradition makes no sense ……

Concurrency is a powerful tool for Concurrency is a powerful tool for simplifyingsimplifying the the
description of systems.description of systems.

PerformancePerformance spins out from the above, but is spins out from the above, but is notnot
the primary focus.the primary focus.

Of course, we need a model of concurrency that is Of course, we need a model of concurrency that is
mathematically cleanmathematically clean, yields no engineering , yields no engineering
surprises and scales well with system complexity.surprises and scales well with system complexity.

7-Sep-12 Copyright P.H.Welch 18

A Generation Lost in Space …A Generation Lost in Space …

//

////

//

//

The story of The Dining Philosophers
is due to Edsger Dijkstra – one of the
founding fathers of Computer Science.

The story of The story of The Dining PhilosophersThe Dining Philosophers
is due to is due to EdsgerEdsger DijkstraDijkstra –– one of the one of the
founding fathers of Computer Science.founding fathers of Computer Science.

It illustrates a classic problem in concurrency: It illustrates a classic problem in concurrency: how to share how to share
resources safely between competing consumersresources safely between competing consumers..

http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD310.PDFhttp://www.cs.utexas.edu/users/EWD/ewd03xx/EWD310.PDFhttp://www.cs.utexas.edu/users/EWD/ewd03xx/EWD310.PDF

Historical documentHistorical document

http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD310.PDF
http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD310.PDF
http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD310.PDF

7-Sep-12 Copyright P.H.Welch 19

A Generation Lost in Space …A Generation Lost in Space …

//

////

//

//

The story of The Dining Philosophers
is due to Edsger Dijkstra – one of the
founding fathers of Computer Science.

The story of The story of The Dining PhilosophersThe Dining Philosophers
is due to is due to EdsgerEdsger DijkstraDijkstra –– one of the one of the
founding fathers of Computer Science.founding fathers of Computer Science.

It illustrates a classic problem in concurrency: It illustrates a classic problem in concurrency: how to share how to share
resources safely between competing consumersresources safely between competing consumers..

In this example, the In this example, the resourcesresources are the forks and the are the forks and the
consumersconsumers are the philosophers. are the philosophers.

Problems arise because of the limited nature of the Problems arise because of the limited nature of the
resources (only 5 forks) and becauseresources (only 5 forks) and because each consumer each consumer
(5 of them) needs 2 forks at a time.(5 of them) needs 2 forks at a time.

7-Sep-12 Copyright P.H.Welch 20

A Generation Lost in Space …A Generation Lost in Space …

//

////

//

//

The story of The Dining Philosophers
is due to Edsger Dijkstra – one of the
founding fathers of Computer Science.

The story of The story of The Dining PhilosophersThe Dining Philosophers
is due to is due to EdsgerEdsger DijkstraDijkstra –– one of the one of the
founding fathers of Computer Science.founding fathers of Computer Science.

The source of the story was a deadlock that would The source of the story was a deadlock that would
mysteriously arise from time to time in an early mysteriously arise from time to time in an early
multiprocessing operating system. multiprocessing operating system.

The philosophers are user processesThe philosophers are user processes that need file I/O.that need file I/O.

To read or write a file, a process has to acquire a data To read or write a file, a process has to acquire a data
buffer (to smooth data transfer and make it fast). If 2 files buffer (to smooth data transfer and make it fast). If 2 files
need to be open at the same time, 2 buffers are needed.need to be open at the same time, 2 buffers are needed.

In those days, memory was scarce In those days, memory was scarce –– so the number of so the number of
buffers was limited. buffers was limited. The forks are the buffersThe forks are the buffers..

7-Sep-12 Copyright P.H.Welch 21

A Generation Lost in Space …A Generation Lost in Space …

//

////

//

//

The story of The Dining Philosophers
is due to Edsger Dijkstra – one of the
founding fathers of Computer Science.

The story of The story of The Dining PhilosophersThe Dining Philosophers
is due to is due to EdsgerEdsger DijkstraDijkstra –– one of the one of the
founding fathers of Computer Science.founding fathers of Computer Science.

Today Today –– some 37 years later some 37 years later –– memory is not so scarce! memory is not so scarce!
Yet, operating system (or specific application) deadlock is Yet, operating system (or specific application) deadlock is
rampant. How often does your whole laptop/tablet/phone rampant. How often does your whole laptop/tablet/phone
(or one of its apps) lock up on you?(or one of its apps) lock up on you?
We have been, and still are, making the same mistakes We have been, and still are, making the same mistakes
again and again and again ...again and again and again ...

//

////

//

//

//

////

//

//

//

////

//

//

//

////

//

//

//

////

//

//

7-Sep-12 Copyright P.H.Welch 22

A Generation Lost in Space …A Generation Lost in Space …

Where does concurrency fit in?Where does concurrency fit in?Where does concurrency fit in?

This This serialserial--firstfirst tradition makes no sense tradition makes no sense ……

Concurrency is a powerful tool for Concurrency is a powerful tool for simplifyingsimplifying the the
description of systems.description of systems.

PerformancePerformance spins out from the above, but is spins out from the above, but is notnot
the primary focus.the primary focus.

Of course, we need a model of concurrency that is Of course, we need a model of concurrency that is
mathematically cleanmathematically clean, yields no engineering , yields no engineering
surprises and scales well with system complexity.surprises and scales well with system complexity.

These lessons
have not been

learned …

7-Sep-12 Copyright P.H.Welch 23

A Generation Lost in Space …A Generation Lost in Space …

What we tell our
students:

““An opaque An opaque
object interacting object interacting
with a wider with a wider
system of objects system of objects
via its formal via its formal
public interface.public interface.””

And object orientation?And object orientation?And object orientation?

‘private’
data

7-Sep-12 Copyright P.H.Welch 24

A Generation Lost in Space …A Generation Lost in Space …

Class invariants:

““Predicates on Predicates on
private data held private data held
within an object within an object
that are always that are always
true between true between
method calls.method calls.”

And object orientation?And object orientation?And object orientation?

‘private’
data

”

7-Sep-12 Copyright P.H.Welch 25

A Generation Lost in Space …A Generation Lost in Space …

Class invariants:

When writing When writing
method code, we method code, we
may assume the may assume the
invariants invariants …… and and
must remust re--establish establish
them by the end.them by the end.

And object orientation?And object orientation?And object orientation?

‘private’
data

Not good enough!Not good enough!

7-Sep-12 Copyright P.H.Welch 26

A Generation Lost in Space …A Generation Lost in Space …

Class invariants:

Invariants must Invariants must
also be established also be established
before any callbefore any call--out out
…… in case of callin case of call--
back! back! //

And object orientation?And object orientation?And object orientation?

‘private’
data

Who does this?Who does this?

7-Sep-12 Copyright P.H.Welch 27

A Generation Lost in Space …A Generation Lost in Space …

Class invariants:

Invariants must Invariants must
also be established also be established
before any callbefore any call--out out
…… in case of callin case of call--
back! back! //

And object orientation?And object orientation?And object orientation?

‘private’
data

But not doing this is
safe only if no call-
backs can happen …

But not doing this is
safe only if no call-
backs can happen …

7-Sep-12 Copyright P.H.Welch 28

A Generation Lost in Space …A Generation Lost in Space …

Class invariants:

Invariants must Invariants must
also be established also be established
before any callbefore any call--out out
…… in case of callin case of call--
back! back! //

And object orientation?And object orientation?And object orientation?

‘private’
data

… its semantics depends
on its context … we need
whole-system knowledge.

… its semantics depends
on its context … we need
whole-system knowledge.

7-Sep-12 Copyright P.H.Welch 29

The truth:

““Undeclared Undeclared
interactions interactions
between the between the
object and any object and any
other parts of other parts of
the system the system …”…”

Documentation
= Source Code
Documentation
= Source Code

A Generation Lost in Space …A Generation Lost in Space …

‘private’
data

7-Sep-12 Copyright P.H.Welch 30

It gets worse …It gets worse …

A Generation Lost in Space …A Generation Lost in Space …

‘private’
data

7-Sep-12 Copyright P.H.Welch 31

A Generation Lost in Space …A Generation Lost in Space …

countcount

statestate

readyready

XXSuppose class Suppose class XX has a has a
privateprivate integer field, integer field, countcount, ,
and and privateprivate methods that methods that
see and change it.see and change it.

What is the value of What is the value of
countcount after these two after these two
statements?statements?

Suppose the following Suppose the following
code occurs in one of code occurs in one of
those methods:those methods:

count = 42count = 42; ; thingthing..f()f();;
thingthing..f ()f ()

7-Sep-12 Copyright P.H.Welch 32

A Generation Lost in Space …A Generation Lost in Space …

countcount

statestate

readyready

XX

count++count++

thingthing

f ()f ()

Whether Whether thingthing is an interface or is an interface or
a class, its a class, its f()f() method could be method could be
implemented or overridden to call implemented or overridden to call
us back and modify our us back and modify our countcount..

We We
dondon’’tt
knowknow

!!!!!!

7-Sep-12 Copyright P.H.Welch 33

A Generation Lost in Space …A Generation Lost in Space …

Note that Note that synchronizedsynchronized
monitormonitor locks do nothing to locks do nothing to
prevent such sideprevent such side--effecting effecting
call backs call backs ……

countcount

statestate

readyready

XX

count++count++

thingthing

f ()f ()

We We
dondon’’tt
knowknow

!!!!!!

7-Sep-12 Copyright P.H.Welch 34

A Generation Lost in Space …A Generation Lost in Space …

We donWe don’’t know the value of t know the value of countcount after the following two after the following two
statements:statements:

count = 42count = 42; ; thingthing..ff()();;

This lack of ability to reason locally about local data is This lack of ability to reason locally about local data is
strangely familiar. In the bad old days, free use of strangely familiar. In the bad old days, free use of
global variables led us into exactly the same mess.global variables led us into exactly the same mess.

Structured programmingStructured programming led us out of that mire. Did led us out of that mire. Did
object orientationobject orientation just take us back in?just take us back in?

7-Sep-12 Copyright P.H.Welch 35

A Generation Found …A Generation Found …

What is the value of What is the value of countcount after these two statements?after these two statements?

count := 42count := 42
thingthing ! ! anythinganything

thingthing

This time we do know. This time we do know. WhatWhat--youyou--seesee--isis--whatwhat--youyou--getget..
The answer is The answer is 4242..

The only way The only way countcount can be changed is if can be changed is if this processthis process
changes it changes it -- and it doesnand it doesn’’t! Local analysis is sufficient. t! Local analysis is sufficient.
We donWe don’’t need to worry about what lies beyond the t need to worry about what lies beyond the
thingthing channel. Our intuitive understanding about the channel. Our intuitive understanding about the
sequence of instructions has been sequence of instructions has been honouredhonoured..

7-Sep-12 Copyright P.H.Welch 36

public class Counter {public class Counter {

private private intint n = 0;n = 0;

private Logger private Logger loggerlogger;;

public Counter (Logger logger)public Counter (Logger logger)
{{

this.loggerthis.logger = logger;= logger;
}}

public void increment ()public void increment ()
{{

n++;n++;
logger.loglogger.log (n);(n);

}}

public public intint getCountgetCount ()()
{{

return n;return n;
}}

}}

Can the value Can the value
of of nn change?change?

YES / / /YES YES // // //

Local reasoning is
not enough …

Local reasoning is
not enough …

Lost in Space …Lost in Space …

7-Sep-12 Copyright P.H.Welch 37

PROC counter (CHAN COUNTER.ASK ask?,PROC counter (CHAN COUNTER.ASK ask?,
CHAN COUNTER.ANSWER answer!,CHAN COUNTER.ANSWER answer!,
CHAN LOGGER CHAN LOGGER loggerlogger))

::

PROC counter (CHAN COUNTER.ASK ask?,PROC counter (CHAN COUNTER.ASK ask?,
CHAN COUNTER.ANSWER answer!,CHAN COUNTER.ANSWER answer!,
CHAN LOGGER CHAN LOGGER loggerlogger))

INITIAL INT n IS 0:INITIAL INT n IS 0:
WHILE TRUEWHILE TRUE

ask ? CASEask ? CASE
incrementincrement
SEQSEQ

n := n + 1n := n + 1
logger ! nlogger ! n

get.countget.count
answer ! nanswer ! n

::

answeranswer

PROTOCOL COUNTER.ASKPROTOCOL COUNTER.ASK
CASECASE

incrementincrement
get.countget.count

::

PROTOCOL COUNTER.ANSWER PROTOCOL COUNTER.ANSWER ISIS INTINT::

PROTOCOL LOGGER PROTOCOL LOGGER ISIS INTINT::

countercountercounter
askask

loggerlogger

Can the value Can the value
of of nn change?change?

NO ☺ ☺ ☺NO NO ☺☺ ☺☺ ☺☺

Local reasoning is
enough … what
you see is what

you get.

Local reasoning is
enough … what
you see is what

you get.

7-Sep-12 Copyright P.H.Welch 38

loggerlogger

answeranswer
countercountercounter

askask

SHARED ! CHAN COUNTER.ASK ask:SHARED ! CHAN COUNTER.ASK ask:
SHARED ? CHAN COUNTER.ANSWER answer:SHARED ? CHAN COUNTER.ANSWER answer:
SHARED ! CHAN LOGGER SHARED ! CHAN LOGGER loggerlogger::

PARPAR
counter (ask?, answer!, logger!)counter (ask?, answer!, logger!)
PAR i = 0 FOR 5PAR i = 0 FOR 5

smiley (ask!, answer?)smiley (ask!, answer?)

The semantics of The semantics of
countercounter does not does not
depend on context.depend on context.

Even if the Even if the loggerlogger
process is one of its process is one of its
clients, it makes no clients, it makes no
difference to difference to countercounter..

7-Sep-12 Copyright P.H.Welch 39

loggerlogger

answeranswer
countercountercounter

askask

SHARED ! CHAN COUNTER.ASK ask:SHARED ! CHAN COUNTER.ASK ask:
SHARED ? CHAN COUNTER.ANSWER answer:SHARED ? CHAN COUNTER.ANSWER answer:
SHARED ! CHAN LOGGER SHARED ! CHAN LOGGER loggerlogger::

PARPAR
counter (ask?, answer!, logger!)counter (ask?, answer!, logger!)
PAR i = 0 FOR 5PAR i = 0 FOR 5

smiley (ask!, answer?)smiley (ask!, answer?)

The semantics of The semantics of
countercounter does not does not
depend on context.depend on context.

If the If the loggerlogger process process
calls back, its request calls back, its request
will be queued until will be queued until
countercounter can take it.can take it.

7-Sep-12 Copyright P.H.Welch 40

loggerlogger

answeranswer
countercountercounter

askask

SHARED ! CHAN COUNTER.ASK ask:SHARED ! CHAN COUNTER.ASK ask:
SHARED ? CHAN COUNTER.ANSWER answer:SHARED ? CHAN COUNTER.ANSWER answer:
SHARED ! CHAN LOGGER SHARED ! CHAN LOGGER loggerlogger::

PARPAR
counter (ask?, answer!, logger!)counter (ask?, answer!, logger!)
PAR i = 0 FOR 5PAR i = 0 FOR 5

smiley (ask!, answer?)smiley (ask!, answer?)

The semantics of The semantics of
countercounter does not does not
depend on context.depend on context.

If the callIf the call--back is part of back is part of
an an extended inputextended input, there , there
will be deadlock will be deadlock –– but but
countercounter semantics semantics
has not changed.has not changed.

7-Sep-12 Copyright P.H.Welch 41

A Generation Found …A Generation Found …

answeranswer
countercountercounter

askask

loggerlogger

Local reasoning is
all that’s needed.

Local reasoning is
all that’s needed.

PROC counter (CHAN COUNTER.ASK ask?,PROC counter (CHAN COUNTER.ASK ask?,
CHAN COUNTER.ANSWER answer!,CHAN COUNTER.ANSWER answer!,
CHAN LOGGER CHAN LOGGER loggerlogger))

::

PROC counter (CHAN COUNTER.ASK ask?,PROC counter (CHAN COUNTER.ASK ask?,
CHAN COUNTER.ANSWER answer!,CHAN COUNTER.ANSWER answer!,
CHAN LOGGER CHAN LOGGER loggerlogger))

INITIAL INT n IS 0:INITIAL INT n IS 0:
WHILE TRUEWHILE TRUE

ask ? CASEask ? CASE
incrementincrement
SEQSEQ

n := n + 1n := n + 1
logger ! nlogger ! n

get.countget.count
answer ! nanswer ! n

::

Can the value Can the value
of of nn change?change?

NO ☺ ☺ ☺NO NO ☺☺ ☺☺ ☺☺

WYSIWYGWYSIWYGWYSIWYG

7-Sep-12 Copyright P.H.Welch 42

Process Oriented DesignProcess Oriented Design

A Diagram Language (in 4 pictures)

7-Sep-12 Copyright P.H.Welch 43

Process Oriented Design (in 4 diagrams)Process Oriented Design (in 4 diagrams)

foo

bar

m
e
r
g
e

serverserver

(a) a network of three processes, connected by four (a) a network of three processes, connected by four
internal (hidden) and three external channels.internal (hidden) and three external chan

(b) three processes sharing the writing end(b) three processes sharing the writing end
of a channel to a server process.nels. of a channel to a server process.

s (0)s (0) s (7)s (7)...

...p (0) p (n-1)

(c) three processes sharing the writing end of a channel(c) three processes sharing the writing end of a channel
to a bank of servers sharing the reading end.to a bank of servers sharing the reading end.

(d) n processes enrolled on a shared barrier (any process (d) n processes enrolled on a shared barrier (any process
synchronising must wait for all to synchronise).synchronising must wait for all to synchronise).

7-Sep-12 Copyright P.H.Welch 44

foo

bar

m
e
r
g
e

aa bb

cc

dd

inin

leftleft

rightright

(a) a network of three processes, connected by four (a) a network of three processes, connected by four
internal (hidden) and three external channels.internal (hidden) and three external channels.

CHAN BYTE a, b, c, d:CHAN BYTE a, b, c, d:
PARPAR

foofoo (in?, left!, a?, b!, c!)(in?, left!, a?, b!, c!)
bar (a!, b?, d!)bar (a!, b?, d!)
merge (c?, d?, right!)merge (c?, d?, right!)

CHAN BYTE a, b, c, d:CHAN BYTE a, b, c, d:

7-Sep-12 Copyright P.H.Welch 45

thingthing

foo

bar

m
e
r
g
e

aa bb

cc

dd

inin

leftleft

rightright process process
abstractionabstraction

PROC thing (CHAN INT in?, left!, right!)PROC thing (CHAN INT in?, left!, right!)

::

CHAN BYTE a, b, c, d:CHAN BYTE a, b, c, d:
PARPAR

foofoo (in?, left!, a?, b!, c!)(in?, left!, a?, b!, c!)
bar (a!, b?, d!)bar (a!, b?, d!)
merge (c?, d?, right!)merge (c?, d?, right!)

CHAN BYTE a, b, c, d:CHAN BYTE a, b, c, d:

7-Sep-12 Copyright P.H.Welch 46

inin

foo

bar

m
e
r
g
e

aa bb

cc

dd

thingthing

leftleft

process process
abstractionabstraction

rightright

CHAN BYTE a, b, c, d:CHAN BYTE a, b, c, d:
PARPAR

foofoo (in?, left!, a?, b!, c!)(in?, left!, a?, b!, c!)
bar (a!, b?, d!)bar (a!, b?, d!)
merge (c?, d?, right!)merge (c?, d?, right!)

CHAN BYTE a, b, c, d:CHAN BYTE a, b, c, d:
PROC thing (CHAN INT in?, left!, right!)PROC thing (CHAN INT in?, left!, right!)

::

7-Sep-12 Copyright P.H.Welch 47

process process
abstractionabstraction

inin

rightrightleftleft
thingthing

PROC thing (CHAN INT in?, left!, right!)PROC thing (CHAN INT in?, left!, right!)

Like foofoo, barbar and mergemerge previously, thingthing is a process that can
be used as a component in another network.

Concurrent systems have structure – networks within networks.
We must be able to express this! And we can … ☺☺ ☺☺ ☺☺

7-Sep-12 Copyright P.H.Welch 48

serverserver
cc

(b) three processes sharing the writing end(b) three processes sharing the writing end
of a channel to a server process.of a channel to a server process.

PARPAR
circle (c!)circle (c!)
triangle (c!)triangle (c!)
square (c!)square (c!)
server (c?)server (c?)

SHARED ! CHAN SOME.SERVICE c:SHARED ! CHAN SOME.SERVICE c:

7-Sep-12 Copyright P.H.Welch 49

PARPAR
PARPAR

circle (c!)circle (c!)
triangle (c!)triangle (c!)
square (c!)square (c!)

PAR i = 0 FOR 8PAR i = 0 FOR 8
s (i, c?)s (i, c?)

SHARED CHAN ANOTHER.SERVICE c:SHARED CHAN ANOTHER.SERVICE c:

s (0)s (0) s (7)s (7)...
cc

(c) three processes sharing the writing end of a channel(c) three processes sharing the writing end of a channel
to a bank of servers sharing the reading end.to a bank of servers sharing the reading end.

7-Sep-12 Copyright P.H.Welch 50

PAR i = 0 FOR n ENROLL bPAR i = 0 FOR n ENROLL b
p (i, b)p (i, b)

BARRIER b:BARRIER b:

...p (0) p (n-1)

bb

(d) n processes enrolled on a shared barrier (any process (d) n processes enrolled on a shared barrier (any process
synchronising must wait for all to synchronise).synchronising must wait for all to synchronise).

7-Sep-12 Copyright P.H.Welch 51

CSP SemanticsCSP Semantics

Traces, failures, divergences and
refinement (in 3 slides)

7-Sep-12 Copyright P.H.Welch 52

CSP Semantics – Traces (1/3)CSP Semantics – Traces (1/3)
AnAn eventevent (e.g. (e.g. channel communicationchannel communication, , barrier syncbarrier sync) happens when,) happens when,
and only when, all processes relevant to it choose to engage.and only when, all processes relevant to it choose to engage.

A processA process tracetrace is a finite sequence of events in which a process is a finite sequence of events in which a process
maymay engage.engage.

Safety (trace refinement)Safety (trace refinement)

P trace-refines Q means the traces of P are also traces of Q –
anything P may do, so may Q. Turning this round, if there is
something Q cannot do, P cannot do it either. Now, if Q is a
specification, then P is safe in the sense that P cannot exhibit
behaviour (presumably ‘bad’) disallowed by Q.

PP tracetrace--refinesrefines QQ means the traces of means the traces of PP are also traces of are also traces of QQ ––
anything anything PP maymay do, so do, so maymay QQ. Turning this round, if there is . Turning this round, if there is
something something QQ cannotcannot do, do, PP cannotcannot do it either. Now, if do it either. Now, if QQ is a is a
specification, then specification, then PP is is safesafe in the sense that in the sense that PP cannotcannot exhibit exhibit
behaviour (presumably behaviour (presumably ‘‘badbad’’) disallowed by) disallowed by QQ. .

This is not enough This is not enough –– e.g. e.g. STOPSTOP tracetrace--refines anything, since it does refines anything, since it does
nothing; but itnothing; but it’’s not an acceptable implementation of anything!s not an acceptable implementation of anything!

7-Sep-12 Copyright P.H.Welch 53

CSP Semantics – Failures (2/3)CSP Semantics – Failures (2/3)
A processA process statestate is what a process has become after executing one of is what a process has become after executing one of
its traces. An event is its traces. An event is externalexternal to a process if other processes may to a process if other processes may
engage on it. A state is engage on it. A state is stablestable if it can only proceed by engaging in if it can only proceed by engaging in
an external event (i.e. engage with its an external event (i.e. engage with its environmentenvironment).).

A processA process failurefailure is a stable state together with a set of external is a stable state together with a set of external
events on which it events on which it maymay refuse to engage.refuse to engage.

Liveness (failure refinement)Liveness (failure refinement)

P failure-refines Q means (P trace-refines Q) and (the failures
of P are also failures of Q). So, if a state-and-event-set is not
a failure of Q, it is not a failure of P either. Now, if Q is a spec,
then P fulfills its liveness conditions: if the spec (Q) says that
in this state you will react to one of these events (i.e. there is
no failure here), the implementation (P) will react.

PP failurefailure--refinesrefines QQ means (means (PP tracetrace--refines refines QQ)) and (the failures and (the failures
of of PP are also failures of are also failures of QQ)). So, if a . So, if a statestate--andand--eventevent--setset is is notnot
a failure of a failure of QQ, it is , it is notnot a failure of a failure of PP either. Now, if either. Now, if QQ is a spec, is a spec,
then then PP fulfills its fulfills its livenessliveness conditions: if the spec (conditions: if the spec (QQ) says that) says that
in this state you in this state you will reactwill react to one of these events (i.e. there is to one of these events (i.e. there is
no failure here), the implementation (no failure here), the implementation (PP)) will reactwill react..

7-Sep-12 Copyright P.H.Welch 54

CSP Semantics – Divergences (3/3)CSP Semantics – Divergences (3/3)
A process state isA process state is divergentdivergent if, from that state, the process if, from that state, the process maymay
engage in an infinite sequence of engage in an infinite sequence of internalinternal events (i.e. it events (i.e. it maymay forever forever
refuse to engage with its environment). This is usually a bad trefuse to engage with its environment). This is usually a bad thing.hing.

Livelock-free (failure-divergence refinement)Livelock-free (failure-divergence refinement)

P failure-divergence-refines Q means (P failure-refines* Q) and
(the divergences of P are also divergences of Q). Now, if Q is a
specification with no divergences (which would be usual), then
the implementation (P) also has no divergences.

PP failurefailure--divergencedivergence--refinesrefines QQ means (means (PP failurefailure--refines* refines* QQ)) and and
(the divergences of (the divergences of PP are also divergences of are also divergences of QQ)). Now, if . Now, if QQ is a is a
specification specification with no divergenceswith no divergences (which would be usual), then (which would be usual), then
the implementation (the implementation (PP)) also has no divergencesalso has no divergences..

* Note: a divergent state is unstable but may recover to a stable state. However,
stable states reached via divergent ones are not considered as candidates for
failures in this failure-refinement sub-clause of failure-divergence-refinement.
Under failure-divergence semantics, a divergent state is considered so dangerous
that further consideration of process behaviour is not worth pursuing.

* Note: a divergent state is unstable but * Note: a divergent state is unstable but maymay recover to a stable state. However, recover to a stable state. However,
stable states reached via divergent ones are not considered as cstable states reached via divergent ones are not considered as candidates for andidates for
failures in this failurefailures in this failure--refinement subrefinement sub--clause of failureclause of failure--divergencedivergence--refinement. refinement.
Under failureUnder failure--divergence semantics, divergence semantics, a divergent state is considered so dangerousa divergent state is considered so dangerous
that further consideration of process behaviour is not worth purthat further consideration of process behaviour is not worth pursuing.suing.

7-Sep-12 Copyright P.H.Welch 55

Dynamic networks (and occam-π)Dynamic networks (and occam-ππ)

Emergent engineering:
a generic space-time modelling and

swarm architecture

(in 45 slides)

7-Sep-12 Copyright P.H.Welch 56

�� InIn--vivovivo ÙÙ InIn--silicosilico
� One of the UK ‘‘Grand ChallengeGrand Challenge’’ areas.
� Move lifelife--sciencessciences from descriptiondescription to modellingmodelling / / predictionprediction.
� Example: the Nematode worm.the Nematode worm.
� Development: from fertilised cell to adultfrom fertilised cell to adult (with virtual experiments).(with virtual experiments).
� Sensors and movement: reaction to stimuli.reaction to stimuli.
� Interaction between organisms and other pieces of environment.between organisms and other pieces of environment.

Modelling Bio-MechanismsModelling BioModelling Bio--MechanismsMechanisms

�� Modelling technologiesModelling technologies
� Communicating process networks – fundamentally good fit.
� Cope with growth / decay, combine / split (evolving topologies).
� Mobility and location / neighbour awareness.
� Simplicity, dynamics, performance and safety.

�� occamoccam--ππ (and JCSP)(and JCSP)
� Robust and lightweight – good theoretical support.
� ~10,000,000 processes with useful behaviour in useful time.
� Enough to make a start …

7-Sep-12 Copyright P.H.Welch 57

�� Dynamic communicating processes Dynamic communicating processes –– some questionssome questions
�� Mutating topologies:Mutating topologies: how to keep them safe?
�� Mobile channelMobile channel--ends and processes:ends and processes: dual notions?
�� Simple operational semantics:Simple operational semantics: low overhead implementation? Yes.Yes.
�� Process algebra:Process algebra: combine the best of CSP and the π-calculus? YesYes..
�� Refinement:Refinement: for manageable system verification … can we keep?
�� Location awareness:Location awareness: how can mobile processes know where they

are, how can they find each other and link up?
�� Programmability:Programmability: at what level – individual processes or clusters?
�� Overall behaviour:Overall behaviour: planned or emergent?planned or emergent?

Mobility and Location AwarenessMobility and Location AwarenessMobility and Location Awareness
�� Classical communicating process applicationsClassical communicating process applications

�� StaticStatic network structures.
�� StaticStatic memory / silicon requirements (pre-allocated).
� Great for hardware design and software for embedded controllers.
� Consistent and rich underlying theory – CSPCSP.

7-Sep-12 Copyright P.H.Welch 58

Location (Neighbourhood) AwarenessLocation (Neighbourhood) Awareness

The
Matrix
The The

MatrixMatrix

Mobile
Agents
Mobile Mobile
AgentsAgents

7-Sep-12 Copyright P.H.Welch 59

Location (Neighbourhood) AwarenessLocation (Neighbourhood) Awareness

7-Sep-12 Copyright P.H.Welch 60

Location (Neighbourhood) AwarenessLocation (Neighbourhood) Awareness

7-Sep-12 Copyright P.H.Welch 61

Location (Neighbourhood) AwarenessLocation (Neighbourhood) Awareness

7-Sep-12 Copyright P.H.Welch 62

Mobility and Location AwarenessMobility and Location AwarenessMobility and Location Awareness
�� The MatrixThe Matrix

� A network of (mostly passive) server processes.
� Responds to client requests from the mobile agents and,

occasionally, from neighbouring server nodes.
� Deadlock avoided (in the matrix) either by one-place buffered

server channels or by pure-client slave processes (one per matrix
node) that ask their server node for elements (e.g. mobile agents)
and forward them to neighbouring nodes.

� Server nodes only see neighbours, maintain registry of currently
located agents (and, maybe, agents on the neighbouring nodes)
and answer queries from local agents (including moving them).

�� The AgentsThe Agents
� Attached to one node of the Matrix at a time.
� Sense presence of other agents – on local or neighbouring nodes.
� Interact with other local agents – must use agent-specific protocol

to avoid deadlock. May decide to reproduce, split or move.
� Local (or global) sync barrierssync barriers to maintain sense of time.

7-Sep-12 Copyright P.H.Welch 63

A Thesis and HypothesisA Thesis and HypothesisA Thesis and Hypothesis
�� ThesisThesis

� Natural systems are concurrent at all levels of scale. Control is
devolved. Central command cannot manage the complexity.

� Natural systems are complex, robust, efficient, long-lived and
continuously evolving. We should take the hint! We should take the hint!

� Natural mechanisms should map on to simple engineering principles
with low cost and high benefit. Concurrency is a natural mechanism.

� We should look on concurrencyconcurrency as a core design mechanismcore design mechanism – not
as something difficult, used only to boost performance.

� Computer science took a wrong turn once. Concurrency should not
introduce the algorithmic distortions and hazards evident in current
practice. It should simplifysimplify and hastenhasten the construction,
commisioning and maintenance of systems.

�� HypothesisHypothesis
� The wrong turn can be corrected and this correction is needed now.

7-Sep-12 Copyright P.H.Welch 64

Case Study: blood clottingCase Study: Case Study: blood clottingblood clotting
Haemostasis: Haemostasis: we consider a greatly simplified model of the we consider a greatly simplified model of the
formation of blood clots in response to damage in blood formation of blood clots in response to damage in blood
vessels.vessels.

PlateletsPlatelets are passive quasi-cells carried in the bloodstream.
They become activatedactivated when a balance between chemical
suppressants and activators shift in favour of activation.

When activated, they become stickysticky …

We are just going to model the clumping together of such
sticky activated platelets to form clotsclots.

To learn and refine our modelling techniques, we shall start
with a simple one-dimensional model of a bloodstream.

7-Sep-12 Copyright P.H.Welch 65

Platelet Model (‘lazy’ CA)Platelet Model (Platelet Model (‘‘lazylazy’’ CA)CA)

keyboardkeyboard

keywatch

gen

······ cell cellcell cell cellcell

clot

drawdraw

7-Sep-12 Copyright P.H.Welch 66

Platelet Model (‘lazy’ CA)Platelet Model (Platelet Model (‘‘lazylazy’’ CA)CA)

keyboardkeyboard

keywatch

drawdraw

gen

······ cell cellcell cell cellcell

clot

phase 1

screenscreen
display

7-Sep-12 Copyright P.H.Welch 67

Platelet Model (‘lazy’ CA)Platelet Model (Platelet Model (‘‘lazylazy’’ CA)CA)

screenscreen
display

keyboardkeyboard

keywatch

drawdraw

gen

······ cell cellcell cell cellcell

clot
phase 0

7-Sep-12 Copyright P.H.Welch 68

Platelet Model (‘lazy’ CA)Platelet Model (Platelet Model (‘‘lazylazy’’ CA)CA)

screenscreen
display

keyboardkeyboard

keywatch

drawdraw

gen

······ cell cellcell cell cellcell

clot
phase 0

7-Sep-12 Copyright P.H.Welch 69

Platelet Model (‘lazy’ CA)Platelet Model (Platelet Model (‘‘lazylazy’’ CA)CA)

phase 1

screenscreen
display

keyboardkeyboard

keywatch

drawdraw

gen

······ cell cellcell cell cellcell

clot

7-Sep-12 Copyright P.H.Welch 70

Platelet Model (‘lazy’ CA)Platelet Model (Platelet Model (‘‘lazylazy’’ CA)CA)

screenscreen
display

keyboardkeyboard

keywatch

drawdraw

gen

······ cell cellcell cell cellcell

clot
phase 0

7-Sep-12 Copyright P.H.Welch 71

Platelet Model (‘lazy’ CA)Platelet Model (Platelet Model (‘‘lazylazy’’ CA)CA)

screenscreen
display

keyboardkeyboard

keywatch

drawdraw

gen

······ cell cellcell cell cellcell

clot
phase 0

7-Sep-12 Copyright P.H.Welch 72

Platelet Model (‘lazy’ CA)Platelet Model (Platelet Model (‘‘lazylazy’’ CA)CA)

screenscreen
display

keyboardkeyboard

keywatch

drawdraw

gen

······ cell cellcell cell cellcell

phase 1

clotclot

7-Sep-12 Copyright P.H.Welch 73

Platelet Model (‘lazy’ CA)Platelet Model (Platelet Model (‘‘lazylazy’’ CA)CA)

screenscreen
display

keyboardkeyboard

keywatch

drawdraw

gen

······ cell cellcell cell cellcell

phase 1

clotclot

7-Sep-12 Copyright P.H.Welch 74

Platelet Model (‘lazy’ CA)Platelet Model (Platelet Model (‘‘lazylazy’’ CA)CA)

screenscreen
display

keyboardkeyboard

keywatch

drawdraw

gen

······ cell cellcell cell cellcell

phase 1

clotclot

7-Sep-12 Copyright P.H.Welch 75

Platelet Model (‘lazy’ CA)Platelet Model (Platelet Model (‘‘lazylazy’’ CA)CA)

screenscreen
display

keyboardkeyboard

keywatch

drawdraw

gen

······ cell cellcell cell cellcell

phase 1

clotclot

7-Sep-12 Copyright P.H.Welch 76

Platelet Model (‘lazy’ CA)Platelet Model (Platelet Model (‘‘lazylazy’’ CA)CA)

screenscreen
display

keyboardkeyboard

keywatch

drawdraw

gen

······ cell cellcell cell cellcell

phase 1

clot

7-Sep-12 Copyright P.H.Welch 77

Platelet Model (‘lazy’ CA)Platelet Model (Platelet Model (‘‘lazylazy’’ CA)CA)

screenscreen
display

keyboardkeyboard

keywatch

drawdraw

gen

······ cell cellcell cell cellcell

phase 1

clot

7-Sep-12 Copyright P.H.Welch 78

3-D Bloodstream33--D BloodstreamD Bloodstream

40 million processes and counting …40 million processes and counting 40 million processes and counting ……

7-Sep-12 Copyright P.H.Welch 79

3-D Bloodstream33--D BloodstreamD Bloodstream

40 million processes and counting …40 million processes and counting 40 million processes and counting ……

7-Sep-12 Copyright P.H.Welch 80

3-D Bloodstream33--D BloodstreamD Bloodstream

40 million processes and counting …40 million processes and counting 40 million processes and counting ……

7-Sep-12 Copyright P.H.Welch 81

3-D Bloodstream33--D BloodstreamD Bloodstream

40 million processes and counting …40 million processes and counting 40 million processes and counting ……

7-Sep-12 Copyright P.H.Welch 82

3-D Bloodstream33--D BloodstreamD Bloodstream

40 million processes and counting …40 million processes and counting 40 million processes and counting ……

7-Sep-12 Copyright P.H.Welch 83

3-D Bloodstream33--D BloodstreamD Bloodstream

40 million processes and counting …40 million processes and counting 40 million processes and counting ……

7-Sep-12 Copyright P.H.Welch 84

3-D Bloodstream33--D BloodstreamD Bloodstream

40 million processes and counting …40 million processes and counting 40 million processes and counting ……

7-Sep-12 Copyright P.H.Welch 85

3-D Bloodstream33--D BloodstreamD Bloodstream

40 million processes and counting …40 million processes and counting 40 million processes and counting ……

7-Sep-12 Copyright P.H.Welch 86

3-D Bloodstream33--D BloodstreamD Bloodstream

40 million processes and counting …40 million processes and counting 40 million processes and counting ……

7-Sep-12 Copyright P.H.Welch 87

3-D Bloodstream33--D BloodstreamD Bloodstream

40 million processes and counting …40 million processes and counting 40 million processes and counting ……

7-Sep-12 Copyright P.H.Welch 88

3-D Bloodstream33--D BloodstreamD Bloodstream

40 million processes and counting …40 million processes and counting 40 million processes and counting ……

7-Sep-12 Copyright P.H.Welch 89

3-D Bloodstream33--D BloodstreamD Bloodstream

40 million processes and counting …40 million processes and counting 40 million processes and counting ……

7-Sep-12 Copyright P.H.Welch 90

3-D Bloodstream33--D BloodstreamD Bloodstream

40 million processes and counting …40 million processes and counting 40 million processes and counting ……

7-Sep-12 Copyright P.H.Welch 91

3-D Bloodstream33--D BloodstreamD Bloodstream

40 million processes and counting …40 million processes and counting 40 million processes and counting ……

7-Sep-12 Copyright P.H.Welch 92

3-D Bloodstream33--D BloodstreamD Bloodstream

40 million processes and counting …40 million processes and counting 40 million processes and counting ……

7-Sep-12 Copyright P.H.Welch 93

3-D Bloodstream33--D BloodstreamD Bloodstream

40 million processes and counting …40 million processes and counting 40 million processes and counting ……

7-Sep-12 Copyright P.H.Welch 94

3-D Bloodstream33--D BloodstreamD Bloodstream

40 million processes and counting …40 million processes and counting 40 million processes and counting ……

7-Sep-12 Copyright P.H.Welch 95

3-D Bloodstream33--D BloodstreamD Bloodstream

40 million processes and counting …40 million processes and counting 40 million processes and counting ……

7-Sep-12 Copyright P.H.Welch 96

3-D Bloodstream33--D BloodstreamD Bloodstream

40 million processes and counting …40 million processes and counting 40 million processes and counting ……

7-Sep-12 Copyright P.H.Welch 97

3-D Bloodstream33--D BloodstreamD Bloodstream

40 million processes and counting …40 million processes and counting 40 million processes and counting ……

7-Sep-12 Copyright P.H.Welch 98

3-D Bloodstream33--D BloodstreamD Bloodstream

40 million processes and counting …40 million processes and counting 40 million processes and counting ……

7-Sep-12 Copyright P.H.Welch 99

3-D Bloodstream33--D BloodstreamD Bloodstream

40 million processes and counting …40 million processes and counting 40 million processes and counting ……

7-Sep-12 Copyright P.H.Welch 100

3-D Bloodstream33--D BloodstreamD Bloodstream

40 million processes and counting …40 million processes and counting 40 million processes and counting ……

7-Sep-12 Copyright P.H.Welch 101

Unfinished Buisiness (occam-π2)Unfinished Buisiness (occam-ππ22)

–– recursive union typesrecursive union types
–– remove current remove current PROTOCOLSPROTOCOLS
–– introduce introduce session protocolssession protocols
–– unify static/dynamic allocationdynamic allocation
–– self-verifying code
–– BARRIERBARRIER and output guardsand output guards
–– what else what else …… ??????

(in 16 slides)

7-Sep-12 Copyright P.H.Welch 102

(occam-π2) Recursive Union Types(occam-ππ22) Recursive Union Types

There has been a proposal (OEP 156) for There has been a proposal (OEP 156) for UNIONUNION types, since 2006:types, since 2006:

DATA TYPEDATA TYPE FOOFOO
CASECASE

sugarsugar, BOOL, REAL32, [8]BYTE, BOOL, REAL32, [8]BYTE
saltsalt, BYTE, BYTE, BYTE, BYTE
pepperpepper

::

DATA TYPEDATA TYPE COLOURCOLOUR
CASECASE

redred
greengreen
blueblue

::

Example literals:Example literals:

[[sugarsugar, TRUE, 99.99, ", TRUE, 99.99, "KrakatoaKrakatoa"]"]
[[saltsalt, 42, 'A'], 42, 'A']
[[pepperpepper]]

[[redred]]
[[greengreen]]
[[blueblue]]

7-Sep-12 Copyright P.H.Welch 103

(occam-π2) Recursive Union Types(occam-ππ22) Recursive Union Types

Processing values of a union variable requires a Processing values of a union variable requires a CASECASE process to process to
determine the variant:determine the variant:

DATA TYPEDATA TYPE FOOFOO
CASECASE

sugarsugar, BOOL, REAL32, [8]BYTE, BOOL, REAL32, [8]BYTE
saltsalt, BYTE, BYTE, BYTE, BYTE
pepperpepper

::

CASECASE my.foomy.foo
sugarsugar, BOOL b, REAL32 x, [8]BYTE s, BOOL b, REAL32 x, [8]BYTE s

... ... ‘‘bb’’, , ‘‘xx’’ and and ‘‘ss’’ abbreviate the component fieldsabbreviate the component fields
saltsalt, BYTE m, BYTE n, BYTE m, BYTE n

... ... ‘‘mm’’ and and ‘‘nn’’ abbreviate the component fieldsabbreviate the component fields
pepperpepper

......
::

Therefore,
values of one

variant cannot be
processed as

another.

7-Sep-12 Copyright P.H.Welch 104

(occam-π2) Recursive Union Types(occam-ππ22) Recursive Union Types
Recursive union types are allowed:Recursive union types are allowed:

RECURSIVE DATA TYPERECURSIVE DATA TYPE THINGTHING
CASECASE

nodenode, THING, SOME.DATA, THING , THING, SOME.DATA, THING
emptyempty

::

Only Only treetree structures will be allowed to be constructed. This means all structures will be allowed to be constructed. This means all
elements of a recursive structure have only a single reference elements of a recursive structure have only a single reference –– i.e. i.e. no no
aliasingaliasing (in line with all (in line with all occamoccam elements). This enables simple and safe elements). This enables simple and safe
parallel processing of all such structures.parallel processing of all such structures.

We We thinkthink that the compiler can enforce the constraint to that the compiler can enforce the constraint to treetree structures structures ––
thanks to its antithanks to its anti--alias checking. alias checking. To be researched To be researched ……

7-Sep-12 Copyright P.H.Welch 105

(occam-π2) Recursive Union Types(occam-ππ22) Recursive Union Types
Recursive union types are allowed:Recursive union types are allowed:

RECURSIVE DATA TYPERECURSIVE DATA TYPE THINGTHING
CASECASE

nodenode, THING, SOME.DATA, THING , THING, SOME.DATA, THING
emptyempty

::

Garbage collection is automatic upon a lost reference, with costGarbage collection is automatic upon a lost reference, with costs directly s directly
proportional to the (recursive) size of the lost structure.proportional to the (recursive) size of the lost structure.

In line with all In line with all occamoccam elements, no elements, no ““nullnull pointerpointer exceptionsexceptions”” can can
occur occur –– though the compiler may complain about the though the compiler may complain about the defined statusdefined status of of
union variables or fields.union variables or fields.

Recursive union types are an enabling data structure for writingRecursive union types are an enabling data structure for writing compilers compilers
(and more), missing from (and more), missing from occamoccam for too long. Novel and simple parallel for too long. Novel and simple parallel
approaches are possible approaches are possible …… to be efficiently consumed by multicoreto be efficiently consumed by multicore..

7-Sep-12 Copyright P.H.Welch 106

(occam-π2) Remove Current Protocols(occam-ππ22) Remove Current Protocols

Sequential ProtocolsSequential ProtocolsSequential Protocols

Mostly, these are simply replaced by Mostly, these are simply replaced by RECORDRECORD data types.data types.

The one The one semanticsemantic win for sequential protocols over win for sequential protocols over RECORDRECORDss was was
taking advantage of the taking advantage of the sequencesequence in the protocol in the protocol –– for example:for example:

in ? i; A[i]in in ? ? ii;; A[iA[i]]

where an early item of data is used to address the location of awhere an early item of data is used to address the location of a later later
one.one.

However, this is won back with However, this is won back with session protocolssession protocols, with no loss of , with no loss of
syntactic clarity or runtime efficiency. See later.syntactic clarity or runtime efficiency. See later.

7-Sep-12 Copyright P.H.Welch 107

(occam-π2) Remove Current Protocols(occam-ππ22) Remove Current Protocols

Counted Array ProtocolsCounted Array ProtocolsCounted Array Protocols

These are replaced by dynamically sized arrays.These are replaced by dynamically sized arrays.

7-Sep-12 Copyright P.H.Welch 108

(occam-π2) Remove Current Protocols(occam-ππ22) Remove Current Protocols

Variant (CASE) ProtocolsVariant (Variant (CASECASE) Protocols) Protocols

These are replaced by These are replaced by unionunion data types.data types.

The one The one pragmaticpragmatic win for variant protocols over win for variant protocols over unionunion types was types was
when program logic meant that a when program logic meant that a largelarge data variant did not need to data variant did not need to
be considered by the receiving process be considered by the receiving process –– so that space for that so that space for that
largelarge variant did not need to be allocated .variant did not need to be allocated .

In the new proposal (see later), this is won back (and more) thrIn the new proposal (see later), this is won back (and more) through ough
all all largelarge data items being on the heap and only references being data items being on the heap and only references being
(safely) moved.(safely) moved.

The above paragraph assumes processes connected in the same The above paragraph assumes processes connected in the same
memory space. But itmemory space. But it’’s still true for processes in different memory s still true for processes in different memory
spaces spaces –– the data is copied from heap to heap and the reference the data is copied from heap to heap and the reference
obtained by the receiving process will be valid for its memory.obtained by the receiving process will be valid for its memory.

7-Sep-12 Copyright P.H.Welch 109

(occam-π2) Session Protocols(occam-ππ22) Session Protocols

Adam Sampson’s “Two-Way Protocols” (CPA 2008, York)Adam SampsonAdam Sampson’’s s ““TwoTwo--Way ProtocolsWay Protocols”” (CPA 2008, York)(CPA 2008, York)

These are communication protocols in the sense normally understoThese are communication protocols in the sense normally understood od
(i.e. (i.e. patternspatterns of communication).of communication).

They are associated with a single channel, which may have They are associated with a single channel, which may have SHAREDSHARED
ends.ends.

The channel is The channel is directeddirected (in the same sense as a current (in the same sense as a current channel channel
recordrecord is directed), but may be used in both directions (possibly at is directed), but may be used in both directions (possibly at
the same time!).the same time!).

7-Sep-12 Copyright P.H.Welch 110

(occam-π2) Session Protocols(occam-ππ22) Session Protocols

Adam Sampson’s “Two-Way Protocols” (CPA 2008, York)Adam SampsonAdam Sampson’’s s ““TwoTwo--Way ProtocolsWay Protocols”” (CPA 2008, York)(CPA 2008, York)

The simplest session protocol is The simplest session protocol is oneone data type, sent data type, sent oneone way, way, onceonce. .
This corresponds to a classical channel.This corresponds to a classical channel.

Structured sessions consist of separately typed messages flying Structured sessions consist of separately typed messages flying in in
(nested) (nested) SEQSEQ ,, ALTALT and/orand/or PARPAR . This declared structure . This declared structure isis the the
session protocolsession protocol –– syntactic details are not yet settled. The compiler syntactic details are not yet settled. The compiler
checks that all code operating on the channel conforms, trackingchecks that all code operating on the channel conforms, tracking
use across all processes and procedures. Channel parameters use across all processes and procedures. Channel parameters
carrying a session protocol will have to declare which (named) pcarrying a session protocol will have to declare which (named) part art
of the protocol their of the protocol their PROCPROC implements.implements.

We We maymay be able to drop be able to drop channel recordschannel records from the language. These from the language. These
are mainly used for twoare mainly used for two--way conversations and are more safely way conversations and are more safely
handled by a handled by a session protocolsession protocol (and with less syntactic clutter).(and with less syntactic clutter).

7-Sep-12 Copyright P.H.Welch 111

(occam-π2) Unify Static / Dynamic(occam-ππ22) Unify Static / Dynamic
CompilerCompiler--known known smallsmall items (<= 8 or 16 bytes?) are preitems (<= 8 or 16 bytes?) are pre--allocated on allocated on
their process stack.their process stack.

Everything else is dynamically allocated on the heap, with referEverything else is dynamically allocated on the heap, with references ences
on the stack.on the stack.

The programmer is blind to the above. In particular, there is tThe programmer is blind to the above. In particular, there is the same he same
syntax for declaring sized arrays, regardless of whether the sizsyntax for declaring sized arrays, regardless of whether the size is e is
known to the compiler:known to the compiler:

[n]THING t: -- ‘n’ may be a run-time value[[n]THINGn]THING tt: : ---- ‘‘nn’’ may be a runmay be a run--time valuetime value

Array size is no longer part of the type. An array variable decArray size is no longer part of the type. An array variable declared with lared with
one size may be assigned to an array with another size (same typone size may be assigned to an array with another size (same type, of e, of
course). An array variable may be declared without size, but mucourse). An array variable may be declared without size, but must then st then
be assigned (either by assignment or incoming communication) to be assigned (either by assignment or incoming communication) to an an
actual array value before being used.actual array value before being used.

7-Sep-12 Copyright P.H.Welch 112

(occam-π2) Unify Static / Dynamic(occam-ππ22) Unify Static / Dynamic
Assignment and communication are handled in the most efficient wAssignment and communication are handled in the most efficient way.ay.

Stack items (always Stack items (always smallsmall) are assigned/communicated by) are assigned/communicated by copyingcopying..

Heap items are assigned/communicated by Heap items are assigned/communicated by referencereference::

Normally, this is the reference to the item held by the sender …Normally, this is the reference to the item held by the sender …

However, if compiler usage analysis of the sending process shows
the assigned/communicated data is used later by that process, a
reference to a (deeply) cloned copy is sent.

However, if compiler usage analysis of the sending process shows
the assigned/communicatedassigned/communicated data is used later by that process, a
reference to a (deeply) cloned copy is sent.

This is Neil Brown’s algorithm (“Auto-Mobiles: Optimised Message-
Passing”, CPA 2009, TU Eindhoven).
This is Neil BrownThis is Neil Brown’’s algorithm (s algorithm (““AutoAuto--Mobiles: Optimised MessageMobiles: Optimised Message--
PassingPassing””, CPA 2009, TU Eindhoven)., CPA 2009, TU Eindhoven).

7-Sep-12 Copyright P.H.Welch 113

(occam-π2) Unify Static / Dynamic(occam-ππ22) Unify Static / Dynamic
Assignment and communication are handled in the most efficient wAssignment and communication are handled in the most efficient way.ay.

Data may optionally qualified as Data may optionally qualified as MOBILEMOBILE (if the application semantics (if the application semantics
demands that only one copy may exist at all times):demands that only one copy may exist at all times):

Small MOBILE items (on the stack) are assigned/communicated by
copying – as before.
Small Small MOBILEMOBILE items (on the stack) are assigned/communicated by items (on the stack) are assigned/communicated by
copyingcopying –– as before.as before.

Large MOBILE items (on the heap) are assigned/communicated by
reference – as before. The reference will be to the item held by
the sender …

Large Large MOBILEMOBILE items (on the heap) are assigned/communicated by items (on the heap) are assigned/communicated by
referencereference –– as before. The reference will be to the as before. The reference will be to the item held by
the sender …

However, if compiler usage analysis of the sending process shows
the assigned/communicated data is used later by that process, this
is a semantic error and the compilation fails (reporting the error).

However, if compiler usage analysis of the sending process shows
the assigned/communicatedassigned/communicated data is used later by that process, this
is a semantic error and the compilation fails (reporting the error).

This is the current algorithm for occam-π mobiles.This is the current algorithm for This is the current algorithm for occam-ππ mobiles.mobiles.

7-Sep-12 Copyright P.H.Welch 114

(occam-π2) Self-Verifying Code(occam-ππ22) Self-Verifying Code

See my EndNote paper (“Adding Formal Verification to occam-π”, CPA
2011, Limerick).
See my See my EndNoteEndNote paper (paper (““Adding Formal Verification to occamAdding Formal Verification to occam--ππ””, CPA , CPA
2011, Limerick).2011, Limerick).

This is a proposal to make formal verification of This is a proposal to make formal verification of occamoccam-ππ programs programs
manageable entirely within the language.manageable entirely within the language.

The language is extended with qualifiers on types and processes The language is extended with qualifiers on types and processes (to (to
indicate relevance for verification and/or execution) and assertindicate relevance for verification and/or execution) and assertions ions
about refinement (including deadlock, livelock and determinism).about refinement (including deadlock, livelock and determinism).

The compiler abstracts a set of CSP equations and assertions, The compiler abstracts a set of CSP equations and assertions,
delegates their analysis to the FDR2 model checker and reports bdelegates their analysis to the FDR2 model checker and reports back ack
in terms related to the in terms related to the occamoccam-ππ source. The full (FDR2) range of CSP source. The full (FDR2) range of CSP
assertions is accessible, with no knowledge of CSP formalism assertions is accessible, with no knowledge of CSP formalism
required by the required by the occamoccam-ππ programmer.programmer.

Programs are proved just by writing and compiling programs. Programs are proved just by writing and compiling programs.

7-Sep-12 Copyright P.H.Welch 115

(occam-π2) Barrier and Output Guards(occam-ππ22) Barrier and Output Guards
We have them in We have them in JCSPJCSP …… why not in why not in occamoccam-ππ22 ??

ALT
SYNC bar

... over the barrier, carry on
out ! n

... message taken, continue
in ? x

... message arrived, process it
tim ? AFTER timeout

... response

ALTALT
SYNC barSYNC bar

... ... over the barrier, carry onover the barrier, carry on
out ! nout ! n

... ... message taken, continuemessage taken, continue
in ? xin ? x

... ... message arrived, process itmessage arrived, process it
timtim ? AFTER timeout? AFTER timeout

... ... responseresponse

So long as the additional costs on ALTs not using them can be
made negligible …
So long as the additional costs on So long as the additional costs on ALTALTss not using them can be not using them can be
made negligible made negligible ……

7-Sep-12 Copyright P.H.Welch 116

(occam-π2) What Else … ???(occam-ππ22) What Else … ???

Allow barriers and channels to be mixed with data in record fields?Allow barriers and channels to be mixed with data in record fielAllow barriers and channels to be mixed with data in record fields?ds?

Classically, synchronising elements and passive data have been Classically, synchronising elements and passive data have been
kept separate. Operations on them have different syntax (e.g. kept separate. Operations on them have different syntax (e.g.
sending on a channel is sending on a channel is notnot a procedure call). The latter has a procedure call). The latter has
clear semantic benefit and should remain. Can we relax on the clear semantic benefit and should remain. Can we relax on the
former? What are the benefits?former? What are the benefits?

What else … ???What else What else …… ??????

7-Sep-12 Copyright P.H.Welch 117

Almost
done …
Almost Almost
done done ……

7-Sep-12 Copyright P.H.Welch 118

ObservationObservationObservation

Can we teach students Can we teach students (those who love to program, anyway)(those who love to program, anyway)
concurrency so that:concurrency so that:

they quickly develop a correct and intuitive understanding of the primitive
mechanisms (e.g. processes, communication, synchronisation, networks)
and higher level patterns (e.g. client-server, phased barrier, I/O-PAR) … ?

they quickly develop a correct and intuitive understanding of ththey quickly develop a correct and intuitive understanding of the primitive e primitive
mechanisms mechanisms (e.g. (e.g. processesprocesses, , communicationcommunication, , synchronisationsynchronisation, , networksnetworks))
and higher level patterns and higher level patterns (e.g. (e.g. clientclient--serverserver, , phased barrierphased barrier, , I/OI/O--PARPAR)) …… ??

they can use those primitives and patterns with the same fluency as they use
serial computing primitives, without tripping over dark hazards … ?
they can use those primitives and patterns with the same fluencythey can use those primitives and patterns with the same fluency as they use as they use
serial computing primitives, serial computing primitives, without tripping over dark hazardswithout tripping over dark hazards …… ??

they can develop their own patterns when the standard ones don’t apply … ?they can develop their own patterns when the standard ones donthey can develop their own patterns when the standard ones don’’t apply t apply …… ??

they can use formal methods to verify good behaviour (e.g. freedom from
deadlock and livelock, safety, liveness), without training in the underlying
mathematics (process algebra, denotational semantics) … ?

they can use formal methods to verify good behaviour they can use formal methods to verify good behaviour (e.g. (e.g. freedom from freedom from
deadlock and livelockdeadlock and livelock, , safetysafety, , livenessliveness)), without training in the underlying , without training in the underlying
mathematics mathematics ((process algebraprocess algebra, , denotational semanticsdenotational semantics)) …… ??

they can do this as normal everyday practice, without any sense of fear … ?they can do this as they can do this as normal everyday practicenormal everyday practice, without any sense of fear , without any sense of fear …… ??

7-Sep-12 Copyright P.H.Welch 119

ObservationObservationObservation

they quickly develop a correct and intuitive understanding of the primitive
mechanisms (e.g. processes, communication, synchronisation, networks)
and higher level patterns (e.g. client-server, phased barrier, I/O-PAR) … ?

they quickly develop a correct and intuitive understanding of ththey quickly develop a correct and intuitive understanding of the primitive e primitive
mechanisms mechanisms (e.g. (e.g. processesprocesses, , communicationcommunication, , synchronisationsynchronisation, , networksnetworks))
and higher level patterns and higher level patterns (e.g. (e.g. clientclient--serverserver, , phased barrierphased barrier, , I/OI/O--PARPAR)) …… ??

they can use those primitives and patterns with the same fluency as they use
serial computing primitives, without tripping over dark hazards … ?
they can use those primitives and patterns with the same fluencythey can use those primitives and patterns with the same fluency as they use as they use
serial computing primitives, serial computing primitives, without tripping over dark hazardswithout tripping over dark hazards …… ??

they can use formal methods to verify good behaviour (e.g. freedom from
deadlock and livelock, safety, liveness), without training in the underlying
mathematics (process algebra, denotational semantics) … ?

they can use formal methods to verify good behaviour they can use formal methods to verify good behaviour (e.g. (e.g. freedom from freedom from
deadlock and livelockdeadlock and livelock, , safetysafety, , livenessliveness)), without training in the underlying , without training in the underlying
mathematics mathematics ((process algebraprocess algebra, , denotational semanticsdenotational semantics)) …… ??

they can do this as normal everyday practice, without any sense of fear … ?they can do this as they can do this as normal everyday practicenormal everyday practice, without any sense of fear , without any sense of fear …… ??

they can develop their own patterns when the standard ones don’t apply … ?they can develop their own patterns when the standard ones donthey can develop their own patterns when the standard ones don’’t apply t apply …… ??

Can we teach students Can we teach students (those who love to program, anyway)(those who love to program, anyway)
concurrency so that:concurrency so that:

Yes
, w

e c
an

!

Yes
, w

e c
an

!

Yes
, w

e c
an

!

7-Sep-12 Copyright P.H.Welch 120

ObservationObservationObservation

they quickly develop a correct and intuitive understanding of the primitive
mechanisms (e.g. processes, communication, synchronisation, networks)
and higher level patterns (e.g. client-server, phased barrier, I/O-PAR) … ?

they quickly develop a correct and intuitive understanding of ththey quickly develop a correct and intuitive understanding of the primitive e primitive
mechanisms mechanisms (e.g. (e.g. processesprocesses, , communicationcommunication, , synchronisationsynchronisation, , networksnetworks))
and higher level patterns and higher level patterns (e.g. (e.g. clientclient--serverserver, , phased barrierphased barrier, , I/OI/O--PARPAR)) …… ??

they can use those primitives and patterns with the same fluency as they use
serial computing primitives, without tripping over dark hazards … ?
they can use those primitives and patterns with the same fluencythey can use those primitives and patterns with the same fluency as they use as they use
serial computing primitives, serial computing primitives, without tripping over dark hazardswithout tripping over dark hazards …… ??

they can use formal methods to verify good behaviour (e.g. freedom from
deadlock and livelock, safety, liveness), without training in the underlying
mathematics (process algebra, denotational semantics) … ?

they can use formal methods to verify good behaviour they can use formal methods to verify good behaviour (e.g. (e.g. freedom from freedom from
deadlock and livelockdeadlock and livelock, , safetysafety, , livenessliveness)), without training in the underlying , without training in the underlying
mathematics mathematics ((process algebraprocess algebra, , denotational semanticsdenotational semantics)) …… ??

they can do this as normal everyday practice, without any sense of fear … ?they can do this as they can do this as normal everyday practicenormal everyday practice, without any sense of fear , without any sense of fear …… ??

they can develop their own patterns when the standard ones don’t apply … ?they can develop their own patterns when the standard ones donthey can develop their own patterns when the standard ones don’’t apply t apply …… ??

Can we teach students Can we teach students (those who love to program, anyway)(those who love to program, anyway)
concurrency so that:concurrency so that:

Yes
, w

e c
an

!

Yes
, w

e c
an

!

Yes
, w

e c
an

!
And not only students …

And not only students

And not only students ……

7-Sep-12 Copyright P.H.Welch 121

7-Sep-12 Copyright P.H.Welch 122

Which language has …Which language has Which language has ……

a dynamic concurrency model built into its core design … with full denotational
semantics (based on the CSP traces/failures/divergences model) …
a a dynamic concurrency modeldynamic concurrency model built into its core design built into its core design …… with full denotational with full denotational
semantics (based on thesemantics (based on the CSP traces/failures/divergences modelCSP traces/failures/divergences model)) ……

no data race hazards (eliminated by compiler aliasing analysis) …no no data race hazardsdata race hazards (eliminated by compiler aliasing analysis) (eliminated by compiler aliasing analysis) ……

deterministic concurrency by default. Non-determinism is introduced only by
explicit use of special features (e.g. choice, shared channels) …
deterministic concurrencydeterministic concurrency by default. Nonby default. Non--determinism is introduced determinism is introduced onlyonly by by
explicit use of special features (e.g. choice, shared channels) explicit use of special features (e.g. choice, shared channels) ……

the fastest and most effective multicore scheduler on the planet (probably) …the the fastest and most effectivefastest and most effective multicore scheduler on the planet (multicore scheduler on the planet (probablyprobably)) ……

program verification by programming (and a little thinking) …program verification by programmingprogram verification by programming (and a little thinking) (and a little thinking) ……

ease of learning, ease of use (e.g. 90 min Lego Robots ‘Fresher’ workshop) …ease of learning, ease of useease of learning, ease of use (e.g. 90 min Lego Robots (e.g. 90 min Lego Robots ‘‘FresherFresher’’ workshop) workshop) ……

past major industrial use (20-25 years ago) …past major industrial use past major industrial use (20(20--25 years ago) 25 years ago) ……

demonstrated powers of expression and performance in a range of currently
important application areas (e.g. large-scale modelling, emergence, embedded
micro-systems) …

demonstrated powers of expression and performance in a range of demonstrated powers of expression and performance in a range of currently currently
important application areasimportant application areas (e.g. large(e.g. large--scale modelling, emergence, embedded scale modelling, emergence, embedded
micromicro--systems) systems) ……

7-Sep-12 Copyright P.H.Welch 123

Which language has …Which language has Which language has ……

a dynamic concurrency model built into its core design … with full denotational semantics
(based on the CSP traces/failures/divergences model) …
a a dynamic concurrency modeldynamic concurrency model built into its core design built into its core design …… with full denotational semantics with full denotational semantics
(based on the(based on the CSP traces/failures/divergences modelCSP traces/failures/divergences model)) ……

no data race hazards (eliminated by compiler aliasing analysis) …no no data race hazardsdata race hazards (eliminated by compiler aliasing analysis) (eliminated by compiler aliasing analysis) ……

the fastest and most effective multicore scheduler on the planet (probably) …the the fastest and most effectivefastest and most effective multicore scheduler on the planet (multicore scheduler on the planet (probablyprobably)) ……

program verification by programming (and a little thinking) …program verification by programmingprogram verification by programming (and a little thinking) (and a little thinking) ……

deterministic concurrency by default. Non-determinism is introduced only by explicit use
of special features (e.g. choice, shared channels) …
deterministic concurrencydeterministic concurrency by default. Nonby default. Non--determinism is introduced determinism is introduced onlyonly by explicit use by explicit use
of special features (e.g. choice, shared channels) of special features (e.g. choice, shared channels) ……

ease of learning, ease of use (e.g. 90 min Lego Robots ‘Fresher’ workshop) …ease of learning, ease of useease of learning, ease of use (e.g. 90 min Lego Robots (e.g. 90 min Lego Robots ‘‘FresherFresher’’ workshop) workshop) ……

past major industrial use (20-25 years ago) …past major industrial use past major industrial use (20(20--25 years ago) 25 years ago) ……

occam Obviouslyoccam Obviouslyoccam Obviously☺

demonstrated powers of expression and performance in a range of currently important
application areas (e.g. large-scale modelling, emergence, embedded micro-systems) …
demonstrated powers of expression and performance in a range of demonstrated powers of expression and performance in a range of currently important currently important
application areasapplication areas (e.g. large(e.g. large--scale modelling, emergence, embedded microscale modelling, emergence, embedded micro--systems) systems) ……

… but has now been mostly forgotten, along with all its lessons?…… but has now been mostly forgotten, along with all its lessons?but has now been mostly forgotten, along with all its lessons?

7-Sep-12 Copyright P.H.Welch 124

a dynamic concurrency model built into its core design … with full denotational semantics
(based on the CSP traces/failures/divergences model) …
a a dynamic concurrency modeldynamic concurrency model built into its core design built into its core design …… with full denotational semantics with full denotational semantics
(based on the(based on the CSP traces/failures/divergences modelCSP traces/failures/divergences model)) ……

no data race hazards (eliminated by compiler aliasing analysis) …no no data race hazardsdata race hazards (eliminated by compiler aliasing analysis) (eliminated by compiler aliasing analysis) ……

the fastest and most effective multicore scheduler on the planet (probably) …the the fastest and most effectivefastest and most effective multicore scheduler on the planet (multicore scheduler on the planet (probablyprobably)) ……

program verification by programming (and a little thinking) …program verification by programmingprogram verification by programming (and a little thinking) (and a little thinking) ……

deterministic concurrency by default. Non-determinism is introduced only by explicit use
of special features (e.g. choice, shared channels) …
deterministic concurrencydeterministic concurrency by default. Nonby default. Non--determinism is introduced determinism is introduced onlyonly by explicit use by explicit use
of special features (e.g. choice, shared channels) of special features (e.g. choice, shared channels) ……

Which language has …Which language has Which language has ……

ease of learning, ease of use (e.g. 90 min Lego Robots ‘Fresher’ workshop) …ease of learning, ease of useease of learning, ease of use (e.g. 90 min Lego Robots (e.g. 90 min Lego Robots ‘‘FresherFresher’’ workshop) workshop) ……

past major industrial use (20-25 years ago) …past major industrial use past major industrial use (20(20--25 years ago) 25 years ago) ……

occam Obviouslyoccam Obviouslyoccam Obviously☺Bye Bye, occam-πBye Bye ByeBye, occam, occam--ππ
??????

Any questions?

Any questions?

Any questions?

demonstrated powers of expression and performance in a range of currently important
application areas (e.g. large-scale modelling, emergence, embedded micro-systems) …
demonstrated powers of expression and performance in a range of demonstrated powers of expression and performance in a range of currently important currently important
application areasapplication areas (e.g. large(e.g. large--scale modelling, emergence, embedded microscale modelling, emergence, embedded micro--systems) systems) ……

… but has now been mostly forgotten, along with all its lessons?…… but has now been mostly forgotten, along with all its lessons?but has now been mostly forgotten, along with all its lessons?

	occam Obviously
	Modelling Bio-Mechanisms
	Mobility and Location Awareness
	Location (Neighbourhood) Awareness
	Location (Neighbourhood) Awareness
	Location (Neighbourhood) Awareness
	Location (Neighbourhood) Awareness
	Mobility and Location Awareness
	A Thesis and Hypothesis
	Case Study: blood clotting
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream

