More Mobile Escape Analysis for occam-pi
PLAS Research Group Seminar

Martin Ellis
School of Computing, University of Kent, Canterbury

M.C.Ellis@kent.ac.uk
http://wuw.cs.kent.ac.uk/ " me92/

ﬁﬁ‘ University of | »
I@nt (;r;putmg

Introduction

Mobile Escape Analysis

m Existing semantic models: traces, failures and divergences.

m New semantic model: mobility.
m primarily interested in how mobiles and data move around a system.
m to determine the boundaries of any particular mobile or data item
within the communication graph.
m where that graph may be dynamic and evolve at run-time.

Semantic Models

Mobility Analysis

m An ID process.

PROC id (CHAN INT in?, out!)
WHILE TRUE

INT x: - '
SEQ in i out!
in 7 x S

out ! x

Semantic Models

Mobility Analysis

m An ID process.

PROC id (CHAN INT in?, out!)

WHILE TRUE
INT x: -
SEQ n i out!
in 7 x —
out ! x

mobility ID = {}!

1We will come back to this.

Semantic Models

Mobility Analysis

m An ID process.

PROC id (CHAN INT in?, out!)

WHILE TRUE
INT x: - '
SEQ n i out!
in 7 x —
out ! x

mobility ID = {}!

m For an ‘MID’ process that transports/buffers mobiles:

PROC mid (CHAN MOBILE THING in?, out!)
WHILE TRUE
MOBILE THING x:
SEQ
in ? x
out ! x

. out!
mid

1We will come back to this.

Semantic Models

Mobility Analysis

m An ID process.

PROC id (CHAN INT in?, out!)

WHILE TRUE
INT x: - '
SEQ n i out!
in 7 x —
out ! x

mobility ID = {}!

m For an ‘MID’ process that transports/buffers mobiles:

PROC mid (CHAN MOBILE THING in?, out!)
WHILE TRUE
MOBILE THING x:
SEQ
in ? x
out ! x

. out!
mid

mobility MID = {in??, out!®}

1We will come back to this.

Code Analysis

Generating Models of occam-7 Programs

m Input, output and assignment are largely straightforward:

Code Analysis

Generating Models of occam-7 Programs

m Input, output and assignment are largely straightforward:

PROC P (CHAN MOBILE THING out!)
MOBILE THING x:
SEQ
. initialise ‘x’
out ! x

Code Analysis

Generating Models of occam-7 Programs

m Input, output and assignment are largely straightforward:

PROC P (CHAN MOBILE THING out!) mobility P = {(out!*)}
MOBILE THING x:
SEQ
. initialise ‘x’
out ! x

Code Analysis

Generating Models of occam-7 Programs

m Input, output and assignment are largely straightforward:

PROC Q (CHAN MOBILE THING in?) mobility P = {(out!)}
MOBILE THING y:
SEQ
in 7 y

. use ¢

y}

Code Analysis

Generating Models of occam-7 Programs

m Input, output and assignment are largely straightforward:

PROC Q (CHAN MOBILE THING in?)
MOBILE THING y:
SEQ
in 7 y

. use ¢

y}

mobility P = {(out!)}
mobility Q = {(in?’)}

Code Analysis

Generating Models of occam-7 Programs

m Input, output and assignment are largely straightforward:

PROC R (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:

SEQ
in ? v
w o= v

out ! w

mobility P = {(out!)}
mobility Q = {(in?’)}

Code Analysis

Generating Models of occam-7 Programs

m Input, output and assignment are largely straightforward:

PROC R (CHAN MOBILE THING in?, out!) mobility P = {(out!*)}
MOBILE THING v, w:
SEQ mobility Q = {(in?")}
in 7?7 v
S mobility R = {(in?", Lc!Y),
out © w (Le? out!)} \ {Lc}

Code Analysis

Generating Models of occam-7 Programs

m Input, output and assignment are largely straightforward:

PROC R (CHAN MOBILE THING in?, out!) mobility P = {(out!*)}
MOBILE THING v, w:
SEQ mobility Q = {(in?")}
in 7?7 v
W= v mobility R = {(in?", Lc!Y),
1
out W (L™ out!™)} \ {Lc}
| CHAN INT c: . o u
based on thle ximy - PAR = {{(in?", out!")}
equivalence: ool

Code Analysis

Generating Models of occam-7 Programs

m Input, output and assignment are largely straightforward:

PROC R (CHAN MOBILE THING in?, out!) mobility P = {(out!*)}
MOBILE THING v, w:
SEQ mobility Q = {(in?")}
in 7?7 v
W= v mobility R = {(in?", Lc!Y),
1
out W (L™ out!™)} \ {Lc}
| CHAN INT c: . o u
based on th.e ximy - PAR = {{(in?", out!")}
equivalence: ool

m As are choice (ALT, IF, cASE) and parallelism (PaR).
m simply the set union of the different branches.

Code Analysis

Generating Models of occam-7 Programs

m Input, output and assignment are largely straightforward:

PROC R (CHAN MOBILE THING in?, out!) mobility P = {(out!*)}
MOBILE THING v, w:
SEQ mobility Q = {(in?")}
in 7?7 v
W= v mobility R = {(in?", Lc!Y),
1
out W (L™ out!™)} \ {Lc}
| CHAN INT c: . o u
based on th.e ximy - PAR = {{(in?", out!")}
equivalence: ool

m As are choice (ALT, IF, cASE) and parallelism (PaR).
m simply the set union of the different branches.
m hiding is more complex — e.g. as above with ‘Lc’.
m essentially matching outputs with inputs, and combining those
sequences (potentially expansive!)

Code Analysis

Generating Models of occam-7 Programs

m Input, output and assignment are largely straightforward:

PROC R (CHAN MOBILE THING in?, out!) mobility P = {(H?*, out!™)}
MOBILE THING v, w:
SEQ mobility Q = {(in?V ,HY)}
in ? v
W= v mobility R = {(in?", Lc!Y),
1
out W (L™ out!™)} \ {Lc}
| CHAN INT c: . o u
based on th.e ximy - PAR = {{(in?", out!")}
equivalence: ool

m As are choice (ALT, IF, cASE) and parallelism (PaR).
m simply the set union of the different branches.
m hiding is more complex — e.g. as above with ‘Lc’.
m essentially matching outputs with inputs, and combining those
sequences (potentially expansive!)

Example

Using Mobile Analysis

mobility delta = {(in??, out0!?),

A? _»:delta ‘ - X! (in??, out1!b)}
lex Y mobility choice = {(in??, out0!?),

q P | (in?b out1!P)}

B? |, of ’
choice r mobility gen = {(out!?)}

s sink ‘ mobility plex = {(in072, out!?),

gen (in17% out!P)}
net mobility sink = {(in0?2), (in17%)}

Using Mobile Analysis

X!
A? ‘
> delta
s
Y!
lex
q p
? .
B » choice ,
sink

gen

net

Example

mobility delta = {(in??, out0!?),
(in?b out1!P)}
mobility choice = {(in??, out0!?),
(in?b out1!P)}
mobility gen = {(out!?)}
mobility plex = {(in072, out!?),
(in17% out!P)}

mobility sink = {(in0?2), (in17%)}

m When composed in parallel, with renaming for parameter passing
and avoiding capture, this gives the mobility set:

mobility net = {(A??, X17), (A?®, pl®), (B7°, q1°), (B?9, r19)
<S!e>7 <p?fa Y!f>7 <q?g’ Y!g>a <r?h>a <5?h>} \ {p, q,r, S}

Using Mobile Analysis

m Hiding the internal channels gives:
2L (A X, (ATP, Y1) (BY, 1) (B2, 1), (s1°), (7%, Y1),
(r7?), (s7")}
A X, (AT8, V1), (BY, YI9), (B2, 1), (519 (r2"), (s77))
M (A7, X1), (AP, YIP) (B2, Y1), (B9, (1°), (s77)}

Mol a2, x19), (A28, Y18y (B7C, YI€Y (B?Y)) AL X,

B? net \7!

Using Mobile Analysis

m Hiding the internal channels gives:
2L (A X, (ATP, Y1) (BY, 1) (B2, 1), (s1°), (7%, Y1),
(r7?), (s7")}
A X, (AT8, V1), (BY, YI9), (B2, 1), (519 (r2"), (s77))
M (A7, X1), (AP, YIP) (B2, Y1), (B9, (1°), (s77)}

L qear, xie), (A7, ¥19), (B2, Y19), (B79)) —AL =
B? net \7!

m Which indicates that mobiles arriving on A escape on X and Y; and
that mobiles arriving on B escape on Y or are consumed internally.

Example

Using Mobile Analysis

m Hiding the internal channels gives:
2L (A X, (ATP, Y1) (BY, 1) (B2, 1), (s1°), (7%, Y1),
(r7?), (s7")}
A X, (AT8, V1), (BY, YI9), (B2, 1), (519 (r2"), (s77))
M (A7, X1), (AP, YIP) (B2, Y1), (B9, (1°), (s77)}

L qear, xie), (A7, ¥19), (B2, Y19), (B79)) —AL =
B? net \7!

m Which indicates that mobiles arriving on A escape on X and Y; and
that mobiles arriving on B escape on Y or are consumed internally.
m by what is not present: no mobiles received on A are discarded
internally; and that no internally generated mobiles escape.

Example

Modelling Non-Mobiles

m All non-mobile occam-pi code can be converted into a pure mobile
equivalent.

PROC R (CHAN THING in?, out!)

THING v, w:

SEQ
in ? v =
w o=V

out ! w

Modelling Non-Mobiles

m All non-mobile occam-pi code can be converted into a pure mobile

equivalent.

Example

PROC R (CHAN THING in?, out!)

THING v, w:
SEQ

in ? v

w o=V

out ! w

PROC MR (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:

SEQ
in ? v
w := CLONE v
out ! CLONE w

Modelling Non-Mobiles

m All non-mobile occam-pi code can be converted into a pure mobile

equivalent.

Example

PROC R (CHAN THING in?, out!)
THING v, w:
SEQ
in ? v
w o=V
out ! w

PROC MR (CHAN MOBILE THING in?, out!)

MOBILE THING v, w:
SEQ
in ? v
w := CLONE v
out ! CLONE w

={

= {(in7", HI¥Y, (H?%, out'?)}

Example

The Made-From Operator “<"

m a < {b,c} means mobile a is made from data a and b.

PROC MR1 (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:

SEQ
in ? v
woi= v

out ! w

Example

The Made-From Operator “<"

m a < {b,c} means mobile a is made from data a and b.
ma<+{b} = a«>b

PROC MR1 (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:

SEQ
in ? v
woi= v

out ! w

Example

The Made-From Operator “<"

m a < {b,c} means mobile a is made from data a and b.

ma<+{b} = a«>b
m {(out!®)} = {(out!*{})}

PROC MR1 (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:

SEQ
in ? v
woi= v

out ! w

Example

The Made-From Operator “<"

m a < {b,c} means mobile a is made from data a and b.

ma<+{b} = a«>b
m {(out!®)} = {(out!*{})}

PROC MR1 (CHAN MOBILE THING in?, out!)
PS’IEEILE THING v, w: mobility MR1 = {(in??, out!?)}
in ? v

w =V
out ! w

Example

The Made-From Operator “<"

m a < {b,c} means mobile a is made from data a and b.

ma<+{b} = a«>b
m {(out!®)} = {(out!*{})}

PROC MR2 (CHAN MOBILE THING in?, out!)

PS’IEEILE THING v, w: mobility MR1 = {(in??, out!?)}
in ? v

w := CLONE v
out ! w

Example

The Made-From Operator “<"

m a < {b,c} means mobile a is made from data a and b.

ma<+{b} = a«>b
m {(out!®)} = {(out!*{})}

PROC MR2 (CHAN MOBILE THING in?, out!)

PS’IEEILE THING v, w: mobility MR1 = {(in??, out!?)}
in ? v mobility MR2 = {(in??, out!b*{a})}

w := CLONE v
out ! w

Example

The Made-From Operator “<"

m a < {b,c} means mobile a is made from data a and b.

ma<+{b} = a«>b
m {(out!®)} = {(out!*{})}

PROC MR3 (CHAN MOBILE THING in?, out!)
MOBILE THING v, w: mobility MR1 = {(in??, out!?)}

SEQ
in ? v mobility MR2 = {(in??, out!b+{a})}
v:i=v+1

out ! v

The Made-From Operator “<"

Example

m a < {b,c} means mobile a is made from data a and b.

ma<+{b} = a«>b
m {(out!®)} = {(out!*{})}

PROC MR3 (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:

SEQ
in ? v
vi=v+1

out ! v

mobility MR1 = {(in??, out!?)}
mobility MR2 = {(in??, out!?*~{a})}
mobility MR3 = {(in??, out!“-ﬂ%ﬂ)}

The Made-From Operator “<"

Example

m a < {b,c} means mobile a is made from data a and b.

ma<+{b} = a«>b
m {(out!®)} = {(out!*{})}

PROC MR4 (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:

SEQ
in ? v
wi=v +1

out ! w

mobility MR1 = {(in??, out!?)}
mobility MR2 = {(in??, out!?*~{a})}
mobility MR3 = {(in??, out!“-ﬂ%ﬂ)}

The Made-From Operator “<"

Example

m a < {b,c} means mobile a is made from data a and b.

ma<+{b} = a«>b
m {(out!®)} = {(out!*{})}

PROC MR4 (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:

SEQ

in ? v

wi=v +1
out ! w

mobility MR1 = {
mobility MR2 = {
mobility MR3 = {
mobility MR4 = {

in??, out!?)}
in?2, out!b1a}yy
in?2, outla+{a7})}1

in?2, out!bt1a:7})}

~ N NN

Example

Sources of data.

External Channel Mobiles read in from external channels contain their
own data.

PROC foo(a, b) = {(a?%, b!ae{a}>}

From the Heap Mobiles retrieved form the heap are made from
undeclared (o) data. 2

PROC bar(a) = {(H??, al#{o})}
From Internal State Internal state (often constants) is represented as 7.

PROC foobar(a) = {(H?%, al®{7})1

2This is not usualy possible in occam due to default initialisers.

Modelling Non-Mobiles

Reviewing our earlier example. . .

PROC R (CHAN THING in?, out!)
THING v, w:
SEQ

W o=V
out ! w

in ? v =

PROC MR (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:
SEQ
in ? v
w := CLONE v
out ! CLONE w

={

= {(in?¢ HI¥),
<H?V7H!v<—{u}>7
<H?W, out!we{ve{u}}> }

Example

Modelling Non-Mobiles

Reviewing our earlier example. . .

PROC R (CHAN THING in?, out!)
THING v, w:
SEQ

W o=V
out ! w

in ? v =

PROC MR (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:
SEQ
in ? v
w := CLONE v
out ! CLONE w

={

= { (in?", H!¥),
(H?™, out!™<1u})}

Example

Example

More Examples - Flow Control

PROC S (MOBILE CHAN INT in1?, in27, out!)
INT v, w:
SEQ
in ? v
in ? w
IF

out ! v
TRUE
out ! w

{(in12%, out\ B) (in27B oyt BAAB tauT),

(in278 out!B—1AB tauky (in12A HIAY (in278 HIB) }

Example

More Examples - Flow Control

PROC S (MOBILE CHAN INT in1?, in27, out!)
INT v, w:
SEQ
in ? v
in ? w
IF
v=20
out ! v
w=20
out ! w
TRUE
out ! w

{(in12%, out\ 1B 1k (1278 oyl BHAB Ul

(in278 out!B—1AB tauky (in12A HIAY (in278 HIB) }

Example

More Examples - Flow Control

PROC S (MOBILE CHAN INT in1?, in27, out!)
INT v, w:
SEQ
in ? v
in ? w
IF
v=20
out ! v
w=0
out ! v
TRUE
out ! w

{(in1?4, outV{B:tau}y (jn?B oyp1B{AB tauly

(in278 out!BAAB Ul (in12A HIAY, (in2?B HIB) }

Example

More Examples - Flow Control

PROC S (MOBILE CHAN INT in1?, in27, out!)
INT v, w:
SEQ
in ? v
in ? w
IF
v=20
out ! v
w=0
out ! v
TRUE
out ! w

{(in1?24, outl A 1B-tauly (inp?B oyt B {AB tauly

(in2?78 out! B AB Ul jn12A HIAY (in278 HIB))

)

Example

Mobile Refinement

integrate

m mobility integrate.spec(in, out) = {(in??, out!®{27})}

Example

Mobile Refinement

integrate

m mobility integrate.spec(in, out) = {(in??, out!®{27})}
m mobility integrate(in, out) = {(in??, out!P<{27H)1

Example

Mobile Refinement

integrate

m mobility integrate.spec(in, out) = {(in??, out!®{27})}
m mobility integrate(in, out) = {(in??, out!P<{27H)1

m mobility integrate.spec(in, out) C a4 mobility integrate(in, out)

Example

Mobile Refinement

integrate

mobility integrate.spec(in, out) = {(in??, out!?127})}
mobility integrate(in, out) = {(in??, out!>~ {271}

mobility integrate.spec(in, out) T g mobility integrate(in, out)
{(in?2, out!a(_{avf}>} C {(in?a,out!b‘_{avf}>}

Example

Mobile Refinement

integrate

mobility integrate.spec(in, out) = {(in??, out!?127})}
mobility integrate(in, out) = {(in??, out!>~ {271}

mobility integrate.spec(in, out) L mobility integrate(in, out)
{(in?2, out!> 1 H Y Z \q {(in?2, out!P—1a7h)}

Example

Mobile Refinement

mob.integrate

mobility integrate.spec(in, out) = {(in??, out!?127})}

mobility mob.integrate(in, out) = {(in??, out!*{a7})1

mobility integrate.spec(in, out) C ¢ mobility mob.integrate(in, out)
{(in?2, out!a(_{avf}>} Cam {(in?2, out!”_{a”'}>}

Example

Data Refinement

m We can now trace data movement.
m New operator Cp as data refinement.

m Only concerned about things on the right hand side of the +
operator.

Example

Data Refinement

A?

integrate

mobility integrate.spec(in, out) = {(in??, out!?~{27})}
mobility integrate(in, out) = {(in??, out!>{27})}

mobility integrate.spec(in, out) L g mobility integrate(in, out)
{(in?2, out!a‘_{a”}>} Zm {(in?a,out!b‘_{af})}

m {(in??, out!?1a™HY Cp {(in?2, out!P {271}

m {(in?1a} out!taTh) Cp {(in?71a} out!{aT})}

Example

Data Refinement

X!

' > mob.plus H mob.delta

q

r

mob.integrate

mobility integrate.spec(in, out) = {(in??, out!?~{27})}

mobility mob.integrate(in, out) = {(in??, out!*{a7}H)1

mobility integrate.spec(in, out) C ¢ mobility mob.integrate(in, out)
{(in?2 out!? 12T} T\ {(in?2, out1?<{27H)}

m {(in??, out!?{a"hH} Cp {(in??, out!? {271}

m {(in?1a} out!taTh) Cp {(in?71a} out!{aT})}

Data Refinement

private.data——»

input——»|
secure

——»-output

———»-private.output

m Security
m mobility secure.spec(in, out) =

{(private.data??, output!®~ >} (input?® HI"),

(H?“, private.output

!c<—{a,b,7'}>}

m mobility secure.spec Cp mobility secure

Example

Example
Minimal Componants

— BUFFER ——— | PROC BUFFER(in, out) =
{(in?2, out!?) }

GENERATOR |—— | PROC GENERATOR(out) =
{(H?2, out!=—{7})}

— BLACKHOLE PROC BLACKHOLE (out) =
{(in?2, H1%)}
PLUS ——— | PROC PLUS(inl,in2, out) =

{(in172, out!a—{ab})
(in27?, out!a<1a:b})}

Example

More Minimal Componants

— DELTA PROC DELTA(in, outl, out2) =
{{in??, out1!?), {in??, out2!?)}3

MUX —— | PROC MUX (inl, in2, out) =
{(in1?2 out!?), (in2??, out!P)}

— ROUTE PROC ROUTE (in, outl, out2) =
{(in?2, out1!?), (in?® out2!P)}

REPLACE ——— | PROC REPLACE(inl, in2, out) =
{(in172, out!b{ahy,
(in2?? out!P{ahy1

3Though this is not valid in traditional Occam it is possible with shared mobiles.

Example

Conclusions

m Detect mobile escape:
m For optimisation.
m Detect data escape:

m For security.
m For consistancy checking.

Limitations:
m Data escape is a over approximation.
m Structured data is modelled as single item.

m Everything escapes everywhere.

The End

s Any questions?

AL

University of
Kent

A <
Computing

Backmatter

References

D R. Milner.

Communicating and Mobile Systems: the Pi-Calculus.
Cambridge University Press, 1999.
ISBN: 0-52165-869-1.

Extras

Mobility Refinement

m With the ordinary semantic models, we have a notion of refinement.

m no reason why one should not exist for the mobility model presented
here:

PCy @ = mobility @ C mobility P

m The informal interpretation is that Q is “less leaky” than P, when it
comes to mobile escape.
m some fudge required in the subset operation: e.g. {{c?*)} refines
{{(c?,d™)}, as does {(d")}.
m can arise in an implementation that copies data between mobiles.

Extras

Expansive Hiding

m Hiding is not always an reducing operation:
m can easily blow-up, reflecting the different possibilities for mobiles.

{(A?2,c12),(B?P, c1P), (27, XIT) (28, Y18) (c?h Z1M))

Ml riara, x12y, (A72, v19), (472, 21%),
(B?°, X1%), (B?P, Y1P), (B?", Z1°)}

m Worse-case is limited by type compatibility.

Extras

Denotational Semantics

m Alphabets (for any particular occam-7 process):

m output channels: &', input channels: £7, such that © = ' U X7,
m also grouped by type: X, where t is a valid occam-7 protocol and
t € T, where T is the set of valid occam-7 protocols.

m following on: ¥y = SLUX!, and Vt: T -5 C X
m for shared mobiles: ¥} = %', UX}.

m Primitive processes:

mobility SKIP = ()
mobility STOP = ()
mobility div = mobility CHAOS =
(™| Ccex'tu{(D?)|Dex"U
{(C?v,D") |Vt :T-(C,D) e X! xxhH}

Denotational Semantics

m Choice:

mobility (P O Q) = (mobility P)U (mobility Q)
mobility (P M Q) = (mobility P) U (mobility Q)

m Interleaving and parallelism:
mobility (P || Q) = (mobility P) U (mobility Q)
m Hiding:
mobility (P\ x) = {M" Nla/g] |
(M”(x1%), (x?8)" N) € mobility P x mobility P }U
((mobility P) — ({F"(x!*) | F~(x!*) € mobility P}
U {{ x?%) "G | (x?%)" G € mobility P}))u
{H | (H"(x!*)) € mobility P A ((x??)"1) & mobility P A H # () }U
{J] ((x?%)"J) € mobility P A (J"(x!*)) & mobility P\ J # ()}

	Introduction
	Semantic Models
	Code Analysis
	Example
	Backmatter
	Extras

