
More Mobile Escape Analysis for occam-pi
PLAS Research Group Seminar

Martin Ellis

School of Computing, University of Kent, Canterbury

M.C.Ellis@kent.ac.uk

http://www.cs.kent.ac.uk/~me92/

Introduction

Mobile Escape Analysis

Existing semantic models: traces, failures and divergences.

New semantic model: mobility.

primarily interested in how mobiles and data move around a system.
to determine the boundaries of any particular mobile or data item
within the communication graph.
where that graph may be dynamic and evolve at run-time.

Semantic Models

Mobility Analysis

An ID process.

PROC id (CHAN INT in?, out!)
WHILE TRUE
INT x:
SEQ

in ? x
out ! x

:

id
in? out!

mobility ID = {}1

For an ‘MID’ process that transports/buffers mobiles:

mobility MID = {in?a, out!a}

1We will come back to this.

Semantic Models

Mobility Analysis

An ID process.

PROC id (CHAN INT in?, out!)
WHILE TRUE
INT x:
SEQ

in ? x
out ! x

:

id
in? out!

mobility ID = {}1

For an ‘MID’ process that transports/buffers mobiles:

mobility MID = {in?a, out!a}

1We will come back to this.

Semantic Models

Mobility Analysis

An ID process.

PROC id (CHAN INT in?, out!)
WHILE TRUE
INT x:
SEQ

in ? x
out ! x

:

id
in? out!

mobility ID = {}1

For an ‘MID’ process that transports/buffers mobiles:

PROC mid (CHAN MOBILE THING in?, out!)
WHILE TRUE
MOBILE THING x:
SEQ

in ? x
out ! x

:

mid
in? out!

mobility MID = {in?a, out!a}

1We will come back to this.

Semantic Models

Mobility Analysis

An ID process.

PROC id (CHAN INT in?, out!)
WHILE TRUE
INT x:
SEQ

in ? x
out ! x

:

id
in? out!

mobility ID = {}1

For an ‘MID’ process that transports/buffers mobiles:

PROC mid (CHAN MOBILE THING in?, out!)
WHILE TRUE
MOBILE THING x:
SEQ

in ? x
out ! x

:

mid
in? out!

mobility MID = {in?a, out!a}

1We will come back to this.

Code Analysis

Generating Models of occam-π Programs

Input, output and assignment are largely straightforward:

As are choice (ALT, IF, CASE) and parallelism (PAR).

simply the set union of the different branches.
hiding is more complex – e.g. as above with ‘Lc’.
essentially matching outputs with inputs, and combining those
sequences (potentially expansive!)

Code Analysis

Generating Models of occam-π Programs

Input, output and assignment are largely straightforward:

PROC P (CHAN MOBILE THING out!)
MOBILE THING x:
SEQ
... initialise ‘x’
out ! x

:

As are choice (ALT, IF, CASE) and parallelism (PAR).

simply the set union of the different branches.
hiding is more complex – e.g. as above with ‘Lc’.
essentially matching outputs with inputs, and combining those
sequences (potentially expansive!)

Code Analysis

Generating Models of occam-π Programs

Input, output and assignment are largely straightforward:

PROC P (CHAN MOBILE THING out!)
MOBILE THING x:
SEQ
... initialise ‘x’
out ! x

:

mobility P = {〈out!x〉}

As are choice (ALT, IF, CASE) and parallelism (PAR).

simply the set union of the different branches.
hiding is more complex – e.g. as above with ‘Lc’.
essentially matching outputs with inputs, and combining those
sequences (potentially expansive!)

Code Analysis

Generating Models of occam-π Programs

Input, output and assignment are largely straightforward:

mobility P = {〈out!x〉}PROC Q (CHAN MOBILE THING in?)
MOBILE THING y:
SEQ
in ? y
... use ‘y’

:

As are choice (ALT, IF, CASE) and parallelism (PAR).

simply the set union of the different branches.
hiding is more complex – e.g. as above with ‘Lc’.
essentially matching outputs with inputs, and combining those
sequences (potentially expansive!)

Code Analysis

Generating Models of occam-π Programs

Input, output and assignment are largely straightforward:

mobility P = {〈out!x〉}PROC Q (CHAN MOBILE THING in?)
MOBILE THING y:
SEQ
in ? y
... use ‘y’

:

mobility Q = {〈in?y 〉}

As are choice (ALT, IF, CASE) and parallelism (PAR).

simply the set union of the different branches.
hiding is more complex – e.g. as above with ‘Lc’.
essentially matching outputs with inputs, and combining those
sequences (potentially expansive!)

Code Analysis

Generating Models of occam-π Programs

Input, output and assignment are largely straightforward:

mobility P = {〈out!x〉}

mobility Q = {〈in?y 〉}

PROC R (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:
SEQ
in ? v
w := v
out ! w

:

As are choice (ALT, IF, CASE) and parallelism (PAR).

simply the set union of the different branches.
hiding is more complex – e.g. as above with ‘Lc’.
essentially matching outputs with inputs, and combining those
sequences (potentially expansive!)

Code Analysis

Generating Models of occam-π Programs

Input, output and assignment are largely straightforward:

mobility P = {〈out!x〉}

mobility Q = {〈in?y 〉}

PROC R (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:
SEQ
in ? v
w := v
out ! w

:

mobility R = {〈in?v , Lc !v 〉,

〈Lc?w , out!w 〉} \ {Lc}

As are choice (ALT, IF, CASE) and parallelism (PAR).

simply the set union of the different branches.
hiding is more complex – e.g. as above with ‘Lc’.
essentially matching outputs with inputs, and combining those
sequences (potentially expansive!)

Code Analysis

Generating Models of occam-π Programs

Input, output and assignment are largely straightforward:

mobility P = {〈out!x〉}

mobility Q = {〈in?y 〉}

PROC R (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:
SEQ
in ? v
w := v
out ! w

:

mobility R = {〈in?v , Lc !v 〉,

〈Lc?w , out!w 〉} \ {Lc}

based on the
equivalence:

x := y ≡
CHAN INT c:
PAR

c ! y
c ? x

= {〈in?u, out!u〉}

As are choice (ALT, IF, CASE) and parallelism (PAR).

simply the set union of the different branches.
hiding is more complex – e.g. as above with ‘Lc’.
essentially matching outputs with inputs, and combining those
sequences (potentially expansive!)

Code Analysis

Generating Models of occam-π Programs

Input, output and assignment are largely straightforward:

mobility P = {〈out!x〉}

mobility Q = {〈in?y 〉}

PROC R (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:
SEQ
in ? v
w := v
out ! w

:

mobility R = {〈in?v , Lc !v 〉,

〈Lc?w , out!w 〉} \ {Lc}

based on the
equivalence:

x := y ≡
CHAN INT c:
PAR

c ! y
c ? x

= {〈in?u, out!u〉}

As are choice (ALT, IF, CASE) and parallelism (PAR).

simply the set union of the different branches.
hiding is more complex – e.g. as above with ‘Lc’.
essentially matching outputs with inputs, and combining those
sequences (potentially expansive!)

Code Analysis

Generating Models of occam-π Programs

Input, output and assignment are largely straightforward:

mobility P = {〈out!x〉}

mobility Q = {〈in?y 〉}

PROC R (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:
SEQ
in ? v
w := v
out ! w

:

mobility R = {〈in?v , Lc !v 〉,

〈Lc?w , out!w 〉} \ {Lc}

based on the
equivalence:

x := y ≡
CHAN INT c:
PAR

c ! y
c ? x

= {〈in?u, out!u〉}

As are choice (ALT, IF, CASE) and parallelism (PAR).

simply the set union of the different branches.
hiding is more complex – e.g. as above with ‘Lc’.
essentially matching outputs with inputs, and combining those
sequences (potentially expansive!)

Code Analysis

Generating Models of occam-π Programs

Input, output and assignment are largely straightforward:

mobility P = {〈H?x , out!x〉}

mobility Q = {〈in?y ,H!y 〉}

PROC R (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:
SEQ
in ? v
w := v
out ! w

:

mobility R = {〈in?v , Lc !v 〉,

〈Lc?w , out!w 〉} \ {Lc}

based on the
equivalence:

x := y ≡
CHAN INT c:
PAR

c ! y
c ? x

= {〈in?u, out!u〉}

As are choice (ALT, IF, CASE) and parallelism (PAR).

simply the set union of the different branches.
hiding is more complex – e.g. as above with ‘Lc’.
essentially matching outputs with inputs, and combining those
sequences (potentially expansive!)

Example

Using Mobile Analysis

delta

choice

gen

plex

sink

mobility delta = {〈in?a, out0!a〉,

〈in?b, out1!b〉}

mobility choice = {〈in?a, out0!a〉,

〈in?b, out1!b〉}

mobility gen = {〈out!a〉}

mobility plex = {〈in0?a, out!a〉,

〈in1?b, out!b〉}

mobility sink = {〈in0?a〉, 〈in1?b〉}

delta

choice

gen

plex

sink

delta

choice

gen

plex

sink

p

q

r

s

A?

B?

X!

Y!

net

When composed in parallel, with renaming for parameter passing
and avoiding capture, this gives the mobility set:

mobility net = {〈A?a,X !a〉, 〈A?b, p!b〉, 〈B?c , q!c〉, 〈B?d , r !d 〉

〈s!e〉, 〈p?f ,Y !f 〉, 〈q?g ,Y !g 〉, 〈r?h〉, 〈s?h〉} \ {p, q, r , s}

Example

Using Mobile Analysis

delta

choice

gen

plex

sink

mobility delta = {〈in?a, out0!a〉,

〈in?b, out1!b〉}

mobility choice = {〈in?a, out0!a〉,

〈in?b, out1!b〉}

mobility gen = {〈out!a〉}

mobility plex = {〈in0?a, out!a〉,

〈in1?b, out!b〉}

mobility sink = {〈in0?a〉, 〈in1?b〉}

delta

choice

gen

plex

sink

delta

choice

gen

plex

sink

p

q

r

s

A?

B?

X!

Y!

net

When composed in parallel, with renaming for parameter passing
and avoiding capture, this gives the mobility set:

mobility net = {〈A?a,X !a〉, 〈A?b, p!b〉, 〈B?c , q!c〉, 〈B?d , r !d 〉

〈s!e〉, 〈p?f ,Y !f 〉, 〈q?g ,Y !g 〉, 〈r?h〉, 〈s?h〉} \ {p, q, r , s}

Example

Using Mobile Analysis

Hiding the internal channels gives:

\{p}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c , q!c〉, 〈B?d , r !d 〉, 〈s!e〉, 〈q?g ,Y !g 〉,

〈r?h〉, 〈s?h〉}

\{q}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c ,Y !c〉, 〈B?d , r !d 〉, 〈s!e〉, 〈r?h〉, 〈s?h〉}

\{r}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c ,Y !c〉, 〈B?d 〉, 〈s!e〉, 〈s?h〉}

\{s}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c ,Y !c〉, 〈B?d 〉}

net
A?

B?

X!

Y!

Which indicates that mobiles arriving on A escape on X and Y; and
that mobiles arriving on B escape on Y or are consumed internally.

by what is not present: no mobiles received on A are discarded
internally; and that no internally generated mobiles escape.

Example

Using Mobile Analysis

Hiding the internal channels gives:

\{p}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c , q!c〉, 〈B?d , r !d 〉, 〈s!e〉, 〈q?g ,Y !g 〉,

〈r?h〉, 〈s?h〉}

\{q}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c ,Y !c〉, 〈B?d , r !d 〉, 〈s!e〉, 〈r?h〉, 〈s?h〉}

\{r}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c ,Y !c〉, 〈B?d 〉, 〈s!e〉, 〈s?h〉}

\{s}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c ,Y !c〉, 〈B?d 〉}

net
A?

B?

X!

Y!

Which indicates that mobiles arriving on A escape on X and Y; and
that mobiles arriving on B escape on Y or are consumed internally.

by what is not present: no mobiles received on A are discarded
internally; and that no internally generated mobiles escape.

Example

Using Mobile Analysis

Hiding the internal channels gives:

\{p}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c , q!c〉, 〈B?d , r !d 〉, 〈s!e〉, 〈q?g ,Y !g 〉,

〈r?h〉, 〈s?h〉}

\{q}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c ,Y !c〉, 〈B?d , r !d 〉, 〈s!e〉, 〈r?h〉, 〈s?h〉}

\{r}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c ,Y !c〉, 〈B?d 〉, 〈s!e〉, 〈s?h〉}

\{s}
−→ {〈A?a,X !a〉, 〈A?b,Y !b〉, 〈B?c ,Y !c〉, 〈B?d 〉}

net
A?

B?

X!

Y!

Which indicates that mobiles arriving on A escape on X and Y; and
that mobiles arriving on B escape on Y or are consumed internally.

by what is not present: no mobiles received on A are discarded
internally; and that no internally generated mobiles escape.

Example

Modelling Non-Mobiles

All non-mobile occam-pi code can be converted into a pure mobile
equivalent.

PROC R (CHAN THING in?, out!)
THING v, w:
SEQ

in ? v
w := v
out ! w

:

=

Example

Modelling Non-Mobiles

All non-mobile occam-pi code can be converted into a pure mobile
equivalent.

PROC R (CHAN THING in?, out!)
THING v, w:
SEQ

in ? v
w := v
out ! w

:

=

PROC MR (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:
SEQ

in ? v
w := CLONE v
out ! CLONE w

:

Example

Modelling Non-Mobiles

All non-mobile occam-pi code can be converted into a pure mobile
equivalent.

PROC R (CHAN THING in?, out!)
THING v, w:
SEQ

in ? v
w := v
out ! w

:

=

PROC MR (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:
SEQ

in ? v
w := CLONE v
out ! CLONE w

:

= {} = {〈in?u,H!u〉, 〈H?z , out!z〉}

Example

The Made-From Operator “←”

a← {b, c} means mobile a is made from data a and b.

a← {b} ≡ a← b

{〈out!a〉} ≡ {〈out!a←{a}〉}

PROC MR1 (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:
SEQ
in ? v
w := v
out ! w

:

mobility MR1 = {〈in?a, out!a〉}

mobility MR2 = {〈in?a, out!b←{a}〉}

mobility MR3 = {〈in?a, out!a←{a,τ}〉}

mobility MR4 = {〈in?a, out!b←{a,τ}〉}

Example

The Made-From Operator “←”

a← {b, c} means mobile a is made from data a and b.

a← {b} ≡ a← b

{〈out!a〉} ≡ {〈out!a←{a}〉}

PROC MR1 (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:
SEQ
in ? v
w := v
out ! w

:

mobility MR1 = {〈in?a, out!a〉}

mobility MR2 = {〈in?a, out!b←{a}〉}

mobility MR3 = {〈in?a, out!a←{a,τ}〉}

mobility MR4 = {〈in?a, out!b←{a,τ}〉}

Example

The Made-From Operator “←”

a← {b, c} means mobile a is made from data a and b.

a← {b} ≡ a← b

{〈out!a〉} ≡ {〈out!a←{a}〉}

PROC MR1 (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:
SEQ
in ? v
w := v
out ! w

:

mobility MR1 = {〈in?a, out!a〉}

mobility MR2 = {〈in?a, out!b←{a}〉}

mobility MR3 = {〈in?a, out!a←{a,τ}〉}

mobility MR4 = {〈in?a, out!b←{a,τ}〉}

Example

The Made-From Operator “←”

a← {b, c} means mobile a is made from data a and b.

a← {b} ≡ a← b

{〈out!a〉} ≡ {〈out!a←{a}〉}

PROC MR1 (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:
SEQ
in ? v
w := v
out ! w

:

mobility MR1 = {〈in?a, out!a〉}

mobility MR2 = {〈in?a, out!b←{a}〉}

mobility MR3 = {〈in?a, out!a←{a,τ}〉}

mobility MR4 = {〈in?a, out!b←{a,τ}〉}

Example

The Made-From Operator “←”

a← {b, c} means mobile a is made from data a and b.

a← {b} ≡ a← b

{〈out!a〉} ≡ {〈out!a←{a}〉}

mobility MR1 = {〈in?a, out!a〉}

PROC MR2 (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:
SEQ
in ? v
w := CLONE v
out ! w

:

mobility MR2 = {〈in?a, out!b←{a}〉}

mobility MR3 = {〈in?a, out!a←{a,τ}〉}

mobility MR4 = {〈in?a, out!b←{a,τ}〉}

Example

The Made-From Operator “←”

a← {b, c} means mobile a is made from data a and b.

a← {b} ≡ a← b

{〈out!a〉} ≡ {〈out!a←{a}〉}

mobility MR1 = {〈in?a, out!a〉}

PROC MR2 (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:
SEQ
in ? v
w := CLONE v
out ! w

:

mobility MR2 = {〈in?a, out!b←{a}〉}

mobility MR3 = {〈in?a, out!a←{a,τ}〉}

mobility MR4 = {〈in?a, out!b←{a,τ}〉}

Example

The Made-From Operator “←”

a← {b, c} means mobile a is made from data a and b.

a← {b} ≡ a← b

{〈out!a〉} ≡ {〈out!a←{a}〉}

mobility MR1 = {〈in?a, out!a〉}

mobility MR2 = {〈in?a, out!b←{a}〉}

PROC MR3 (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:
SEQ
in ? v
v := v + 1
out ! v

:

mobility MR3 = {〈in?a, out!a←{a,τ}〉}

mobility MR4 = {〈in?a, out!b←{a,τ}〉}

Example

The Made-From Operator “←”

a← {b, c} means mobile a is made from data a and b.

a← {b} ≡ a← b

{〈out!a〉} ≡ {〈out!a←{a}〉}

mobility MR1 = {〈in?a, out!a〉}

mobility MR2 = {〈in?a, out!b←{a}〉}

PROC MR3 (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:
SEQ
in ? v
v := v + 1
out ! v

:

mobility MR3 = {〈in?a, out!a←{a,τ}〉}

mobility MR4 = {〈in?a, out!b←{a,τ}〉}

Example

The Made-From Operator “←”

a← {b, c} means mobile a is made from data a and b.

a← {b} ≡ a← b

{〈out!a〉} ≡ {〈out!a←{a}〉}

mobility MR1 = {〈in?a, out!a〉}

mobility MR2 = {〈in?a, out!b←{a}〉}

mobility MR3 = {〈in?a, out!a←{a,τ}〉}

PROC MR4 (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:
SEQ
in ? v
w := v + 1
out ! w

: mobility MR4 = {〈in?a, out!b←{a,τ}〉}

Example

The Made-From Operator “←”

a← {b, c} means mobile a is made from data a and b.

a← {b} ≡ a← b

{〈out!a〉} ≡ {〈out!a←{a}〉}

mobility MR1 = {〈in?a, out!a〉}

mobility MR2 = {〈in?a, out!b←{a}〉}

mobility MR3 = {〈in?a, out!a←{a,τ}〉}

PROC MR4 (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:
SEQ
in ? v
w := v + 1
out ! w

: mobility MR4 = {〈in?a, out!b←{a,τ}〉}

Example

Sources of data.

External Channel Mobiles read in from external channels contain their
own data.

PROC foo(a, b) = {〈a?α, b!α←{α}〉}

From the Heap Mobiles retrieved form the heap are made from
undeclared (σ) data. 2

PROC bar(a) = {〈H?β , a!β←{σ}〉}

From Internal State Internal state (often constants) is represented as τ .

PROC foobar(a) = {〈H?δ, a!δ←{τ}〉}

2This is not usualy possible in occam due to default initialisers.

Example

Modelling Non-Mobiles

Reviewing our earlier example. . .

PROC R (CHAN THING in?, out!)
THING v, w:
SEQ
in ? v
w := v
out ! w

:

=

PROC MR (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:
SEQ
in ? v
w := CLONE v
out ! CLONE w

:

= {} = { 〈in?u,H!u〉,

〈H?v ,H!v←{u}〉,

〈H?w , out!w←{v←{u}}〉 }

Example

Modelling Non-Mobiles

Reviewing our earlier example. . .

PROC R (CHAN THING in?, out!)
THING v, w:
SEQ
in ? v
w := v
out ! w

:

=

PROC MR (CHAN MOBILE THING in?, out!)
MOBILE THING v, w:
SEQ
in ? v
w := CLONE v
out ! CLONE w

:

= {} = { 〈in?u,H!u〉,

〈H?w , out!w←{u}〉}

Example

More Examples - Flow Control

PROC S (MOBILE CHAN INT in1?, in2?, out!)
INT v, w:
SEQ

in ? v
in ? w
IF

v = 0
out ! v

w = 0
out ! v

TRUE
out ! w

:

{〈in1?A, out!A←{B,tau}〉, 〈in2?B , out!B←{A,B,tau}〉,

〈in2?B , out!B←{A,B,tau}〉, 〈in1?A,H!A〉, 〈in2?B ,H!B〉 }

Example

More Examples - Flow Control

PROC S (MOBILE CHAN INT in1?, in2?, out!)
INT v, w:
SEQ

in ? v
in ? w
IF

v = 0
out ! v

w = 0
out ! w

TRUE
out ! w

:

{〈in1?A, out!A←{B,tau}〉, 〈in2?B , out!B←{A,B,tau}〉,

〈in2?B , out!B←{A,B,tau}〉, 〈in1?A,H!A〉, 〈in2?B ,H!B〉 }

Example

More Examples - Flow Control

PROC S (MOBILE CHAN INT in1?, in2?, out!)
INT v, w:
SEQ

in ? v
in ? w
IF

v = 0
out ! v

w = 0
out ! v

TRUE
out ! w

:

{〈in1?A, out!A←{B,tau}〉, 〈in2?B , out!B←{A,B,tau}〉,

〈in2?B , out!B←{A,B,tau}〉, 〈in1?A,H!A〉, 〈in2?B ,H!B〉 }

Example

More Examples - Flow Control

PROC S (MOBILE CHAN INT in1?, in2?, out!)
INT v, w:
SEQ

in ? v
in ? w
IF

v = 0
out ! v

w = 0
out ! v

TRUE
out ! w

:

{〈in1?A, out!A←{B,tau}〉, 〈in2?B , out!B←{A,B,tau}〉,

〈in2?B , out!B←{A,B,tau}〉, 〈in1?A,H!A〉, 〈in2?B ,H!B〉 }

Example

Mobile Refinement

plus delta

prefix

p

qr

A? X!

integrate

mobility integrate.spec(in, out) = {〈in?a, out!a←{a,τ}〉}

mobility integrate(in, out) = {〈in?a, out!b←{a,τ}〉}

mobility integrate.spec(in, out) ⊑M mobility integrate(in, out)

{〈in?a, out!a←{a,τ}〉} ⊑M {〈in?
a, out!b←{a,τ}〉}

Example

Mobile Refinement

plus delta

prefix

p

qr

A? X!

integrate

mobility integrate.spec(in, out) = {〈in?a, out!a←{a,τ}〉}

mobility integrate(in, out) = {〈in?a, out!b←{a,τ}〉}

mobility integrate.spec(in, out) ⊑M mobility integrate(in, out)

{〈in?a, out!a←{a,τ}〉} ⊑M {〈in?
a, out!b←{a,τ}〉}

Example

Mobile Refinement

plus delta

prefix

p

qr

A? X!

integrate

mobility integrate.spec(in, out) = {〈in?a, out!a←{a,τ}〉}

mobility integrate(in, out) = {〈in?a, out!b←{a,τ}〉}

mobility integrate.spec(in, out) ⊑M mobility integrate(in, out)

{〈in?a, out!a←{a,τ}〉} ⊑M {〈in?
a, out!b←{a,τ}〉}

Example

Mobile Refinement

plus delta

prefix

p

qr

A? X!

integrate

mobility integrate.spec(in, out) = {〈in?a, out!a←{a,τ}〉}

mobility integrate(in, out) = {〈in?a, out!b←{a,τ}〉}

mobility integrate.spec(in, out) ⊑M mobility integrate(in, out)

{〈in?a, out!a←{a,τ}〉} ⊑M {〈in?
a, out!b←{a,τ}〉}

Example

Mobile Refinement

plus delta

prefix

p

qr

A? X!

integrate

mobility integrate.spec(in, out) = {〈in?a, out!a←{a,τ}〉}

mobility integrate(in, out) = {〈in?a, out!b←{a,τ}〉}

mobility integrate.spec(in, out) 6⊑M mobility integrate(in, out)

{〈in?a, out!a←{a,τ}〉} 6⊑M {〈in?
a, out!b←{a,τ}〉}

Example

Mobile Refinement

mob.plus mob.delta

mob.prefix

p

qr

A? X!

mob.integrate

mobility integrate.spec(in, out) = {〈in?a, out!a←{a,τ}〉}

mobility mob.integrate(in, out) = {〈in?a, out!a←{a,τ}〉}

mobility integrate.spec(in, out) ⊑M mobility mob.integrate(in, out)

{〈in?a, out!a←{a,τ}〉} ⊑M {〈in?
a, out!a←{a,τ}〉}

Example

Data Refinement

We can now trace data movement.

New operator ⊑D as data refinement.

Only concerned about things on the right hand side of the ←
operator.

Example

Data Refinement

plus delta

prefix

p

qr

A? X!

integrate

mobility integrate.spec(in, out) = {〈in?a, out!a←{a,τ}〉}

mobility integrate(in, out) = {〈in?a, out!b←{a,τ}〉}

mobility integrate.spec(in, out) 6⊑M mobility integrate(in, out)

{〈in?a, out!a←{a,τ}〉} 6⊑M {〈in?
a, out!b←{a,τ}〉}

{〈in?a, out!a←{a,τ}〉} ⊑D {〈in?
a, out!b←{a,τ}〉}

{〈in?{a}, out!{a,τ}〉} ⊑D {〈in?
{a}, out!{a,τ}〉}

Example

Data Refinement

mob.plus mob.delta

mob.prefix

p

qr

A? X!

mob.integrate

mobility integrate.spec(in, out) = {〈in?a, out!a←{a,τ}〉}

mobility mob.integrate(in, out) = {〈in?a, out!a←{a,τ}〉}

mobility integrate.spec(in, out) ⊑M mobility mob.integrate(in, out)

{〈in?a, out!a←{a,τ}〉} ⊑M {〈in?
a, out!a←{a,τ}〉}

{〈in?a, out!a←{a,τ}〉} ⊑D {〈in?
a, out!a←{a,τ}〉}

{〈in?{a}, out!{a,τ}〉} ⊑D {〈in?
{a}, out!{a,τ}〉}

Example

Data Refinement

input

private.data output

private.output
secure

Security

mobility secure.spec(in, out) =

{〈private.data?a, output!a←{a,τ}〉, 〈input?b,H!b〉,

〈H?c , private.output!c←{a,b,τ}〉}
mobility secure.spec ⊑D mobility secure

Example

Minimal Componants

BUFFER PROC BUFFER(in, out) =
{〈in?a, out!a〉}

GENERATOR PROC GENERATOR(out) =
{〈H?a, out!a←{τ}〉}

BLACKHOLE PROC BLACKHOLE (out) =
{〈in?a,H!a〉}

PLUS PROC PLUS(in1, in2, out) =
{〈in1?a, out!a←{a,b}〉,
〈in2?b, out!a←{a,b}〉}

Example

More Minimal Componants

DELTA PROC DELTA(in, out1, out2) =
{〈in?a, out1!a〉, 〈in?a, out2!a〉}3

MUX PROC MUX (in1, in2, out) =
{〈in1?a, out!a〉, 〈in2?b, out!b〉}

ROUTE PROC ROUTE (in, out1, out2) =
{〈in?a, out1!a〉, 〈in?b, out2!b〉}

REPLACE PROC REPLACE (in1, in2, out) =
{〈in1?a, out!b←{a}〉,
〈in2?b, out!b←{a}〉}

3Though this is not valid in traditional Occam it is possible with shared mobiles.

Example

Conclusions

Detect mobile escape:

For optimisation.

Detect data escape:

For security.
For consistancy checking.

Limitations:

Data escape is a over approximation.

Structured data is modelled as single item.

Everything escapes everywhere.

Backmatter

The End

Any questions?

Backmatter

References

R. Milner.

Communicating and Mobile Systems: the Pi-Calculus.
Cambridge University Press, 1999.
ISBN: 0-52165-869-1.

Extras

Mobility Refinement

With the ordinary semantic models, we have a notion of refinement.

no reason why one should not exist for the mobility model presented
here:

P ⊑M Q ≡ mobility Q ⊆ mobility P

The informal interpretation is that Q is “less leaky” than P, when it
comes to mobile escape.

some fudge required in the subset operation: e.g. {〈c?x〉} refines
{〈c?x , d !x〉}, as does {〈d !y 〉}.
can arise in an implementation that copies data between mobiles.

Extras

Expansive Hiding

Hiding is not always an reducing operation:

can easily blow-up, reflecting the different possibilities for mobiles.

{〈A?a, c !a〉, 〈B?b, c !b〉, 〈c?f ,X !f 〉, 〈c?g ,Y !g 〉, 〈c?h,Z !h〉}

\{c}
−→ {〈A?a,X !a〉, 〈A?a,Y !a〉, 〈A?a,Z !a〉,

〈B?b,X !b〉, 〈B?b,Y !b〉, 〈B?b,Z !b〉}

Worse-case is limited by type compatibility.

Extras

Denotational Semantics

Alphabets (for any particular occam-π process):

output channels: Σ!, input channels: Σ?, such that Σ = Σ! ∪ Σ?.
also grouped by type: Σt , where t is a valid occam-π protocol and
t ∈ T, where T is the set of valid occam-π protocols.

following on: Σt = Σ!
t ∪ Σ?

t , and ∀ t : T · Σt ⊆ Σ.

for shared mobiles: Σ+ = Σ!
+ ∪ Σ?

+.

Primitive processes:

mobility SKIP = 〈〉

mobility STOP = 〈〉

mobility div = mobility CHAOS =

{〈C !a〉 | C ∈ Σ!} ∪ {〈D?x〉 | D ∈ Σ?}∪

{〈C?v ,D!v 〉 | ∀ t : T · (C ,D) ∈ Σ?

t × Σ!

t)}

Extras

Denotational Semantics

Choice:

mobility (P ✷ Q) = (mobility P) ∪ (mobility Q)

mobility (P ⊓ Q) = (mobility P) ∪ (mobility Q)

Interleaving and parallelism:

mobility (P ‖ Q) = (mobilityP) ∪ (mobility Q)

Hiding:

mobility (P \ x) =
{

M ˆN[α/β] |
(

M ˆ〈x !α〉, 〈x?β〉ˆN
)

∈ mobility P ×mobilityP
}

∪
(

(mobility P)−
({

F ˆ〈x !α〉 | F ˆ〈x !α〉 ∈ mobility P
}

∪
{

〈x?β〉ˆG | 〈x?β〉ˆG ∈ mobility P
}))

∪
{

H | (H ˆ〈x !α〉) ∈ mobility P ∧ (〈x?β〉ˆ I) /∈ mobility P ∧ H 6= 〈〉
}

∪
{

J | (〈x?β〉ˆJ) ∈ mobility P ∧ (J ˆ〈x !α〉) /∈ mobility P ∧ J 6= 〈〉
}

	Introduction
	Semantic Models
	Code Analysis
	Example
	Backmatter
	Extras

