
Communicating Process Architectures 2012
P.H. Welch et al. (Eds.)
Open Channel Publishing Ltd., 2012
c© 2012 The authors and Open Channel Publishing Ltd. All rights reserved.

121
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Abstract. In this paper we compare a Haskell system that exploits a GPU back end us-
ing Obsidian against a number of other GPU/parallel processing systems. Our exam-
ples demonstrate two major results. Firstly they show that the Haskell system allows
the applications programmer to exploit GPUs in a manner that eases the development
of parallel code by abstracting from the hardware. Secondly we show that the perfor-
mance results from generating the GPU code from Haskell are acceptably compara-
ble to expert hand written GPU code in most cases; and permit very significant per-
formance benefits over single and multi-threaded implementations whilst maintaining
ease of development. Where our results differ from expert hand written GPU (CUDA)
code we consider the reasons for this and discuss possible developments that may mit-
igate these differences. We conclude with a discussion of a domain specific example
that benefits directly and significantly from these results.

Keywords. GPU, Haskell, domain specific language.

Introduction

This paper stems from previous work on array computation libraries, extending it to include a
Domain Specific Language (DSL) in Haskell with various data-parallel back ends. This DSL
is called “PEGGY” and the results presented here compare CUDA code generated by this
system to code hand-written in a variety of other languages and for a variety of data-parallel
execution systems, while also looking at the development efforts involved in each. Haskell
is a high-level functional programming language with a proven track record in embedding
DSLs, [1,2,3]. The main target examined here is CUDA, a low-level imperative programming
language for developing General Purpose Graphics Processing Unit (GPGPU) software.

Multiple libraries have been written for Haskell to enable the use of GPUs [4,5,6], the
aim is to build on top of these libraries and enable the development of code in a language
closer to the array computations in question. This was as a proof-of-concept to show a lan-
guage that uses domain-specific abstractions (Section 1), without exposing the underlying
back end libraries to anyone unfamiliar with, say, CUDA. Section 2 looks in more detail at
using this library.

Three case studies (Convolution, Electrostatic Charge Map Generation, and UDWT; Sec-
tion 3) are developed using PEGGY. These sections show code that would be familiar to any
Haskell programmer, originally operating on lists and minimally modified in an attempt to
reclaim some of the performance losses. Section 4 then looks at how the CUDA code gener-
ated by Haskell performs against expert hand-written CUDA code, C code running sequen-

1Corresponding Author: Alex Cole, Department of Engineering, University of Leicester, Leicester, LE1 7RH,
England. Tel.: +44 (0)116 252 2578; E-mail: ac245@le.ac.uk.



122 A. Cole et al. / Beauty And The Beast

tially, and code written using the Accelerator library [7] (this is included as it was looked at
in previous work in this area [8]).

There are three main points of interest:

1. Is it possible to build a language on top of multiple back ends simultaneously, in a
domain specific language?

2. Does this abstracted code produce code a run-time with adequate performance from
concise problem descriptions?

This leads to a third question:

3. Can this be done again for other languages?

The contribution of this paper is to show that the answer to all these questions is “yes”—
a DSL built on top of existing Haskell libraries can still get performance close to what is
achievable in CUDA when compared to other execution systems, while allowing for a more
terse representation of algorithms. This is preliminary feasibility work before building a full
DSL for Mass Spectrometry analysis (Section 5).

The authors’ previous paper on this topic [8] looked at the execution of several exemplar
algorithms using a range of parallel programming systems. While that work was interested
purely in GPU performance for its own sake, this new work has slightly different require-
ments stemming from the Mass Spectrometry side of the research.

This use of GPUs for general-purpose programming is known as GPGPU and largely
took off with the advent of configurable graphics cards, allowing for great flexibility in the
transformations which could be applied to image data. Systems were developed to convert
between “regular” data sets and image textures such that these transformations could be ap-
plied for data processing, abstracting away from graphics APIs such as DirectX [9]. This is
the case with the Accelerator library [7] from Microsoft, which was examined in the previous
paper on this topic, and is included here only for comparison.

More recently dedicated GPGPU systems have been developed, bypassing the full im-
age rendering pipeline to provide direct access to the massively parallel configurable cores.
CUDA [10] from NVIDIA and OpenCL [11] from the Khronos group are major systems in
this field, along with DirectCompute [12] from Microsoft. These utilise dedicated hardware
on the GPU and provide C-like languages to enable low-level programming without spe-
cific graphics knowledge. Despite this, some target knowledge may still be required—getting
the best performance requires writing code to take in to account hardware designs such as
memory location, thread loads and device abilities.

1. Abstraction

Haskell is a strongly typed, lazy, functional programming language. Functions in Haskell
are similar to mathematical functions in that for any given set of inputs the output is always
the same as there is no global state to mutate (they are “pure”), any mutation is explicitly
encapsulated and protected. The strong typing means that functions can only take parameters
of exactly the right type and no implicit type conversion is done.

Functions are first-class citizens of the language: they can be passed around, com-
posed, or otherwise operated on just like other data. They can also be partially applied, or
“curried”—a function with two inputs may be provided with only one to return a new sin-
gle parameter function instead of the final result. The laziness of the language means that
no code is evaluated to a final result until it is required; multiple computations are chained
together until required by some observable system—often the IO system, which provides a
protected interface to the rest of the world and its state. How does this design allow for higher
abstraction?
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Figure 1. Basic convolution (?) of an array m by filter a.

The three case studies examined share a common pattern—they all take a large data set
and combine it with a much smaller data set in some way. For the Electrostatic Charge Map
the large data set is a grid of discretised space and the small data set is a set of atoms. For
UDWT the large data is a graph to be smoothed and the small data is a set of four related
filters. For the convolution, the large input is an image and the small input is a Gaussian blur
filter.

The most basic of these is convolution (also an important part of the later UDWT case
study). The equation below shows the convolution (?) of a 1D array m with a filter a of length
A, for one array index x. Not shown is that (x − H + i) is clamped to the size of m. To
demonstrate the development of this code using PEGGY requires first developing the code in
Haskell.

H =
A− 1

2

mx ? a =
A−1∑
i=0

m(x−H+i)ai

An array shift operator .<<<. can be written to adjust indices such that:

[1, 2, 3, 4, 5] .<<<. 1 = [2, 3, 4, 5, 5]
[1, 2, 3, 4, 5] .<<<. (−2) = [1, 1, 1, 2, 3]

Using this, convolution can be implemented as an array shift followed by a multiplica-
tion. Rather than iterating over a data set and applying the filter to each index sequentially,
this iterates over the filter sequentially, and applies the current filter value to each datum
(optionally in parallel).

convolve :: [Float ]→ [Float ]→ [Float ]
convolve filter input = sum convolvedParts
where

oneFilterElement shift mul = (input .<<<. shift) ˆ∗mul

-- Get the RADIUS of a filter.
r = length filter ‘div‘ 2

convolvedParts = zipWith (oneFilterElement input) [−r . . ] filter
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Here the ˆ∗ operator performs an element-wise multiplication of a list by a single value.
This results in a list of part convolutions which need to be summed up as shown in Figure 1.
The sum function takes a list of elements for which + is defined and sums them up.

This programming style allows the use of maps and folds (such as sum) over the data
to generate the processing code, functions defined in the Haskell Prelude [13]. In C++ these
patterns are usually expressed using loops:

// Map.
for (size t i = 0; i != len; ++i)
{

out[i] = in[i] ∗ 7;
}
// Fold (sum).
result = 0;
for (size t i = 0; i != len; ++i)
{

result += out[i];
}

A C++ function to map over a filter would be possible, but not in the same way as in
Haskell (e.g. with partial application). Additionally defining a sum between a C array and a
single number is not possible

Converting the Haskell code to PEGGY code to be run on the GPU is now trivial. Only
two small changes are required. Firstly the input data must be converted from a Haskell list
to a PEGGY abstract array. Secondly, the type signature changes; however, the compiler can
often infer the types—they are included here for clarity and may be omissible. This is made
possible by the implementation of the relevant operators within PEGGY such as the array
shift and multiply operators.

convolve :: [Float ]→ PYExpr Float TargetObsidian→ PYExpr Float TargetObsidian
convolve filter oldInput = sum convolvedParts
where

oneFilterElement shift mul = (input .<<<. shift) ˆ∗mul

r = length filter ‘div‘ 2

convolvedParts = zipWith oneFilterElement [−r . . r ] filter

-- Convert the old input to PEGGY GPU data.
input = toArray oldInput

After all this abstraction, the remaining sums, maps and zipWiths relate purely to the
algorithm being performed on the data, and not to the data itself. This brings the algorithm
of interest to the forefront of the code, instead of the data on which it is being run. For
data-parallel programming applications the data is important and vast, but ultimately what is
being done with the data is more important. Arguably this is similar to the CUDA model of
computation; a kernel function is written to identify and operate on a single output (which
may involve multiple inputs), but notably data identification is still there.

As the case studies will show, several basic optimisation techniques in CUDA revolve
around complex input data management, an issue now entirely hidden in PEGGY. to the
question of performance addressed in this paper is the fact that the current PEGGY imple-
mentation does not pre-load and cache data.
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2. Our Programming Environment

The “PEGGY”1 Haskell library is designed as a write-once, run-everywhere system built on
top of multiple parallel execution back ends. The Obsidian [5] library for generating CUDA
code at run-time is the main back end of interest here, but there are also other back ends for
running code sequentially or parallely on a CPU or for using Accelerator.

A basic expression in PEGGY has the type:

PYExpr domain target

domain is the type of the underlying data such as Float, and target is the back end on
which to run the expression, for example TargetObsidian2. The example of adding seven to
every element in a list is shown again below, this time using PEGGY. The list is converted
to a 1D abstract array (toArray) and seven is added, yielding a new expression. The expres-
sions are calculations to be performed in one go when specified. eval runs these on an as-yet
undefined back end, and the result is converted back to a Haskell list.

input :: [Float ]
input = [0 . . 9]

-- Convert the data.
peggyInput :: PYExpr Float target
peggyInput = toArray input

-- Create the expression.
peggyExpr :: PYExpr Float target
peggyExpr = peggyInput + 7

-- Evaluate the expression.
peggyResult :: PYNative Float target
peggyResult = eval peggyExpr

-- Convert back to a list.
result :: [Float ]
result = fromArray peggyResult

At this point the type of peggyInput is PYExpr Float target—the domain is known but
the execution back end is not, and without this vital information the code above will not run.
The simplest way to set this is to explicitly set one of the types anywhere in the code:

-- Convert the data for an explicit execution engine.
peggyInput :: PYExpr Float TargetObsidian
peggyInput = toArray input

Alternatively a function other than the generic eval can be used by specialising it to one
execution engine, with it returning that back end’s native result type:

runOnGPU :: PYExpr Float TargetObsidian→ PYNative Float TargetObsidian
runOnGPU = eval

Using this method, the algorithm can be moved and only written once, being passed to
multiple eval functions for different targets. result2 has been converted back from back end

1“Parallel Execution, Generally on a GPU, by Y Less”.
2In Haskell domain and target are type variables to be replaced with real types, TargetObsidian is a “phan-

tom” type—it has no valid data and is only used to specify target specific data storage and expression formatting
via type families.
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return data to a Haskell list; result1 has not yet been converted, in this case it is still stored as
a C array underneath because that is what GPU operations using CUDA return.

-- This function adds seven to any input on any back end.
-- ”toArray” works on lists, ”PYExpr”s and ”PYNative”s too.

abstractExpression input = toArray input + 7

-- Return a native array from Obsidian.
runOnGPU :: PYExpr Float TargetObsidian→ PYNative Float TargetObsidian
runOnGPU = eval

-- Return a Haskell list from sequential execution.
runOnCPU :: PYExpr Float TargetHaskell→ [Float ]
runOnCPU = fromArray ◦ eval

-- Use the above generic algorithm.
inputList :: [Float ]
inputList = [0 . . 9]

result1 = runOnGPU (abstractExpression inputList)

result2 = runOnCPU (abstractExpression inputList)

3. The Case Studies

3.1. Convolution

Section 1 showed the derivation of a PEGGY convolver, along with the equation for a 1D
convolution. For a 2D input m and a 2D filter a, the filter surrounds any point of interest and
would require A2 operations. A “separable” convolution is one where separate 1D convolu-
tions in the x then y dimensions of 2D data produces the same result as a 2D convolution.
This requires only 2A operations total, but two separate convolution steps.

Generating code for a separable convolver merely involves calling the PEGGY convolu-
tion function twice, each time specifying shifts in different dimensions.

The CUDA implementation of this code (shown in Appendix ??3) has separate functions
for each dimension, each one with data caching for that dimension. Block-local shared mem-
ory is faster than global memory so this code pre-loads data for a section of the convolution,
coalescing reads for efficient sequential memory access from aligned memory boundaries.
Full details on these optimisations are available from NVIDIA [14].

The source lines of code metric, based on data from David A. Wheeler’s “SLOCCount”
program [15], are shown below.

Table 1. SLOC count for the Haskell and CUDA convolution.

Code SLOC Count
Haskell Total 11
CUDA Total 116

3.2. Electrostatic Charge Map

An Electrostatic Charge Map is a representation of the electrical field surrounding a set of
atoms. For a 3-dimensional grid consisting of k points and n atoms spaced inside it, each

3Supplementary materials are available from the WoTUG CPA website (http://wotug.org/cpa2012/).
Full source code is available from https://github.com/Y-Less/PEGGY.
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point involves a sum over the charge of every atom divided by that atom’s distance to the
current point. The full output involves O(nk) operations. The calculations for one point are
independent from every other point, making this an embarrassingly parallel computation. The
effect of each atom on a single point could be done in parallel rather than the effect of one
atom on every point. but in practice the number of points far outweighs the number of atoms.

The implemented case study only looks at a single 2D slice of a grid, calculating a full
3D field would be done through repeated applications of 2D slice calculations. This is shown
in Haskell below:

type Expr = PYExpr Float TargetObsidian
-- ”Expr” type for brevity only.

chargeSpace :: [Atom ]→ (Expr,Expr,Expr)→ Expr
chargeSpace atoms gridPoint = sum (map oneCharge atoms)

where
oneCharge a = charge a / distance gridPoint a

-- Get the charge on a single atom.
charge (Atom c) = c

-- Get the distance between an the current atom and grid points.
distance (gridX, gridY, gridZ) (Atom x y z ) =

(diff gridX x ∗ diff gridX x) +
(diff gridY y ∗ diff gridY y) +
(diff gridZ z ∗ diff gridZ z)

-- Convert the Atom pos to useful data.
diff arr pos = arr − pos

The atom locations are randomly generated in advance within a 3D grid and passed
to every implementation at initialisation, which is prior to code generation in the case of
the Haskell code. This results in the atom data being either hard-coded in to the generated
program code in the case of the Haskell and Accelerator targets, or stored in fast “constant”
memory for the CUDA code. Optimisations in the convolution case-study came from the
memory load patterns, with no significant memory reliance optimisations in this case must
come from elsewhere.

The CUDA implementation (Appendix ??), based on that from “Programming Mas-
sively Parallel Processors” [16], improves performance by using a single thread to calculate
multiple grid points, amortising the y and z parts of the calculation across them all. Tuning
resulted in six points being run per thread. Conversely, no optimisations at all were applied to
the Haskell generated CUDA code beyond those implemented in Obsidian (which are min-
imal) and the CUDA compiler. Instead, any performance expected comes from the use of
constant atom locations at compile time.

SLOC counts for the Haskell and CUDA Electrostatic Charge Map implementations are
shown in Table 2.

Table 2. SLOC count for the Haskell and CUDA Electrostatic Charge Maps.

Code SLOC Count
Haskell Total 17
CUDA Total 84

3.3. UDWT

UDWT is the Undecimated Discrete Wavelet Transform and is one algorithm used for de-
noising Mass Spectrometry data [17]. This algorithm builds on the simple convolution ex-
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ample by applying convolutions repeatedly (four times per level), but in a slightly different
manner to that seen in the convolution case study. For this version, the convolution input data
is wrapped modulo the length of the data instead of being clamped.

This transform applies a high-pass filter using convolution to get the upper half of all
frequencies and a low-pass filter to get the lower half for level one. For subsequent levels
this process is repeated on the lower half of the frequencies obtained at the previous level.
The first level uses standard convolution as previously seen, but the higher levels (for the
undecimated version of this transform) use larger filter gaps. A radius three filter in level one
may operate on data elements 1, 2, 3; but in level two it will operate on elements 1, 3, and 5;
and in level three on 1, 5, and 9.

After the multiple convolutions, the results are appended to give an overview of the full
frequency space, and low intensity frequencies are removed through a basic cut-off filter. Af-
ter this, the frequency-domain representation of the signal is transformed back to the original
time-domain through a reversal of the deconstruction procedure using two new filters that act
in opposition to the original two.

This algorithm is an important case study as it builds on the earlier convolution case
study and more importantly (as mentioned), it is used in Mass Spectrometry data processing.
This is a current area of research interest discussed further in the conclusion, bringing this
work in line with the wider research context. It is, however, a recent addition to the case
studies available, and as such is not as mature as the others—currently all results are for
a single level of filtering only (the desired filtering level is an algorithm parameter). The
CUDA implementation of the code (Appendix ??) uses basic global data caching and load
coalescing, but has not been tuned.

This case study does highlight several issues with the current system, but the main inter-
est in PEGGY is as a preliminary feasibility study, not a robust development system. In this
implementation the filtering threshold is based on the median value from the first level’s high-
pass output, which requires sorting the data—an operation not currently available in PEGGY.
The full Haskell code (Appendix ??) uses code from the Convolution case study modified to
support convolution using inputs with different offsets. This code no longer uses .<<<. because
the convolution here wraps around on edge cases, it does not extend the boundaries.

Another problem it raised with the underlying system that does need addressing was
the generation of multiple kernels. Each high-pass filter output is a distinct result, calculated
independently on a GPU; but the higher the level, the more low-pass filters need to be run
prior to calculating the desired high-pass output. This resulted in monolithic generated code
due to loop-unrolling and failed to even compile above level two.

Table 3. SLOC count for the Haskell and CUDA UDWT.

Code SLOC Count
Haskell Total 31
CUDA Total 186

4. Performance Analysis

To facilitate running these tests, a generic framework was developed to abstract as much
common code as possible. This includes setup and tear-down for multiple hardware targets;
algorithm common code; and timing, repeat runs, and verifications for each target. This was
run on a Windows 7 machine with an Intel Core 2 Extreme 3.0GHz processor (X9650), 8Gb
of RAM, and an NVIDIA GeForce GTX 460 with 2Gb of graphics RAM (Palit Sonic).

The expert CUDA code, and the Accelerator and Haskell codes are all written and com-
piled in advance, but the CUDA code generated by Haskell is created and compiled at exper-
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Figure 2. Graph of all targets in the convolution case study.

iment run-time. PEGGY was originally designed for use purely in Haskell on Haskell data,
but for the purposes of timing it instead generates and compiles CUDA code, then passes the
object file to the test framework for multiple timed runs using the same data as all the other
implementations.

Figures 2 and 3 show firstly all the results for all the convolution targets and then zoom
in on the bottom of the graph to show just the three GPU targets. “Accelerator (DX9)” targets
the GPU through DirectX 9, and “Accelerator (X64)” targets multicore SSE2 instructions.
Figure 4 shows the results of the Electrostatic Charge Map on the GPU only. The GPU has
been previously shown to significantly outperform the CPU in this experiment and these new
results merely confirmed that. Figure 5 shows the results for a level one UDWT filter on all
targets.

The first graph (Figure 2) shows how previous conclusions that the DX9 target signif-
icantly outperformed sequential code were justified. Drilling down in to the second graph
shows just how much faster both the CUDA and Haskell code are than the Accelerator code,
and show a gap between those two that was almost indistinguishable in the first. While previ-
ous results were questionable given the obvious differences between the CUDA and DX9 tar-
gets upon zooming, the new results are much more satisfying. There is a repeatable anomaly
around the 5Mb mark, but at this point the cause is unclear. Despite this, all other results are
known to give accurate answers when verified against reference implementations.

The UDWT results in figure 5 are the most interesting from a development point of
view, and show the results from the parallel part of the most complex algorithm (again part
of this code is not done in Haskell, but this is due to the modifications to use the generated
code within the test framework). The CUDA version of this algorithm was not as extensively
profiled and tweaked as the CUDA versions of Convolution and Electrostatic Charge Map
were—some effort was made to coalesce reads and cache data, but edge cases where the
loading was wrapped modulo the input length were not optimised. After all this, the CUDA
and Haskell results lines are neck and neck—the bottom line on the graph in fact shows both.
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Figure 3. Graph of GPU targets in the convolution case study.

5. Conclusions And Future Work

The introduction posed the following questions:

1. Is it possible to build a language on top of multiple back ends simultaneously, in a
domain specific language?

For the domain of array-based computations, a library was developed (Section 2) that
could be shown to be translatable from Haskell (Section 1), at least for certain classes of prob-
lems mapping to its whole array representation of data. Section 3 continued this demonstra-
tion, but also showed that there was still a long way to go with the abstractions—especially
for the more complex algorithms (which are of course of much greater interest).

2. Does this abstracted code produce code a run-time with adequate performance from
concise problem descriptions?

Each of the case studies presented their Haskell implementations and provided refer-
ences to their much longer CUDA equivalents (with line counts). The graphs in Section 4
showed how these implementations performed against each other. The Haskell code in all
cases was much shorter and written in a target language of interest. While none of the results
were faster in Haskell than CUDA, despite additional compile-time knowledge of the input
data, one result was the same speed. The other two were fifteen and three hundred per cent
slower in Haskell; this is a large number, but the tests also showed just how much faster than
the sequential implementations they were.

3. Can this be done again for other languages?

The answer to this is believed to be yes, and will frame all future work. This revolves
around the development of a domain specific language (DSL) through which experts in Mass
Spectrometry (but not necessarily computer programming) could describe algorithms as they
were needed and have them run in a massively parallel manner. The two main targets for



A. Cole et al. / Beauty And The Beast 131

0 2 4 6 8 10 12 14
Data size (MB)

0.0

0.1

0.2

0.3

0.4

0.5
Ti

m
e

(s
ec

)

CUDA
Haskell (Obsidian)
Accelerator (DX9)

Figure 4. Graph of GPU targets in the Electrostatic Charge Map case study.

this work are the development of the high-level DSL, using idioms familiar to chemists, and
the translation of this code down to data-parallel devices such as graphics cards containing
graphics processing units (GPUs).

Mass Spectrometry is an analytical process which can determine the makeup of a chem-
ical compound or mixture of compounds. This process involves hardware (a Mass Spectrom-
eter (MS)) designed to take an input of chemicals and produce an electronic representation of
the input, and software to derive the original input from this [18]. For example, an ESI-TOF-
MS4 passes a chemical liquid through an electric field to impart a charge on to the constituent
molecules, another field is then used to accelerate these charged particles towards a detector.
A given mass with an imparted charge of ±1 (or twice that mass with a charge of ±2) will
take a consistent time to reach the detector, the number of strikes detected after that time
determine the intensity of that “mass-to-charge” ratio in the original mixture.

The output from the hardware is a noisy graph of mass-to-charge ratio against intensity (a
spectra). The software then takes this raw data and attempts to determine what combination of
input materials could have produced the observed output. This is complicated by the fact that
input compounds are subject to chemical reactions inside the hardware, resulting in detected
chemicals that were not present in the original mixture.

The data from a single MS run can be many gigabytes and the analysis algorithms can
take a long time to run, but can scale linearly with the number of available processors [19].
There are many published algorithms to analyse this data, specialised to different workflows
or hardware, and with different selectivity and sensitivity properties. However, many of these
algorithms are not used—the theory behind them exists, but either there is no software im-
plementation of them at all, or their implementations are not compatible with existing soft-
ware [20] stacks presently in use.

4Electro-Spray-Ionisation Time-Of-Flight Mass Spectrometer
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Figure 5. Graph of all targets for a level 1 UDWT filter.

These requirements should explain some of the design decisions made during this work,
and while the PEGGY DSL presented above was a little lacking in some areas, the results are
still believed to justify this Mass Spectrometry research direction.
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