
Communicating Process Architectures 2012 107
P.H. Welch et al. (Eds.)
Open Channel Publishing Ltd., 2012
© 2012 The authors and Open Channel Publishing Ltd. All rights reserved.

A Comparison of Message Passing
Interface and Communicating Process

Architecture Networking Communication
Performance

Kevin CHALMERS
School of Computing, Edinburgh Napier University, UK

Abstract. Message Passing Interface (MPI) is a popular approach to enable Single
Process, Multiple Data (SPMD) style parallel computing, particularly in cluster
computing environments. Communicating Process Architecture (CPA) Networking
on the other hand, has been developed to enable channel based semantics across a
communication mechanism in a transparent manner. However, in both cases the
concept of a message passing infrastructure is fundamental. This paper compares
the performance of both of these frameworks at a base communication level, also
discussing some of the similarities between the two mechanisms. From the
experiments, it can be seen that although MPI is a more mature technology, in many
regards CPA Networking can perform comparably if the correct communication is
used.

Keywords. CPA Networking, distributed systems, MPI

Introduction

CPA Networking [1] is an approach to provide channel semantics across distributed
communication mechanisms in a manner that is transparent to the user. Currently, CPA
Networking has been developed for Communicating Processes for Java (JCSP) [2] and CSP
for .NET [3]. In this paper, the communication performance of CPA Networking is
compared to that of the Message Passing Interface (MPI) [4]. MPI is a popular mechanism
for developing parallel applications that utilize message passing to provide Single Program,
Multiple Data (SPMD) solutions. The aim is to discover how well CPA Networking
performs in comparison to a similar framework.

The rest of this paper is broken up as follows. In Section 1 the background of this
work is presented, examining both CPA Networking and MPI goals. In Section 2 a
comparison of some of the operations performed by both frameworks is presented,
indicating how certain operations can be achieved in both CPA Networking and MPI. In
Section 3 the approach taken to compare both frameworks is presented, and Section 4
presents the results gathered. Finally, Section 5 presents conclusions and future work.

1. Background

In this section, a discussion around both CPA Networking and MPI will be presented. Both
of these frameworks have been developed with different aims, although they do share a
number of commonalities.

108 K. Chalmers / Comparison of MPI and CPA Networking

1.1 CPA Networking

The original model for distributed CPA communications used in JCSP comes from the
T9000 virtual channel model [5], which was implemented in the original version of JCSP
Networking [6]. Although the original JCSP Networking did provide a virtual channel
model, it was found to utilize resources poorly [7], and was also highly reliant on Java
serialization.

More recent work has tried to move CPA Networking towards a more language-
independent standard [1], which has allowed the development of CPA Networking
currently for both JCSP and CSP for .NET [3]. Most of this work has focused on
developing a standard protocol which allows CPA Networking to be platform agnostic,
being separate from both the application and communication layer.

Although CPA Networking has tried to bring together other different CPA inspired
platforms, there are still currently a number of different approaches to having distributed
CPA applications. occam-π has both pony [8] and a shared communication mechanism
with PyCSP [9]. C++CSP also provides a networking mechanism [10]. In all these
instances, networking has generally been done to suit either the particular platform, or to
solve a particular problem. The CPA Networking approach tries to provide general
networked channel mechanisms which operate with as little overhead as possible, but are
not optimized for any particular use or platform.

1.2 MPI

MPI [11] is a popular method for developing Single Program, Multiple Data applications
(SPMD). From the point of view of this work, MPI utilizes a small server application
(called smpd in the implementation of MPI used) which runs on a client machine waiting to
receive a message to run a particular application (smpd is not supplied in all versions of
MPI, but is part of MPI .NET [12] on which this work is based). When this message is
received, the application that is executed via smpd is able to communicate with the other
processes in the system using a global communicator mechanism. MPI-2 is the current
standard outlined at www.mpi-forum.org – the home of the MPI standard. From the point
of view of this paper, when discussing MPI, it is assumed that operations outlined in MPI-2
are meant.

Each process (actively running instance of the application) in the system is assigned a
rank. These ranks are then used to send messages directly to a particular process from
another process. As such, MPI adopts a coarser grained implementation of communication,
implementing application instance to application instance communication rather than thread
level communication. This is contrary to a CPA approach, where processes are of a finer
grain, and channels enable more direct communication.

Although initially MPI applications belong to a collective group which can
communicate using the global WORLD communicator, it is also possible for groups of
processes to communicate together by creating group specific communicators. This allows
small groups of processes to operate on problems independently.

MPI does have the advantage of being easier to set up and use in cluster computing
scenarios, requiring only that the application to be run is available on all hosts. A
command is then sent from a host machine to the others, initializing the MPI infrastructure,
and executing the applications in parallel. CPA Networking does not have these features,
and is focused on creating a communicating infrastructure.

 K. Chalmers / Comparison of MPI and CPA Networking 109

2. Using MPI and CPA Networking

Although MPI and CPA Networking have been developed in isolation, they provide a
number of similarities that can be exploited to provide similar operations. The following
section examines how some fundamental constructs in both communication frameworks
can be achieved by in the other. All code samples are in C#.

2.1 Choice

One core concept in all CPA frameworks is choice, where behavior is determined by the
current system state and a number of guards. In CPA Networking, there is only really one
type of guard (all other guards, such as timers, come from the base library), which is a
networked input channel. Typically, we can select from a collection of input channels
using the following code:

Alt alt = new Alt(inputs);

 int index = alt.Select();
 data = inputs[index].Read();

In MPI, the same sort of behavior can be achieved by using the probe command, which

simply checks if any input is ready matching the given parameters, waiting until one is:

Status status = comm.Probe(Communicator.anySource, 1);
 data = comm.Receive<Data>(status.Source, 1);

The probe command when used with the parameter anySource will return a status

message which contains the actual source that sent the message.

2.2 Broadcast

MPI has a command that allows broadcasting of a single message to all other processes in
the group (who must call broadcast at the same time). CPA Networking does not have an
equivalent abstraction for broadcasting (the broadcast channel implemented in JCSP [13]
would be a bit trickier to implement in a distributed manner). However, the same type of
interaction can be implemented using parallel writing to multiple channels.

The disadvantage with using a parallel writer approach is that it does not scale well.
Each output channel being broadcast to will require another process to service the channel.
For lightweight platforms such as occam-π the overhead is not considered significant.
However, for other libraries using operating system threads (JCSP, CSP for .NET, etc.) the
overhead per thread can become quite significant.

Another approach that would gain some performance would be taken a collective
communication technique as described in [9]. At present, this has not been further
investigated as an implementation into CPA Networking.

2.3 Scatter-Gather

MPI also has a scatter-gather mechanism, which allows a single process to send an array of
messages, with each process in the communicator receiving one of the messages based on
its rank within the communicator. The results from the scatter can then be returned by
calling the gather command, which causes the root process (the sender) to wait until all
returned values are received.

Similarly to broadcast above, the scatter command can be achieved in CPA

110 K. Chalmers / Comparison of MPI and CPA Networking

Networking using parallel writes. The gathering can also be achieved using parallel reads.
As such, the scatter-gather approach in CPA Networking also suffers from the resource
implications for broadcasting, although as scattering and gathering are a sequence of events
the resulting resource requirements aren’t increased.

2.4 Barriers

MPI and CPA Networking both implement a barrier mechanism, allowing computation to
be locked in step if required. However, CPA Networking allows the use of multiple,
discrete barriers much like it has discrete channels. MPI, however, utilizes the
communicator mechanism as a barrier, and although different communicators can be
generated for different groups of processes, the use of barriers is a little more complicated
than creating barriers in CPA Networking.

For example, with a CPA Networking barrier, it is possible to both enroll in (engage in
an existing collective synchronization) and resign from (disengage from the collective
synchronization) existing barriers. This enables the CPA Networking programmer to create
a collection of required barriers at the start of the system, and modify as needed. MPI
barriers work with the communicator mechanism, and therefore require maintenance of
groups of nodes, rather than an individual process being able to enroll or resign at will.

2.5 Indexed Communications

The main goal of CPA Networking is to provide channel based semantics across a
communication mechanism. It does this by utilizing a virtual channel indexing solution [1]
within the event layer to create a software switch which routes messages to the appropriate
channel end at the application layer.

The advantage that this approach provides is that networked channels are generally
lightweight, and that a process can happily create as many channels as it wishes to allow
direct connection. From the point of view of a process, there is no operational difference
between a local channel and a networked channel (although if required, a network channel
can perform asynchronous communication).

MPI, on the other hand, has a global communicator mechanism which provides
processes with a means of communicating with other processes directly. However, it is
possible to provide a more selective mechanism by utilizing the tag system in
communication. For example, to send a message to a process, the send command is used:

comm.Send<Data>(data, destination, tag);

The destination value allows a message to be sent to a particular process. The tag

value allows a tag to be attached to the send. The equivalent receive command is as
follows:

data = comm.Receive<Data>(source, tag);

The receive command requires the source to receive the communication from, and also

a tag value. If both tag values match, the communication completes, otherwise the
application will wait until a communication with the correct tag is received.

Using the tag values as a method to allow a more direct communication to a particular
thread would enable an indexed style of communication. As such, it leads to the potential
of MPI being used as a communication layer for CPA Networking, with CPA Networking
providing a channel abstraction layer. Developing such a mechanism would allow simple

 K. Chalmers / Comparison of MPI and CPA Networking 111

use of CPA Networking applications in cluster computing scenarios, and is examined
further in future work. Tag values do require buffering, however, which could lead to
further problems.

3. Approach

The aim of the work presented is to compare the messaging performance of CPA
Networking and MPI. The goal is not to compare parallel performance of tasks when using
the two approaches. In particular, MPI has a number of optimisations for particular tasks
[4], which CPA Networking does not. Generally, the two message passing approaches
have different goals:

 MPI has is a Single Program, Multiple Data (SPMD) based approach to parallel
computing, allowing multiple instances of an application to execute on cluster-like
architectures.

 CPA Networking has been developed to provide channel based semantics across a
communication medium. Rather than a parallel computing solution, it provides
usable abstractions to develop distributed CPA applications in a transparent manner.

Section 2 has illustrated how MPI style behaviour can be obtained in CPA Networking
and vice-versa. Therefore, the focus of this work is to analyse the base communication
performance, and allow application developers to make informed decisions about the
approach to use based on the application goal.

For the approach, data sizes of base 10 are used rather than base 2. This is due to the
fact that at the network layer buffers exist of size base 2. As both MPI and CPA
Networking have a message overhead on top of the data packet, it was deemed appropriate
to try and incorporate the message header size into a reasonable total packet size which
would not enforce buffer fill.

3.1 Network Performance

For communication, there are two properties that we are interested in – latency and
throughput. Latency allows us to determine the communication delay for a message using
the medium and framework of choice. Throughput is a measure of the amount of data that
can be transferred by the communication framework in comparison to the capability of the
communication medium. Here, we wish to see that the communication framework does not
reduce the throughput, particularly at large data sizes.

As MPI also has a broadcast mechanism, the performance of MPI broadcast will also
be compared to a CPA approach to providing broadcast semantics (see Section 2.2). MPI
should perform better at broadcast due to lower level optimisations which CPA Networking
does not have.

3.2 Communication Stress

As both MPI and CPA Networking are designed to allow inter-process communication
from many sources, a further experiment to measure how effective each framework coped
with a stressed communication scenario was undertaken. This scenario involved a single
server process having eight client processes request work to be undertaken. Each computer
in the experiment would run two such client processes, meaning that four client machines
were in operation. A fifth machine acted as the server. The architecture is illustrated in
Figure 1.

112 K. Chalmers / Comparison of MPI and CPA Networking

Figure 1: Communication Stress Architecture

The goal of the communication stress experiment is to determine how good the Server

Machine is at coping with multiple request-respond communications. The clients request
work from the server, which sends a work description to the client, which is processed and
the result sent back to the server. The two stress scenarios are described below.

3.2.1 Monte Carlo Pi

Each client performs work to allow the calculation of π using the Monte Carlo method.
The algorithm is as follows:

IN: NUM_ITERATIONS

COUNT := 0

FOR i in 0 to NUM_ITERATIONS – 1

 X := random 0.0 to 1.0

 Y := random 0.0 to 1.0

 DIST := √(X * X + Y * Y)
 IF DIST <= 1.0

 COUNT := COUNT + 1

OUT: 4.0 * (COUNT / NUM_ITERATIONS)

Monte Carlo Pi allows the calculation of π by generating random points in a square,
and determining whether they are within a circle (or quarter of) within the square. The ratio
can then be used to determine the fraction of the area of the square taken up by the circle.
When multiplied by 4, this provides us with an estimate of π.

The algorithm allows the number of iterations to be modified, allowing the processing
time to be adjusted. This allows the ratio of processing time to I/O time to be influenced.
Initially the experiments will create work packets which have a longer I/O time than
processing time, allowing the server to constantly be servicing work requests. The
NUM_ITERATIONS value of the work will then be increased, until I/O time becomes
marginal in the overall computation time. The work packets themselves will only be a few
bytes in size, meaning that each work packet can be sent in a single TCP/IP packet.
However, smaller NUM_ITERATIONS will lead to more packets being sent, thus
increasing the overall system computation time.

Server Machine

Server Process

Client Machine

Client Process Client Process

Client Machine

Client Process Client Process

Client Machine

Client Process Client Process

Client Machine

Client Process Client Process

 K. Chalmers / Comparison of MPI and CPA Networking 113

3.2.2 Request-Respond versus Scatter-Gather

MPI encourages the use of a scatter-gather mechanism when developing parallel
applications, whereas typically in CPA style applications a request-respond approach is
taken, using alternation to select an incoming request, and servicing accordingly. Both MPI
and CPA Networking can be made to operate in both manners (see Section 2), and therefore
comparing both frameworks for both styles of operations will provide insight into how well
each performs in a distributed work scenario.

3.3 Experimental Platform

The results presented were collected using machines of the following specification:

CPU – Intel Core Duo E8400 3.0 GHz (no hyper-threading)
Memory – 2 GB
Operating System – Microsoft Windows 7 32-bit
Software – .NET 4.0

The machines are each connected via a 100 Mbit/s switched Ethernet network. The

machines are not set up using any special cluster tools, as this may provide further
optimizations for MPI over CPA Networking. For MPI, each machine runs smpd and
spawns processes when instructed to. For CPA Networking, two individual programs are
run on each machine.

4. Results

In this section the results of the experiments outlined in Section 3 are presented. These
results represent the communication performance and overhead of both MPI and CPA
Networking. For these experiments, the .NET version of CPA Networking is used [3].
Work has already shown that JCSP and CSP for .NET are comparable in network
communication time. The reason that CSP for .NET was chosen over JCSP is that a more
recent version of MPI was available for .NET, MPI.NET [11][12], which runs using
Microsoft’s HPC Cluster Pack SDK. Also, MPI.NET is a wrapper for .NET around
Microsoft MPI (MS-MPI), rather than a reimplementation in .NET. More recent Java
implementations of MPI like platforms [15] have utilized Java RMI rather than wrapping an
already optimized MPI implementation.

4.1 Network Latency
Network latency refers to the time taken to send a single packet using the

communication mechanism of choice. The method used to measure latency is to perform a
simple ping-pong test, giving the time to send a message back and forth between two hosts.
The ping-pong time is then divided by two to provide the network latency. The results
from this experiment are presented in Figure 2. The Network results represent the
performance of using standard socket based communication for the experiment. 100 runs
of the experiment where performed, and for each, the mean of 10,000 iterations was taken.
The results presented are the mean of the 100 runs. The MPI results were collected using
the standard Send paired with the standard Receive.

For Network, MPI and Async CSP results, the latency time is similar. Only the
standard CSP results are different, and this is due to the synchronization that takes place in
the CPA Networking layer.

114 K. Chalmers / Comparison of MPI and CPA Networking

Figure 2: Ping-Pong Time

Of interest are the MPI results, as MPI also has a synchronization mechanism during

send and receive communication. This should make MPI similar to the standard CSP
results. MPI can have some network optimisations built in by the implementer. As CPA
Networking is designed to allow communication across various mediums, there are no
network level optimisations.

From the results, the network latency can be measured at 0.375 ms for the network
itself, MPI communication and asynchronous CSP style communication. Synchronous CSP
communication is measured at 0.4 ms.

4.2 Network Throughput

Network throughput is the measure of actual bandwidth achievable by the communication
middleware. Ideally, the performance should reach the capabilities of the network (100
Mbit/s), although latency will have some impact.

For throughput, both standard point-to-point communication (client-server) and
broadcast to eight machines (see Figure 1) will be measured. The Mbit/s for the broadcast
test will reflect the total amount of data transferred upon the network. For these
experiments, 100 tests were performed, each with the mean of 100 iterations gathered. The
mean of the 100 tests are presented. Again, standard MPI Send and Receive operations
where used.

4.2.1 Standard Communication

The results for standard point-to-point communication are presented in Figure 3. Again,
Network represents a baseline gathered from standard socket based communication. The
data size is the amount of bytes sent in a single communication.

MPI shows performance similar to the baseline, as do Async CSP results. Standard
synchronous CSP results start off poorly in comparison, but are more comparable for larger
data sizes. From the results gathered, it can be seen that MPI is a useful point-to-point
communication mechanism when performance is important, with asynchronous CPA
Networking communication also being useful. Synchronous CPA Networking
communication is not good for performance, although the addition of synchronous
communication has other benefits.

Figure 4 presents the results of point-to-point communication using a ping-pong style
of interaction. Rather than measuring the time taken to send the data, the ping-pong
interaction measures time taken to send and receive back a packet of the given size.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Network MPI CSP Async CSP

Ti
m

e
 m

s

 K. Chalmers / Comparison of MPI and CPA Networking 115

Figure 3: Point-to-Point Network Throughput

Figure 4: Point-to-Point Send-Receive Network Throughput

For small message sizes, the results show some initial disorder, due to the ping-pong

style of interaction (where data is being copied in and out of buffers repeatedly). However,
at large enough data sizes (>20000 bytes) we see that neither approach has any difference
in overall performance. Synchronous CPA Networking gains as the acknowledgement
packet sent back to the writer is followed by the returning data packet, negating any initial
loss of performance.

From these results, we can gather that in request-respond interactions both approaches
are comparable, particularly when large amounts of data are involved. This observation
will have some impact on the stressed communication results presented in Section 4.3.

4.2.2 Broadcast Communication

Figure 5 presents the results gathered using a broadcast approach to communication. In this
instance, a message of the data size indicated is broadcast to eight other machines. The
Mbit/s value is therefore calculated based on sending the amount of data to eight machines
(so actual data sent is 8 times the Data Size value).

0
10
20
30
40
50
60
70
80
90

100

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0

2
0

0
0

0

3
0

0
0

0

4
0

0
0

0

5
0

0
0

0

6
0

0
0

0

7
0

0
0

0

8
0

0
0

0

9
0

0
0

0

1
0

0
0

0
0

M
b

it
 /

 s

Data Size

Network MPI CSP Async CSP

0
10
20
30
40
50
60
70
80
90

100

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0

2
0

0
0

0

3
0

0
0

0

4
0

0
0

0

5
0

0
0

0

6
0

0
0

0

7
0

0
0

0

8
0

0
0

0

9
0

0
0

0

1
0

0
0

0
0

M
b

it
 /

 s

Data Size

Network MPI CSP Async CSP

116 K. Chalmers / Comparison of MPI and CPA Networking

Figure 5: Broadcast Network Throughput

MPI performs far better in broadcast tests that CPA Networking, performing better

than the base network performance (100 Mbit/s). This result illustrates that MPI is using
lower level optimizations to allow better performance. MPI has performance that at one
point comes close to 4 times the underlying capability, showing that the performance is
aggregated (e.g. we gain the performance of all four machine connections). CPA
Networking cannot break the 100 Mbit/s value, and the results are similar to standard point-
to-point communication seen in Figure 3. Asynchronous CPA Networking should be able
to perform at any level MPI is capable of if there is no network optimization.

From these results, we can see that if the application style utilizes a broadcast
mechanism, then MPI is a better approach. Although CPA Networking can simulate the
effect, it does not perform as well.

4.3 Stressed Communication

The stressed communication tests how well a single machine deals with distributing work
to others. The goal is to test how well MPI and CPA Networking cope when dealing with a
high communication load in comparison to computation load.

4.3.1 Optimal and Sub-optimal Time

Depending on how well the communication mechanism manages stressed communication,
the value will fall within a certain range defined by the optimal and sub-optimal
performance. For optimal performance, the total communication time for the test is divided
evenly amongst the number of worker processes (eight). For sub-optimal, the total
communication time is not divided amongst the worker processes.

The calculation for sub-optimal performance is as follows:

For optimal performance, the calculation is:

0

50

100

150

200

250

300

350

400

450

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0

2
0

0
0

0

3
0

0
0

0

4
0

0
0

0

5
0

0
0

0

6
0

0
0

0

7
0

0
0

0

8
0

0
0

0

9
0

0
0

0

1
0

0
0

0
0

M
b

it
 /

 s

Data Size

MPI CSP Async CSP

 K. Chalmers / Comparison of MPI and CPA Networking 117

From the results presented in Figure 2, we know that a small ping-pong interaction

takes approximately 0.75ms. The packets used in the tests are small (less than 20 bytes),
and therefore this is a suitable number for working out the communication time. The total
communication time will therefore be:

For computation time, we determine how long it will approximately take for the eight

processes to perform 1 billion iterations of Monte Carlo π. A benchmark of the machines
indicates that they can perform approximately 4.85 million Monte Carlo π iterations per
second. This allows us to calculate the total computation time as:

(

)

The optimal and sub-optimal times for the tests are presented in Table 1.

Table 1: Optimal and Sub-Optimal Times
Iterations
Per Packet

Number of
Packets

Communication
Time (ms)

Computation
Time (ms)

Optimal
Time (ms)

Sub-
Optimal
Time (ms)

 750000 25773 119523 775773
 75000 25773 35148 100773
 7500 25773 26711 33273
 750 25773 25867 26523
 75 25773 25782 25848

The values chosen allow a direct comparison between approaches which do not

distribute communication optimally, against others that do. When the number of iterations
per packet is low, the communication time dominates both optimal and sub-optimal times,
although sub-optimal with a clear disadvantage. For packets with a large number of
iterations, the communication time has little influence on the total time for optimal and sub-
optimal.

4.3.2 Request-Respond Approach

Figure 6 presents the results for using a request-respond approach to distributing the work,
utilizing alt in CPA Networking and probe in MPI.

For request-respond style interactions, both MPI and asynchronous CPA Networking
perform near optimal. MPI actually performs better than optimal for larger number of
iterations, although the optimal value is an approximation. Synchronous CPA Networking
performs close to sub-optimal, particularly at the small iteration value.

4.3.3 Scatter-Gather Approach

Figure 7 presents the results for using a scatter-gather approach to distributing the work.
Only synchronous CPA Networking results are shown as asynchronous are similar.

118 K. Chalmers / Comparison of MPI and CPA Networking

Interestingly, MPI performs less optimally when using scatter-gather, whereas
synchronous CPA Networking performs more optimally, and initially better than MPI.
Asynchronous CPA Networking performs less optimal as well, but not as bad as MPI.

Figure 6: Request-Respond Monte Carlo Pi

Figure 7: Scatter-Gather Monte Carlo Pi

The improvement in synchronous CPA Networking results is expected, as the system

now performs eight write operations at once, rather than one at a time (where the
synchronization causes an issue). At larger iteration values performance is less optimal, but
this will be the result of the parallel readers and writers in use for the scatter-gather
operations.

Considering the MPI results, less optimal values are harder to explain. In the first
instance, it may simply be because with scatter-gather the operation can only operate as fast
as the slowest processor. However, it would be expected that the same results would be
seen in the CPA Networking results, and all machines in the experimental framework were
of the same specification. Some of the lower level optimizations may cause the slowest
member problem to be more apparent in MPI.

1.E+04

1.E+05

1.E+06

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Ti
m

e
 m

s

Iterations per Packet

Optimal Time Sub Optimal MPI CSP Async CSP

1.E+04

1.E+05

1.E+06

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Ti
m

e
 m

s

Iterations per Packet

Optimal Time Sub Optimal MPI Scatter CSP Scatter

 K. Chalmers / Comparison of MPI and CPA Networking 119

5. Conclusions and Future Work

This paper has compared the base communication of CPA Networking and MPI, and has
found that in many circumstances the performance is comparable, particularly when
asynchronous CPA Networking communication is taken into account.

In both instances, it was found that MPI and asynchronous CPA Networking
communication performed close to the base network performance for latency and standard
network throughput. Synchronous CPA Networking communication performs poorly in
comparison, until large enough data packets are sent.

MPI does have an advantage when dealing with broadcast messages, and therefore if
the application requires broadcast semantics it is recommended that MPI is used over CPA
Networking. Also, in scatter-gather scenarios, MPI is probably a better choice, although
using a CPA approach (request-respond) does appear to be a better method. Asynchronous
CPA Networking does compare favorably in these situations, but the simplicity in doing
MPI applications in this manner has an advantage. For scatter-gather, CPA Networking
also has a higher thread requirement.

5.1 MPI or CPA Networking?

In Section 3 the two different aims of MPI and CPA Networking where provided:
 MPI has is a Single Program, Multiple Data (SPMD) based approach to parallel

computing, allowing multiple instances of an application to execute on cluster-like
architectures

 CPA Networking has been developed to provide channel based semantics across a
communication medium. Rather than a parallel computing solution, it provides
usable abstractions to develop distributed CPA applications in a transparent manner

From the results presented, these two statements still stand. If the application domain
requires SPMD parallel computing, then MPI will provide a better approach. The setup of
an MPI style application is easier in these circumstances, and the communication
infrastructure is created automatically. However, if the application domain requires more
complexity than SPMD provides, then CPA Networking can provide an infrastructure
which has comparable performance, particularly if asynchronous communication is used
carefully.

5.2 MPI Links for CPA Networking

At present, CPA Networking has been built with the belief that communication streams
would be the underlying mechanism of choice. However, the observations made in this
work indicate that it may be possible to utilize MPI as a communication mechanism for
CPA Networking, allowing CPA Networking to be utilized more in cluster computing
scenarios. Making this change would require some reengineering of CPA Networking, but
there may be advantages to doing so.

Another possible advantage in using MPI as a base layer in CPA Networking would be
in utilizing the mobile process and channel mechanisms. It would be fairly trivial with an
MPI layer to implement a mobile agent type system on a cluster with little overhead.
Mobility is a definite direction of interest for an MPI controlled CPA Networking
application.

120 K. Chalmers / Comparison of MPI and CPA Networking

References

[1] K. Chalmers, “Investigating Communicating Sequential Processes for Java to Support
Ubiquitous Computing.,” PhD Thesis, Edinburgh Napier University, 2009.

[2] P. H. Welch, “Process oriented design for Java: concurrency for all,” in International
Conference on Parallel and Distributed Processing Techniques, 2000, pp. 51–57.

[3] K. Chalmers, “Performance of the Distributed CPA Protocol and Architecture on
Traditional Networks,” in Communicating Process Architectures 2011, 2011, pp. 227–
242.

[4] MPI Forum, “MPI,” MPI Forum. [Online]. Available: http://www.mpi-forum.org/.
[5] D. May, R. Shepherd, and P. Thompson, “The T9000 transputer,” in Computer

Design: VLSI in Computers and Processors, 1992. ICCD ’92. Proceedings., IEEE
1992 International Conference on, 1992, pp. 209 –212.

[6] P. Welch, J. Aldous, and J. Foster, “CSP Networking for Java (JCSP.net),” in
Computational Science — ICCS 2002, vol. 2330, P. Sloot, A. Hoekstra, C. Tan, and J.
Dongarra, Eds. Springer Berlin / Heidelberg, 2002, pp. 695–708.

[7] K. Chalmers, J. Kerridge, and I. Romdhani, “A Critique of JCSP Networking,” in
Communicating Process Architectures 2008, 2008, pp. 271–291.

[8] M. Schweigler and A. T. Sampson, “pony - The occam-pi Network Environment,” in
Communicating Process Architectures 2006, 2006, pp. 77–108.

[9] J. M. Bjørndalen and A. T. Sampson, “Process-Oriented Collective Operations,” in
Communicating Process Architectures 2008, 2008, pp. 309–328.

[10] N. C. C. Brown, “C++CSP Networked,” in Communicating Process Architectures
2004, 2004, pp. 185–200.

[11] E. Gabriel, G. Fagg, G. Bosilca, T. Angskun, J. Dongarra, J. Squyres, V. Sahay, P.
Kambadur, B. Barrett, A. Lumsdaine, R. Castain, D. Daniel, R. Graham, and T.
Woodall, “Open MPI: Goals, Concept, and Design of a Next Generation MPI
Implementation,” in Recent Advances in Parallel Virtual Machine and Message
Passing Interface, vol. 3241, D. Kranzlmüller, P. Kacsuk, and J. Dongarra, Eds.
Springer Berlin / Heidelberg, 2004, pp. 353–377.

[12] J. Willcock, A. Lumsdaine, and A. Robison, “Using MPI with C# and the Common
Language Infrastructure,” Concurrency and Computation: Practice and Experience,
vol. 17, no. 7–8, pp. 895–917, 2005.

[13] P. H. Welch, N. C. C. Brown, J. Moores, K. Chalmers, and B. H. C. Sputh,
“Integrating and Extending JCSP,” in Communicating Process Architectures 2007,
2007, pp. 349–369.

[14] D. Gregor and A. Lumsdaine, “Design and implementation of a high-performance MPI
for C# and the common language infrastructure,” in Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel programming, New York,
NY, USA, 2008, pp. 133–142.

[15] A. Nelisse, J. Maassen, T. Kielmann, and H. E. Bal, “CCJ: object-based message
passing and collective communication in Java,” Concurrency and Computation:
Practice and Experience, vol. 15, no. 3–5, pp. 341–369, 2003.

