
Fringe Session:
Developing JIWY using TERRA

Communicating Process Architectures 2012

Maarten Bezemer, Robert Wilterdink and Jan Broenink
Robotics and Mechatronics, University of Twente, The Netherlands

TERRA Fringe 2

Summary of the Paper

 CSP Meta-Model just presented

 Used by
 CSP Editor
 Model validation
 Code generation (FDR, C++/LUNA)

 Obviously it all is very nice (and works)

 At least that is what we just told...

TERRA Fringe 3

Outline

Time for a demo!

 CSP Editor
Modeling a simple robotic setup

 Transformation to CSPm/FDR

 Transformation to C++/LUNA

 Execute C++ code on target

TERRA Fringe 4

CSP Editor

 JIWY with an architecture model
 Two controllers (Pan & Tilt)
 Safety / Scaling model
 Interaction with hardware

 CSP Models to implement the sub-models
 Communication defined by the architecture model

 Not available unfortunately

 So we will use only a CSP model

TERRA Fringe 5

CSP Editor

 JIWY with a CSP model
 Controller sub-models

 Readers/Writers for data communication
 Empty sub-models used for (20-sim) controller algorithm containers

 Safety sub-model
 Readers/Writers for data communication
 Separated for Pan and Tilt signal
 Empty sub-models used to add some C++ code for safety checks

 Fake interaction with hardware
 Thrown away!
 Channels replaced by link drivers to communicate with HW

TERRA Fringe 6

CSP Editor

Live demo

TERRA Fringe 7

Transformation to CSPm / FDR

 Formal verification of TERRA models

 Basic CSP objects can be transformed

 C++ Code (blocks) not... (obviously)
 Process = SKIP

 Formally checking of robotic oriented models is limited
 Only software structure (ie pure CSP)

TERRA Fringe 8

Transformation to CSPm / FDR

Live demo

TERRA Fringe 9

Transformation to C++ / LUNA

 All CSP constructs represented by C++ / LUNA code

 All (sub-)models expressed in header/source file
 Contains channels, processes, ports, groups, etc.

 Modifying generated code is possible
 Protected regions: comment, constructor/destructor, execute()

 Code blocks filled in by custom code
 Or by code generated from control law design tools (e.g. 20-sim)

 Additional generated files
 Entry point (main() function)
 Makefile to build the application

TERRA Fringe 10

Transformation to C++ / LUNA

Live demo

TERRA Fringe 11

Execute on target

 Compile & Link
 Should be automated in the future

 Send executable to (QNX) target
 Should be automated in the future

 Execute, experiment, test, ...!
(and hope we did not make any mistakes...)

 Would be nice to automate as well, but probably stays manual...

TERRA Fringe 12

Execute on target

Live demo

TERRA Fringe 13

That's all folks

 As claimed by the paper presentation

Usable for “Developing Embedded Control Software”

 If you are still interested

 Come to us for a 'Do It Yourself' session!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

