
24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 1

CPA 2011, University of Limerick,
22nd. June, 2011

Peter Welch , Matt Pedersen , Fred Barnes ,Peter Welch , Matt Pedersen , Fred Barnes ,
Carl Carl RitsonRitson and Neil Brownand Neil Brown

School of Computing, University of Kent, UKSchool of Computing, University of Kent, UK
School of Computer Science, UNLV, USASchool of Computer Science, UNLV, USA

Adding Formal Verification
to occam-π

Adding Formal VerificationAdding Formal Verification
to to occamoccam--ππ

a
a

a b a

a

b

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 2

Aim:Aim:Aim:

To enable formal verification of To enable formal verification of occamoccam--ππ programs to be programs to be
conducted within the language itselfconducted within the language itself …… as a matter of as a matter of
course by the programmer.course by the programmer.

How:How:How:

Extend Extend occamoccam--ππ with with verification qualifiersverification qualifiers and and assertionsassertions. .
Modify the compiler to generate Modify the compiler to generate (minimal)(minimal) CSPCSPMM code from code from
programs using these qualifiers and assertions, bounce this programs using these qualifiers and assertions, bounce this
off the off the FDRFDR model checker and report back in terms of the model checker and report back in terms of the
source code.source code.

occam-π, the process algebraoccamoccam--ππ, the process algebra, the process algebra

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 3

Why?Why?Why?

ItIt’’s time!s time!

Why?Why?Why?

““Use of Use of autonomousautonomous systems will require developing new methods to systems will require developing new methods to
establish establish ‘‘certicertififiableable trust in autonomytrust in autonomy’’ through through VeriVerifificationcation and and
Validation (V&V)Validation (V&V) of the nearof the near--ininfifinitenite state systems that result from state systems that result from
high levels of adaptability; the lack of suitable V&V methods tohigh levels of adaptability; the lack of suitable V&V methods today day
prevents all but relatively low levels of autonomy from being prevents all but relatively low levels of autonomy from being certicertififieded
for use for use …… (This)(This) will require access to aswill require access to as--yet undeveloped methods yet undeveloped methods
for establishing certifiably reliable V&V.for establishing certifiably reliable V&V.””

occam-π, the process algebraoccamoccam--ππ, the process algebra, the process algebra

Werner J.A. Dahm, Chief Scientist of the U.S. Air Force (AF/ST),
“A Vision for Air Force Science & Technology (2010-2030)”, May 2010
Werner J.A. Werner J.A. DahmDahm, Chief Scientist of the U.S. Air Force (AF/ST),, Chief Scientist of the U.S. Air Force (AF/ST),
““A Vision for Air Force Science & Technology (2010A Vision for Air Force Science & Technology (2010--2030)2030)””, May 2010, May 2010

autonomous autonomous ÙÙ emergent & complexemergent & complex
(THESIS)(THESIS)

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 4

Example: autonomous robot componentExample: Example: autonomous robot componentautonomous robot component

The following example has been developed from one
first worked through in a single lesson of a graduate
class in concurrency at UNLV in the spring of 2010.

The following example has been developed from one The following example has been developed from one
first worked through in a single lesson of a graduate first worked through in a single lesson of a graduate
class in concurrency at class in concurrency at UNLVUNLV in the spring of 2010.in the spring of 2010.

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 5

The following example has been developed from one
first worked through in a single lesson of a graduate
class in concurrency at UNLV in the spring of 2010.

The following example has been developed from one The following example has been developed from one
first worked through in a single lesson of a graduate first worked through in a single lesson of a graduate
class in concurrency at class in concurrency at UNLVUNLV in the spring of 2010.in the spring of 2010.

Example: autonomous robot componentExample: Example: autonomous robot componentautonomous robot component
a0a0 b0b0 c0c0 a1a1 b1b1 c1c1 d0d0 d1d1

DeviceDevice

DeviceDevice : real: real--time controller for 8 channels (4 input, 4 output).time controller for 8 channels (4 input, 4 output).

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 6

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

Example: autonomous robot componentExample: Example: autonomous robot componentautonomous robot component

DeviceDevice : real: real--time controller for 8 channels (4 input, 4 output).time controller for 8 channels (4 input, 4 output).

There are 3 subThere are 3 sub--components: components: P0P0 (weapons systems)(weapons systems),,
P1P1 (vision processing)(vision processing) and and P2P2 (motion stabilizer)(motion stabilizer)..

They exchange information over internal channels (They exchange information over internal channels (askask, , ansans, ,
pingping) and all coordinate actions with an internal barrier () and all coordinate actions with an internal barrier (barbar).).

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 7

Example: autonomous robot componentExample: Example: autonomous robot componentautonomous robot component

They exchange information over internal They exchange information over internal channelschannels ((askask, , ansans, ,
pingping) and all coordinate actions with an internal) and all coordinate actions with an internal barrierbarrier ((barbar).).

CSPCSP semantics apply. semantics apply. Channel communicationChannel communication is unbuffered is unbuffered
(sender waits for receiver and vice(sender waits for receiver and vice--versa). Any process versa). Any process
reaching a barrierreaching a barrier waits for waits for allall processes to processes to reach the barrierreach the barrier..

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 8

DeviceDevice

askask

ansans
P0P0 P1P1 P2P2

barbar

pingping

©© 2003 Hasbro and TakaraTomy2003 Hasbro and TakaraTomy

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 9

CSPCSP: for formal analysis.: for formal analysis.
[FDR2 model checker + other (simple) formal reasoning.][FDR2 model checker + other (simple) formal reasoning.]

Behaviour: two representationsBehaviour: Behaviour: two representationstwo representations

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

occamoccam--ππ: for compiling to a runnable system.: for compiling to a runnable system.
[memory overheads <= 32 bytes per process / synchronisation over[memory overheads <= 32 bytes per process / synchronisation overheads heads
of order tens of nanoseconds / eats multicore nodes for breakfasof order tens of nanoseconds / eats multicore nodes for breakfast.]t.]

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 10

Behaviour: one representationBehaviour: Behaviour: one representationone representation

occamoccam--ππ: for compiling to a runnable system.: for compiling to a runnable system.
[memory overheads <= 32 bytes per process / synchronisation over[memory overheads <= 32 bytes per process / synchronisation overheads heads
of order tens of nanoseconds / eats multicore nodes for breakfasof order tens of nanoseconds / eats multicore nodes for breakfast.]t.]

occamoccam--ππ: for formal analysis.: for formal analysis.
[verify qualifiers and (FDR) assertions + other (simple) formal [verify qualifiers and (FDR) assertions + other (simple) formal reasoning.]reasoning.]

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 11

Behaviour: what are we looking for?Behaviour: Behaviour: what are we looking for?what are we looking for?

deadlockdeadlock: : mightmight it ever stop?it ever stop?
[e.g. [e.g. P0P0 and and P2P2 want to synchronise on want to synchronise on barbar, but , but P1P1 wants to wants to pingping.].]

livelocklivelock: : mightmight it get busy it get busy …… but refuse all external signals?but refuse all external signals?
[e.g. [e.g. P0P0, , P1P1 and and P2P2 start engaging in an infinite sequence of internal start engaging in an infinite sequence of internal
channel or barrier synchronisations (on channel or barrier synchronisations (on askask, , ansans, , pingping and and barbar).]).]

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 12

Behaviour: what are we looking for?Behaviour: Behaviour: what are we looking for?what are we looking for?

safetysafety: : mightmight it ever engage in an incorrect sequence of it ever engage in an incorrect sequence of
external signals?external signals?

livenessliveness: : willwill it engage in correct sequences of external it engage in correct sequences of external
signals, as required?signals, as required?
[Some specs allow alternative sequences to be performed [Some specs allow alternative sequences to be performed –– all are all are
correct, but an implementation must only do one and is free to ccorrect, but an implementation must only do one and is free to choose.]hoose.]

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 13

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

For the behaviour analysis in this example, data values

and computations are not relevant. For simplicity, they

are omitted in these codes, with all message content

abstracted to zero.

For the behaviour analysis in this example, data values

and computations are not relevant. For simplicity, they

are omitted in these codes, with all message content

abstracted to zero.

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 14

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!, , BARRIERBARRIER barbar))
WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x ask ? x ---- take questiontake question
a0 ? ya0 ? y
ans ! 0 ans ! 0 ---- return answerreturn answer (will depend on x and y)(will depend on x and y)
b0 ? zb0 ? z
SYNC bar SYNC bar ---- wait for the otherswait for the others
c0 ! 0c0 ! 0

::

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping
P0P0

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 15

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0 ask ! 0 ---- ask questionask question
ans ? x ans ? x ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar SYNC bar ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0 ping ! 0 ---- update neighbourupdate neighbour

::

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 16

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?, , BARRIERBARRIER barbar))
WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar SYNC bar ---- wait for the otherswait for the others
d0 ! 0d0 ! 0
ping ? x ping ? x ---- receive updatereceive update
SYNC bar SYNC bar ---- wait for the otherswait for the others
d1 ! 0d1 ! 0
ping ? x ping ? x ---- receive updatereceive update

::

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 17

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

PROCPROC DeviceDevice ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , a1?a1?, , b1?b1?, , c1!c1!, , d0!d0!, , d1!d1!))
CHAN INT ask, ans, ping:CHAN INT ask, ans, ping:
BARRIER bar:BARRIER bar:
PAR ENROLL barPAR ENROLL bar
P0P0 ((a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!, , barbar))
P1P1 ((a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!, , barbar))
P2P2 ((d0!d0!, , d1!d1!, , ping?ping?, , barbar))

::

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 18

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0 ask ! 0 ---- ask questionask question
ans ? x ans ? x ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar SYNC bar ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0 ping ! 0 ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x ask ? x ---- take questiontake question
a0 ? ya0 ? y
ans ! 0 ans ! 0 ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar SYNC bar ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar SYNC bar ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x ping ? x ---- receive updatereceive update
SYNC bar SYNC bar ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x ping ? x ---- receive updatereceive update

::

What patterns of What patterns of
external (blue)external (blue)
signalling are signalling are
possible from possible from
DeviceDevice??

InformalInformal
IntuitiveIntuitive

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 19

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0 ask ! 0 ---- ask questionask question
ans ? x ans ? x ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar SYNC bar ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0 ping ! 0 ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x ask ? x ---- take questiontake question
a0 ? ya0 ? y
ans ! 0 ans ! 0 ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar SYNC bar ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar SYNC bar ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x ping ? x ---- receive updatereceive update
SYNC bar SYNC bar ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x ping ? x ---- receive updatereceive update

::

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

WhatWhat’’s first?s first?

InformalInformal
IntuitiveIntuitive

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 20

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0 ask ! 0 ---- ask questionask question
ans ? x ans ? x ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar SYNC bar ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0 ping ! 0 ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x ask ? x ---- take questiontake question
a0 ? ya0 ? y
ans ! 0 ans ! 0 ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar SYNC bar ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar SYNC bar ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x ping ? x ---- receive updatereceive update
SYNC bar SYNC bar ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x ping ? x ---- receive updatereceive update

::

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

WhatWhat’’s first?s first?

InformalInformal
IntuitiveIntuitive

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 21

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0 ask ! 0 ---- ask questionask question
ans ? x ans ? x ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar SYNC bar ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0 ping ! 0 ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x ask ? x ---- take questiontake question
a0 ? ya0 ? y
ans ! 0 ans ! 0 ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar SYNC bar ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar SYNC bar ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x ping ? x ---- receive updatereceive update
SYNC bar SYNC bar ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x ping ? x ---- receive updatereceive update

::

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

WhatWhat’’s first?s first?

a0a0

<a0><a0><a0>

InformalInformal
IntuitiveIntuitive

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 22

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0 ask ! 0 ---- ask questionask question
ans ? x ans ? x ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar SYNC bar ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0 ping ! 0 ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x ask ? x ---- take questiontake question
a0 ? ya0 ? y
ans ! 0 ans ! 0 ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar SYNC bar ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar SYNC bar ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x ping ? x ---- receive updatereceive update
SYNC bar SYNC bar ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x ping ? x ---- receive updatereceive update

::

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

WhatWhat’’s second?s second?

<a0><a0><a0>

InformalInformal
IntuitiveIntuitive

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 23

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0 ask ! 0 ---- ask questionask question
ans ? x ans ? x ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar SYNC bar ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0 ping ! 0 ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x ask ? x ---- take questiontake question
a0 ? ya0 ? y
ans ! 0 ans ! 0 ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar SYNC bar ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar SYNC bar ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x ping ? x ---- receive updatereceive update
SYNC bar SYNC bar ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x ping ? x ---- receive updatereceive update

::

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

WhatWhat’’s second?s second?

<a0><a0><a0>

InformalInformal
IntuitiveIntuitive

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 24

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0 ask ! 0 ---- ask questionask question
ans ? x ans ? x ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar SYNC bar ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0 ping ! 0 ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x ask ? x ---- take questiontake question
a0 ? ya0 ? y
ans ! 0 ans ! 0 ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar SYNC bar ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar SYNC bar ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x ping ? x ---- receive updatereceive update
SYNC bar SYNC bar ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x ping ? x ---- receive updatereceive update

::

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

WhatWhat’’s second?s second?

a1a1b0b0 oror

<a0><a0><a0>

InformalInformal
IntuitiveIntuitive

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 25

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0 ask ! 0 ---- ask questionask question
ans ? x ans ? x ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar SYNC bar ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0 ping ! 0 ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x ask ? x ---- take questiontake question
a0 ? ya0 ? y
ans ! 0 ans ! 0 ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar SYNC bar ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar SYNC bar ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x ping ? x ---- receive updatereceive update
SYNC bar SYNC bar ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x ping ? x ---- receive updatereceive update

::

<a0><a0><a0>

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

If second, then?If second, then?b0b0

<a0, b0><a0, b0><a0, b0>

InformalInformal
IntuitiveIntuitive

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 26

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0 ask ! 0 ---- ask questionask question
ans ? x ans ? x ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar SYNC bar ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0 ping ! 0 ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x ask ? x ---- take questiontake question
a0 ? ya0 ? y
ans ! 0 ans ! 0 ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar SYNC bar ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar SYNC bar ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x ping ? x ---- receive updatereceive update
SYNC bar SYNC bar ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x ping ? x ---- receive updatereceive update

::

<a0, b0><a0, b0><a0, b0>

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

If second, then?If second, then?b0b0

a1a1

<a0, b0, a1><a0, b0, a1><a0, b0, a1>

InformalInformal
IntuitiveIntuitive

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 27

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0 ask ! 0 ---- ask questionask question
ans ? x ans ? x ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar SYNC bar ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0 ping ! 0 ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x ask ? x ---- take questiontake question
a0 ? ya0 ? y
ans ! 0 ans ! 0 ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar SYNC bar ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar SYNC bar ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x ping ? x ---- receive updatereceive update
SYNC bar SYNC bar ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x ping ? x ---- receive updatereceive update

::

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

If second, then?If second, then?b0b0

a1a1 b1b1thenthen

<a0, b0, a1><a0, b0, a1><a0, b0, a1><a0, b0, a1, b1><a0, b0, a1, b1><a0, b0, a1, b1>

InformalInformal
IntuitiveIntuitive

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 28

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0 ask ! 0 ---- ask questionask question
ans ? x ans ? x ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar SYNC bar ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0 ping ! 0 ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x ask ? x ---- take questiontake question
a0 ? ya0 ? y
ans ! 0 ans ! 0 ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar SYNC bar ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar SYNC bar ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x ping ? x ---- receive updatereceive update
SYNC bar SYNC bar ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x ping ? x ---- receive updatereceive update

::

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

If second, then?If second, then?b0b0

a1a1 b1b1thenthen

<a0, b0, a1, b1><a0, b0, a1, b1><a0, b0, a1, b1>

InformalInformal
IntuitiveIntuitive

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 29

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0 ask ! 0 ---- ask questionask question
ans ? x ans ? x ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar SYNC bar ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0 ping ! 0 ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x ask ? x ---- take questiontake question
a0 ? ya0 ? y
ans ! 0 ans ! 0 ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar SYNC bar ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar SYNC bar ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x ping ? x ---- receive updatereceive update
SYNC bar SYNC bar ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x ping ? x ---- receive updatereceive update

::

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

WhatWhat’’s second?s second?

a1a1b0b0 oror

<a0><a0><a0>

InformalInformal
IntuitiveIntuitive

backtrackingbacktracking …

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 30

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0 ask ! 0 ---- ask questionask question
ans ? x ans ? x ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar SYNC bar ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0 ping ! 0 ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x ask ? x ---- take questiontake question
a0 ? ya0 ? y
ans ! 0 ans ! 0 ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar SYNC bar ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar SYNC bar ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x ping ? x ---- receive updatereceive update
SYNC bar SYNC bar ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x ping ? x ---- receive updatereceive update

::

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

If second, then?If second, then?a1a1

<a0><a0><a0><a0, a1><a0, a1><a0, a1>

InformalInformal
IntuitiveIntuitive

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 31

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0 ask ! 0 ---- ask questionask question
ans ? x ans ? x ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar SYNC bar ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0 ping ! 0 ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x ask ? x ---- take questiontake question
a0 ? ya0 ? y
ans ! 0 ans ! 0 ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar SYNC bar ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar SYNC bar ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x ping ? x ---- receive updatereceive update
SYNC bar SYNC bar ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x ping ? x ---- receive updatereceive update

::

<a0, a1><a0, a1><a0, a1>

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

If second, then?If second, then?a1a1

b1b1b0b0 andand

(* any order)(* any order)

**

InformalInformal
IntuitiveIntuitive

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 32

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0 ask ! 0 ---- ask questionask question
ans ? x ans ? x ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar SYNC bar ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0 ping ! 0 ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x ask ? x ---- take questiontake question
a0 ? ya0 ? y
ans ! 0 ans ! 0 ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar SYNC bar ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar SYNC bar ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x ping ? x ---- receive updatereceive update
SYNC bar SYNC bar ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x ping ? x ---- receive updatereceive update

::

<a0, a1><a0, a1><a0, a1>

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

If second, then?If second, then?a1a1

b1b1b0b0 andand

<a0, a1, b0, b1>
<a0, a1, b1, b0>
<a0, a1, b0, b1><a0, a1, b0, b1>
<a0, a1, b1, b0><a0, a1, b1, b0>

InformalInformal
IntuitiveIntuitive

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 33

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0 ask ! 0 ---- ask questionask question
ans ? x ans ? x ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar SYNC bar ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0 ping ! 0 ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x ask ? x ---- take questiontake question
a0 ? ya0 ? y
ans ! 0 ans ! 0 ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar SYNC bar ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar SYNC bar ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x ping ? x ---- receive updatereceive update
SYNC bar SYNC bar ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x ping ? x ---- receive updatereceive update

::

<a0, a1, b0, b1>
<a0, a1, b1, b0>
<a0, a1, b0, b1><a0, a1, b0, b1>
<a0, a1, b1, b0><a0, a1, b1, b0>

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

If second, then?If second, then?a1a1

b1b1b0b0 andand

InformalInformal
IntuitiveIntuitive

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 34

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0 ask ! 0 ---- ask questionask question
ans ? x ans ? x ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar SYNC bar ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0 ping ! 0 ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x ask ? x ---- take questiontake question
a0 ? ya0 ? y
ans ! 0 ans ! 0 ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar SYNC bar ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar SYNC bar ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x ping ? x ---- receive updatereceive update
SYNC bar SYNC bar ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x ping ? x ---- receive updatereceive update

::

<a0, b0, a1, b1>
<a0, a1, b0, b1>
<a0, a1, b1, b0>

<a0, b0, a1, b1><a0, b0, a1, b1>
<a0, a1, b0, b1><a0, a1, b0, b1>
<a0, a1, b1, b0><a0, a1, b1, b0>

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

What next?What next?

InformalInformal
IntuitiveIntuitive

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 35

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0 ask ! 0 ---- ask questionask question
ans ? x ans ? x ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar SYNC bar ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0 ping ! 0 ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x ask ? x ---- take questiontake question
a0 ? ya0 ? y
ans ! 0 ans ! 0 ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar SYNC bar ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar SYNC bar ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x ping ? x ---- receive updatereceive update
SYNC bar SYNC bar ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x ping ? x ---- receive updatereceive update

::

<a0, b0, a1, b1>
<a0, a1, b0, b1>
<a0, a1, b1, b0>

<a0, b0, a1, b1><a0, b0, a1, b1>
<a0, a1, b0, b1><a0, a1, b0, b1>
<a0, a1, b1, b0><a0, a1, b1, b0>

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

d0d0c0c0

(* any order)(* any order)

**
c1c1

What next?What next?

InformalInformal
IntuitiveIntuitive

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 36

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0 ask ! 0 ---- ask questionask question
ans ? x ans ? x ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar SYNC bar ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0 ping ! 0 ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x ask ? x ---- take questiontake question
a0 ? ya0 ? y
ans ! 0 ans ! 0 ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar SYNC bar ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar SYNC bar ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x ping ? x ---- receive updatereceive update
SYNC bar SYNC bar ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x ping ? x ---- receive updatereceive update

::

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

ThatThat’’s s 1818 possible possible
orderings of the first orderings of the first 77
signals.signals.

What happens when What happens when
the subthe sub--processes processes
start looping?start looping?

InformalInformal
IntuitiveIntuitive

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 37

PROCPROC P1P1 ((CHAN INTCHAN INT a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ! 0 ask ! 0 ---- ask questionask question
ans ? x ans ? x ---- wait for answerwait for answer
a1 ? ya1 ? y
b1 ? zb1 ? z
SYNC bar SYNC bar ---- wait for the otherswait for the others
c1 ! 0c1 ! 0
ping ! 0 ping ! 0 ---- update neighbourupdate neighbour

::

PROCPROC P0P0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x, y, z:INT x, y, z:
SEQSEQ
ask ? x ask ? x ---- take questiontake question
a0 ? ya0 ? y
ans ! 0 ans ! 0 ---- return answerreturn answer
b0 ? zb0 ? z
SYNC bar SYNC bar ---- wait for otherswait for others
c0 ! 0c0 ! 0

::

PROCPROC P2P2 ((CHAN INTCHAN INT d0!d0!, , d1!d1!, , ping?ping?,,
BARRIERBARRIER barbar))

WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
SYNC bar SYNC bar ---- wait for otherswait for others
d0 ! 0d0 ! 0
ping ? x ping ? x ---- receive updatereceive update
SYNC bar SYNC bar ---- wait for otherswait for others
d1 ! 0d1 ! 0
ping ? x ping ? x ---- receive updatereceive update

::

Behaviour: occam-π (executable)Behaviour: Behaviour: occamoccam--ππ (executable)(executable)

Could Could P0P0 signal signal againagain
on on a0a0 beforebefore P2P2 gave gave
its first its first d0d0??

Are there some more Are there some more
possible possible firstfirst--77 signal signal
sequences?sequences?

InformalInformal
IntuitiveIntuitive

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 38

Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable)

With With verification qualifiersverification qualifiers and and assertionsassertions, we can ask the , we can ask the
occamoccam--ππ compiler to compiler to model checkmodel check the previous intuition the previous intuition
(which was only about the opening behaviour of the system) (which was only about the opening behaviour of the system)
and answer the open questions (and more) about its and answer the open questions (and more) about its
continuous behaviour.continuous behaviour.

The compiler does this by generating The compiler does this by generating CSPCSPMM , a , a declarativedeclarative
((functionalfunctional)) language, from the language, from the occamoccam--ππ source and using the source and using the
FDR2FDR2 model checker. model checker.

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

FormalFormal

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 39

Verify Qualifiers: dataVerify Qualifiers: Verify Qualifiers: datadata

If we generated If we generated CSPCSPMM that fully reflected the semantics of the that fully reflected the semantics of the
occamoccam--ππ source code, we would quickly produce a system source code, we would quickly produce a system
with too many states for any feasible with too many states for any feasible model checkingmodel checking..
For instance, a single For instance, a single INTINT variable has 4G possible states!variable has 4G possible states!

By defaultBy default, therefore, data values are ignored when generating , therefore, data values are ignored when generating
the the CSPCSPMM . For instance:. For instance:

FormalFormal

PROCPROC PP ((VAL INTVAL INT ii, CHAN INT , CHAN INT c!c!))
c ! ic ! i

::

PP ((cc)) = = cc -->> SKIPSKIPmaps just to:maps just to:

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 40

Verify Qualifiers: dataVerify Qualifiers: Verify Qualifiers: datadata

occamoccam--ππ code dependant on tests of code dependant on tests of untrackeduntracked runrun--time time
values map to nonvalues map to non--deterministic choice:deterministic choice:

FormalFormal

PROCPROC QQ ((VAL INTVAL INT ii, CHAN INT , CHAN INT c!c!, , d!d!))
IFIF
i = 42i = 42
c ! ic ! i

TRUETRUE
d ! id ! i

::

Q Q ((cc,, dd)) = = cc -->> SKIP |~| SKIP |~| dd -->> SKIPSKIP

maps to:maps to:

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 41

Verify Qualifiers: dataVerify Qualifiers: Verify Qualifiers: datadata

If data values are significant, we qualify their types:If data values are significant, we qualify their types:

FormalFormal

PROCPROC QQ ((VAL VERIFY INTVAL VERIFY INT ii, CHAN INT , CHAN INT c!c!, , d!d!))
IFIF
i = 42i = 42
c ! ic ! i

TRUETRUE
d ! id ! i

::

Q (Q (ii,, cc,, dd)) ==
ifif ii ==== 4242 thenthen cc -->> SKIP SKIP elseelse dd -->> SKIPSKIP

Such data variables are Such data variables are trackedtracked and the aboveand the above now maps to:now maps to:

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 42

Verify Qualifiers: dataVerify Qualifiers: Verify Qualifiers: datadata

If data values are significant, we qualify their types:If data values are significant, we qualify their types:

FormalFormal

PROCPROC QQ ((VAL VERIFY INTVAL VERIFY INT ii, CHAN VERIFY INT , CHAN VERIFY INT c!c!, , d!d!))
IFIF
i = 42i = 42
c ! ic ! i

TRUETRUE
d ! id ! i

::

Q (Q (ii,, cc,, dd)) ==
ifif ii ==== 4242 thenthen c!ic!i -->> SKIP SKIP elseelse d!id!i -->> SKIPSKIP

oror

Such data variables and channel messages are Such data variables and channel messages are trackedtracked and and
the abovethe above now maps to:now maps to:

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 43

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

FormalFormal

PRO
CPRO
C P0P0

((CH
AN

INT
CHA

N I
NT a0?a0?,

 , b0
?b0?,
 , c0

!c0!,
 , as

k?ask
?, , a

ns!ans
!,,

BAR
RIE

R
BAR

RIE
R barbar)

)

WHI
LE

TRU
E

WHI
LE

TRU
E

INT
 x,

 y,
 z:

INT
 x,

 y,
 z:

SEQSEQ
ask

 ?
x

ask
 ?

x
 -

--- tak
e q

ues
tio

n

tak
e q

ues
tio

n

a0
? ya0
? y

ans
 !

0

ans
 !

0
 -

--- ret
urn

 an
swe

r

ret
urn

 an
swe

r

b0
? zb0
? z

SYN
C b

ar

SYN
C b

ar
 -

--- wai
t f

or
oth

ers

wai
t f

or
oth

ers

c0
! 0c0
! 0

::

P0 P0 ((a0a0, , b0b0, , c0c0, , askask, , ansans, , barbar)) ==
letlet
P0_0_ = P0_0_ = askask -->> a0a0 -->> ansans -->> b0b0 -->> barbar -->> c0c0 -->> P0_0_P0_0_

withinwithin
P0_0_P0_0_

Compiling: occam-π Î CSPMCompiling: Compiling: occamoccam--ππ ÎÎ CSPCSPMM

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 44

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

PROC
PROC

P1P1 ((CHAN INT

CHAN INT
a1?
a1?, , b1?

b1?, , c1!
c1!, , ask!

ask!, , ans?
ans?, , ping!

ping!,,

BARRIER

BARRIER
bar
bar))

WHILE TRUE

WHILE TRUE
INT x, y, z:

INT x, y, z:

SEQ
SEQ
ask ! 0

ask ! 0 ---- ask question

ask question

ans ? x

ans ? x ---- wait for answer

wait for answer

a1 ? y
a1 ? yb1 ? z
b1 ? zSYNC bar

SYNC bar ---- wait for the others

wait for the others

c1 ! 0
c1 ! 0ping ! 0

ping ! 0 ---- update neighbour

update neighbour

::

P1P1 ((a1a1, , b1b1, , c1c1, , askask, , ansans, , pingping, , barbar)) ==
letlet
P1_0_P1_0_ = = askask -->> ansans -->> a1a1 -->> b1b1 -->> barbar -->> c1c1 -->> pingping -->> P1_0_P1_0_

withinwithin
P1_0_P1_0_

FormalFormal Compiling: occam-π Î CSPMCompiling: Compiling: occamoccam--ππ ÎÎ CSPCSPMM

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 45

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

PROCPROC
P2P2 ((CHA

N IN
T

CHAN
 INT

d0!d0!,
 , d1

!d1!,
 , pi

ng?ping
?,,

BARR
IER

BARR
IER

barbar))

WHIL
E TR

UE

WHIL
E TR

UE

INT
x:

INT
x:

SEQSEQ
SYNC

 bar

SYNC
 bar

wait
 for

 ot
hers

wait
 for

 ot
hers

d0 !
 0

d0 !
 0

ping
 ? x

ping
 ? x

rece
ive

upd
ate

rece
ive

upd
ate

SYNC
 bar

SYNC
 bar

wait
 for

 ot
hers

wait
 for

 ot
hers

d1 !
 0

d1 !
 0

ping
 ? x

ping
 ? x

rece
ive

upd
ate

rece
ive

upd
ate

::

P2P2 ((d0d0, , d1d1, , pingping, , barbar)) ==
letlet
P2_0_P2_0_ = = barbar --> > d0d0 --> > pingping --> > barbar --> > d1d1 --> > pingping --> > P2_0_P2_0_

withinwithin
P2_0_P2_0_

FormalFormal Compiling: occam-π Î CSPMCompiling: Compiling: occamoccam--ππ ÎÎ CSPCSPMM

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 46

PROCPROC DeviceDevice ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , a1?a1?, , b1?b1?, , c1!c1!, , d0!d0!, , d1!d1!))
CHAN INT ask, ans, ping:CHAN INT ask, ans, ping:
BARRIER bar:BARRIER bar:
PAR ENROLL barPAR ENROLL bar
P0P0 ((a0?a0?, , b0?b0?, , c0!c0!, , ask?ask?, , ans!ans!, , barbar))
P1P1 ((a1?a1?, , b1?b1?, , c1!c1!, , ask!ask!, , ans?ans?, , ping!ping!, , barbar))
P2P2 ((d0!d0!, , d1!d1!, , ping?ping?, , barbar))

::

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

Compiling: occam-π Î CSPMCompiling: Compiling: occamoccam--ππ ÎÎ CSPCSPMMFormalFormal

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 47

channelchannel ask_0_ask_0_,, ans_0_ans_0_,, ping_0_ping_0_,, bar_0_bar_0_

DeviceDevice ((a0a0, , b0b0, , c0c0, , a1a1, , b1b1, , c1c1, , d0d0, , d1d1)) ==
letlet

Device_0_Device_0_ = =
((P0 P0 ((a0a0, , b0b0, , c0c0, , ask_0_ask_0_, , ans_0_ans_0_, , bar_0_bar_0_))
[| {[| {ask_0_ask_0_, , ans_0_ans_0_, , bar_0_bar_0_} |]} |]
P1P1 ((a1a1, , b1b1, , c1c1, , ask_0_ask_0_, , ans_0_ans_0_, , ping_0_ping_0_, , bar_0_bar_0_))))

\\ {{ask_0_ask_0_, , ans_0_ans_0_}}
withinwithin

((Device_0_ Device_0_ [| {[| {ping_0_ping_0_, , bar_0_bar_0_} |]} |]
P2 P2 ((d0d0,, d1d1,, ping_0_ping_0_,, bar_0_bar_0_))))

\\ {{ping_0_ping_0_, , bar_0_bar_0_}}

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

local channels are local channels are
declared globally, used declared globally, used
locally, hidden and not locally, hidden and not

used againused again

Compiling: occam-π Î CSPMCompiling: Compiling: occamoccam--ππ ÎÎ CSPCSPMMFormalFormal

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 48

Only VAL VERIFY
operands need to be

supplied (channels and
barriers are supplied

automatically)

Only Only VALVAL VERIFYVERIFY
operands need to be operands need to be

supplied (channels and supplied (channels and
barriers are supplied barriers are supplied

automatically) automatically)

Verify Assertions : occam-πVerify Assertions : Verify Assertions : occamoccam--ππFormalFormal

VERIFYVERIFY <assertion><assertion>
VERIFYVERIFY NOTNOT <assertion><assertion>

DETERMINISTIC.F DETERMINISTIC.F <process><process>
DETERMINISTIC.FD DETERMINISTIC.FD <process><process>
DEADLOCK.FREE.F DEADLOCK.FREE.F <process><process>
DEADLOCK.FREE.FD DEADLOCK.FREE.FD <process><process>
LIVELOCK.FREE LIVELOCK.FREE <process><process>
TERMINATES TERMINATES <process><process>

<assertion><assertion><assertion>

<process><process> REFINES.T REFINES.T <process><process>
<<processprocess>> REFINES.F REFINES.F <process><process>
<<processprocess>> REFINES.FD REFINES.FD <process><process>

wherewhere
<process><process> is an is an

instance of a instance of a PROCPROC

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 49

FormalFormal

Without testing the system, we can assert straight away that Without testing the system, we can assert straight away that DeviceDevice
is is deterministicdeterministic and and free from deadlock free from deadlock andand livelocklivelock –– and that it and that it
doesndoesn’’t t terminateterminate::

☺ ☺ ☺ ☺ ☺

VERIFYVERIFY DETERMINISTIC.FD DETERMINISTIC.FD DeviceDevice
VERIFYVERIFY DEADLOCK.FREE.FD DEADLOCK.FREE.FD DeviceDevice
VERIFYVERIFY LIVELOCK.FREE LIVELOCK.FREE DeviceDevice
VERIFYVERIFY NOTNOT TERMINATES TERMINATES DeviceDevice

and the compiler says: and the compiler says: ““ ”” !!

Verify Assertions : occam-πVerify Assertions : Verify Assertions : occamoccam--ππ

✔

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 50

Verify Qualifiers: processesVerify Qualifiers: Verify Qualifiers: processesprocesses

To verify behaviours beyond determinism, deadlock and To verify behaviours beyond determinism, deadlock and
livelock freedom and termination, we need some way to livelock freedom and termination, we need some way to
express the behaviours we want. We can use express the behaviours we want. We can use occamoccam--ππ
for this, together with for this, together with refinementrefinement..

FormalFormal

VERIFYVERIFY PROCPROC PP ((...)...)
......

::

The The occamoccam--ππ compiler generates only compiler generates only CSPCSPMM from such from such
declarations declarations –– no executable code.no executable code.

Within Within VERIFYVERIFY processes, certain restrictions processes, certain restrictions occamoccam--ππ imposes imposes
(currently) can be removed (currently) can be removed –– for instance, for instance, output guardsoutput guards and and
barrier guardsbarrier guards are allowed.are allowed.

Only Only VERIFYVERIFY processes can invoke processes can invoke VERIFYVERIFY processes.processes.

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 51

FormalFormal

<a0, b0, a1, b1>
<a0, a1, b0, b1>
<a0, a1, b1, b0>

<a0, b0, a1, b1><a0, b0, a1, b1>
<a0, a1, b0, b1><a0, a1, b0, b1>
<a0, a1, b1, b0><a0, a1, b1, b0>

c0c0 d0d0

(* any order)(* any order)

**
c1c1

What next?What next?

Informal understandingInformal understanding

To check whether particular event To check whether particular event
sequences sequences (traces)(traces) may initially be may initially be
performed by performed by DeviceDevice …… e.g.e.g.

IntuitionIntuition

Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable)

Define processes that have no Define processes that have no
choice in the matter choice in the matter …… e.g.e.g.

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 52

FormalFormal Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable)

VERIFYVERIFY PROCPROC T0T0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , a1?a1?, , b1?b1?, , c1!c1!, , d0!d0!, , d1!d1!))
INT x:INT x:
SEQSEQ

a0 ? xa0 ? x
b0 ? xb0 ? x
a1 ? xa1 ? x
b1 ? xb1 ? x
d0 ! 0d0 ! 0
c0 ! 0c0 ! 0
c1 ! 0c1 ! 0
STOPSTOP

::

<a0, b0, a1, b1>
<a0, a1, b0, b1>
<a0, a1, b1, b0>

<a0, b0, a1, b1><a0, b0, a1, b1>
<a0, a1, b0, b1><a0, a1, b0, b1>
<a0, a1, b1, b0><a0, a1, b1, b0>

c0c0 d0d0

(* any order)(* any order)

**
c1c1

What next?What next?

Informal understandingInformal understanding

Define processes that have no Define processes that have no
choice in the matter choice in the matter …… e.g.e.g.

VERIFYVERIFY T0T0 REFINES.T REFINES.T DeviceDevice ✔ …… which verifies ourwhich verifies our
intuition intuition ☺☺☺☺☺☺

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 53

FormalFormal Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable)

VERIFYVERIFY PROCPROC T0T0 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , a1?a1?, , b1?b1?, , c1!c1!, , d0!d0!, , d1!d1!))
INT x:INT x:
SEQSEQ

a0 ? xa0 ? x
b0 ? xb0 ? x
a1 ? xa1 ? x
b1 ? xb1 ? x
d0 ! 0d0 ! 0
c0 ! 0c0 ! 0
c1 ! 0c1 ! 0
STOPSTOP

::

<a0, b0, a1, b1>
<a0, a1, b0, b1>
<a0, a1, b1, b0>

<a0, b0, a1, b1><a0, b0, a1, b1>
<a0, a1, b0, b1><a0, a1, b0, b1>
<a0, a1, b1, b0><a0, a1, b1, b0>

c0c0 d0d0

(* any order)(* any order)

**
c1c1

What next?What next?

Informal understandingInformal understanding

Define processes that have no Define processes that have no
choice in the matter choice in the matter …… e.g.e.g.

VERIFYVERIFY T0T0 REFINES.T REFINES.T DeviceDevice ✔ <a0,<a0, b0,b0, a1,a1, b1,b1, d0,d0, c0,c0, c1>c1> is is
clearly a traceclearly a trace of T0T0. Therefore, it is . Therefore, it is
also a trace of also a trace of DeviceDevice..

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 54

✗

FormalFormal Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable)

VERIFYVERIFY PROCPROC T1T1 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , a1?a1?, , b1?b1?, , c1!c1!, , d0!d0!, , d1!d1!))
INT x:INT x:
SEQSEQ

a0 ? xa0 ? x
b0 ? xb0 ? x
a1 ? xa1 ? x
d0 ! 0d0 ! 0
b1 ? xb1 ? x
c0 ! 0c0 ! 0
c1 ! 0c1 ! 0
STOPSTOP

::

<a0, b0, a1, b1>
<a0, a1, b0, b1>
<a0, a1, b1, b0>

<a0, b0, a1, b1><a0, b0, a1, b1>
<a0, a1, b0, b1><a0, a1, b0, b1>
<a0, a1, b1, b0><a0, a1, b1, b0>

c0c0 d0d0

(* any order)(* any order)

**
c1c1

What next?What next?

Informal understandingInformal understanding

Define processes that have no Define processes that have no
choice in the matter choice in the matter …… e.g.e.g.

VERIFYVERIFY T1T1 REFINES.T REFINES.T DeviceDevice …… which verifies ourwhich verifies our
intuition intuition ☺☺☺☺☺☺

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 55

✗

FormalFormal Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable)

VERIFYVERIFY PROCPROC T1T1 ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!, , a1?a1?, , b1?b1?, , c1!c1!, , d0!d0!, , d1!d1!))
INT x:INT x:
SEQSEQ

a0 ? xa0 ? x
b0 ? xb0 ? x
a1 ? xa1 ? x
d0 ! 0d0 ! 0
b1 ? xb1 ? x
c0 ! 0c0 ! 0
c1 ! 0c1 ! 0
STOPSTOP

::

<a0, b0, a1, b1>
<a0, a1, b0, b1>
<a0, a1, b1, b0>

<a0, b0, a1, b1><a0, b0, a1, b1>
<a0, a1, b0, b1><a0, a1, b0, b1>
<a0, a1, b1, b0><a0, a1, b1, b0>

c0c0 d0d0

(* any order)(* any order)

**
c1c1

What next?What next?

Informal understandingInformal understanding

Define processes that have no Define processes that have no
choice in the matter choice in the matter …… e.g.e.g.

VERIFYVERIFY T1T1 REFINES.T REFINES.T DeviceDevice
At least one trace of At least one trace of T1T1 is is notnot a trace a trace
of of DeviceDevice. Comparing . Comparing T0T0 and and T1T1,
the fault lies in the mis-ordering of
d0d0 and and b1b1..

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 56

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

LetLet’’s ask a more difficult question about the continuous running of s ask a more difficult question about the continuous running of
the system. Suppose the robot would do something the system. Suppose the robot would do something very badvery bad if its if its
controller controller DeviceDevice were ever to accept a signal were ever to accept a signal twicetwice on on a0a0 without
a signal on d0d0 or or d1d1 in betweenin between. Might this . Might this everever happen?happen?

FormalFormal SafetySafety

Simple:Simple: write a process that checks all signals to/from write a process that checks all signals to/from DeviceDevice, ,
looking for the bad scenario and deliberately deadlocks (the looking for the bad scenario and deliberately deadlocks (the
monitored system) if spotted. This is just programming monitored system) if spotted. This is just programming ……

Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable)

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 57

askask

ansans

DeviceDevice

P0P0 P1P1 P2P2

barbar

pingping

FormalFormal

Simple:Simple: write a process that checks all signals to/from write a process that checks all signals to/from DeviceDevice, ,
looking for the bad scenario and deliberately deadlocks (the looking for the bad scenario and deliberately deadlocks (the
monitored system) if spotted. This is just programming monitored system) if spotted. This is just programming ……

Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable)

CheckCheck

SafetySafety

alivealive

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1 d0d0 d1d1

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 58

FormalFormal

Simple:Simple: write a process that checks all signals to/from write a process that checks all signals to/from DeviceDevice, ,
looking for the bad scenario and deliberately deadlocks (the looking for the bad scenario and deliberately deadlocks (the
monitored system) if spotted. This is just programming monitored system) if spotted. This is just programming ……

Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable)

CheckCheck

LetLet’’s ask a more difficult question about the continuous running of s ask a more difficult question about the continuous running of
the system. Suppose the robot would do something the system. Suppose the robot would do something very badvery bad if its if its
controller controller DeviceDevice were ever to signal were ever to signal twicetwice on on a0a0 without a signal
on d0d0 or or d1d1 in betweenin between. Might this . Might this everever happen?happen?

SafetySafety

alivealive

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1 d0d0 d1d1

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 59

FormalFormal Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable) SafetySafety

VERIFYVERIFY PROCPROC CheckCheck ((CHAN INTCHAN INT a0!a0!, , b0!b0!, , c0?c0?, , a1!a1!, , b1!b1!, , c1?c1?,,
d0?d0?, , d1?d1?, , alive!alive!))

——--* n : the number of * n : the number of a0a0 signals since the last signals since the last d0d0 or or d1d1
INITIAL VERIFY INT n IS 0:INITIAL VERIFY INT n IS 0:
WHILE TRUEWHILE TRUE

SEQSEQ
alive ! 0alive ! 0
IFIF
n >= 2n >= 2

STOP STOP ---- refuse all further signals (forcing deadlock)refuse all further signals (forcing deadlock)
TRUETRUE

...... process next signal (maintain process next signal (maintain nn))
::

LetLet’’s ask a more difficult question about the continuous running of s ask a more difficult question about the continuous running of
the system. Suppose the robot would do something the system. Suppose the robot would do something very badvery bad if its if its
controller controller DeviceDevice were ever to signal were ever to signal twicetwice on on a0a0 without a signal
on d0d0 or or d1d1 in betweenin between. Might this . Might this everever happen?happen?

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 60

{{{ process next signal (maintain {{{ process next signal (maintain nn))
INT x:INT x:
ALTALT
a0 ! 0a0 ! 0

n := n + 1n := n + 1
b0 ! 0b0 ! 0

SKIPSKIP
c0 ? xc0 ? x

SKIPSKIP
a1 ! 0a1 ! 0

SKIPSKIP
b1 ! 0b1 ! 0

SKIPSKIP
c1 ? xc1 ? x

SKIPSKIP
d0 ? xd0 ? x

n := 0n := 0
d1 ? xd1 ? x

n := 0n := 0
}}}}}}

FormalFormal Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable) SafetySafety

This is an This is an ALTALT with four input with four input
and four output guardsand four output guards

n = n = the number ofthe number of a0a0
signals received since the signals received since the

lastlast d0d0 oror d1d1

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 61

FormalFormal Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable) SafetySafety

CheckDeviceCheckDevice

VERIFYVERIFY PROCPROC CheckDeviceCheckDevice ((CHAN INTCHAN INT alive!alive!))
CHAN INT a0, a1, b0, b1, c0, c1, d0, d1:CHAN INT a0, a1, b0, b1, c0, c1, d0, d1:
PARPAR

Check (a0!, b0!, c0?, a1!, b1!, c1?, d0?, d1?, alive!)Check (a0!, b0!, c0?, a1!, b1!, c1?, d0?, d1?, alive!)
Device (a0?, b0?, c0!, a1?, b1?, c1!, d0!, d1!)Device (a0?, b0?, c0!, a1?, b1?, c1!, d0!, d1!)

::

alivealive

DeviceDevice

CheckCheck

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1 d0d0 d1d1

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 62

FormalFormal Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable) SafetySafety

VERIFY DEADLOCK.FREE.FDVERIFY DEADLOCK.FREE.FD CheckDeviceCheckDevice

If If CheckCheck stops, stops, CheckDeviceCheckDevice will deadlock.will deadlock.
Therefore, Therefore, CheckCheck never stops never stops …… and the bad thing canand the bad thing can’’t happent happen..

Q.E.D.Q.E.D.Q.E.D.

CheckDeviceCheckDevice

alivealive

DeviceDevice

CheckCheck

✔

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 63

FormalFormal Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable) SafetySafety

CheckDeviceCheckDevice

alivealive

DeviceDevice

CheckCheck

VERIFY DEADLOCK.FREE.FDVERIFY DEADLOCK.FREE.FD CheckDeviceCheckDevice ✔
Note:Note: protocol checking monitors, such as protocol checking monitors, such as CheckCheck, are sometimes used live to ensure , are sometimes used live to ensure
adherence at runadherence at run--time (e.g. in device drivers). We are using time (e.g. in device drivers). We are using CheckCheck purely for static purely for static
analysis analysis –– it is not there at runit is not there at run--time and, therefore, has no impact on performance. time and, therefore, has no impact on performance.

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 64

So far, our checks have concerned So far, our checks have concerned safetysafety –– namely that our system namely that our system
will not do harm (incorrect things). This is not enough! After will not do harm (incorrect things). This is not enough! After all, the all, the
STOPSTOP process does not do incorrect thingsprocess does not do incorrect things – it does nothing. does nothing. STOPSTOP
trace refinestrace refines every process. every process. Trace refinementTrace refinement is not enough.is not enough.

FormalFormal LivenessLiveness

A CSP failure is a state that a system reaches (represented by its
trace to that point) where it may refuse to synchronise with its
environment on some given set of events.

A A CSPCSP failurefailure is a state that a system reaches (represented by its is a state that a system reaches (represented by its
tracetrace to that point) where it to that point) where it may refuse to synchronisemay refuse to synchronise with its with its
environment on some given set of events.environment on some given set of events.

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

Process Process PP failure refinesfailure refines QQ if (all if (all tracestraces of of PP are are tracestraces of of QQ) and) and
(all (all failuresfailures of of PP are are failuresfailures of of QQ).).

Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable)

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 65

FormalFormal

A CSP failure is a state that a system reaches (represented by its
trace to that point) where it may refuse to synchronise with its
environment on some given set of events.

A A CSPCSP failurefailure is a state that a system reaches (represented by its is a state that a system reaches (represented by its
tracetrace to that point) where it to that point) where it may refuse to synchronisemay refuse to synchronise with its with its
environment on some given set of events.environment on some given set of events.

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

Process Process PP failure refinesfailure refines QQ if (all if (all tracestraces of of PP are are tracestraces of of QQ) and) and
(all (all failuresfailures of of PP are are failuresfailures of of QQ).).

Failure refinement makes a powerful statement! P can only do traces
of Q (so its safe). More: the failures of P are allowed by Q. If P and Q
execute the same trace to a state where their environment offers a
set of events that Q will not refuse, then P also will not refuse.

Failure refinementFailure refinement makes a powerful statement! makes a powerful statement! PP can only do can only do tracestraces
of of QQ (so its safe). (so its safe). More:More: the the failuresfailures of of PP are are allowedallowed by by QQ. If . If PP and and QQ
execute the same trace to a state where their environment offersexecute the same trace to a state where their environment offers a a
set of events that set of events that QQ will not refuse, then will not refuse, then PP also will not refuse. also will not refuse.

Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable) LivenessLiveness

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 66

FormalFormal

A CSP failure is a state that a system reaches (represented by its
trace to that point) where it may refuse to synchronise with its
environment on some given set of events.

A A CSPCSP failurefailure is a state that a system reaches (represented by its is a state that a system reaches (represented by its
tracetrace to that point) where it to that point) where it may refuse to synchronisemay refuse to synchronise with its with its
environment on some given set of events.environment on some given set of events.

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

Process Process PP failure refinesfailure refines QQ if (all if (all tracestraces of of PP are are tracestraces of of QQ) and) and
(all (all failuresfailures of of PP are are failuresfailures of of QQ).).

We can describe “P failure refines Q” in a positive way: whenever Q
stays alive (engaging with its environment), so does P (and in the
same way). So, if Q is a specification explicitly defining the required
patterns of synchronisation, P will provide them.

We can describe We can describe ““PP failure refinesfailure refines QQ”” in a positive way: whenever in a positive way: whenever QQ
stays alive (engaging with its environment), so does stays alive (engaging with its environment), so does PP (and in the (and in the
same way). So, if same way). So, if QQ is a specification explicitly defining the required is a specification explicitly defining the required
patterns of synchronisation, patterns of synchronisation, PP will provide them.will provide them.

Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable) LivenessLiveness

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 67

FormalFormal

<a0, b0, a1, b1>
<a0, a1, b0, b1>
<a0, a1, b1, b0>

<a0, b0, a1, b1><a0, b0, a1, b1>
<a0, a1, b0, b1><a0, a1, b0, b1>
<a0, a1, b1, b0><a0, a1, b1, b0>

c0c0 d0d0

(* any order)(* any order)

**
c1c1

What next?What next?

Informal understandingInformal understanding
Recall our informal understanding of (at Recall our informal understanding of (at
least some of) the opening traces of least some of) the opening traces of
DeviceDevice (slides 18(slides 18--35)35) ……

We can formalise the expression of We can formalise the expression of
those traces a bit better those traces a bit better ……

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable) LivenessLiveness

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 68

FormalFormal

Recall our informal understanding of (at Recall our informal understanding of (at
least some of) the opening traces of least some of) the opening traces of
DeviceDevice (slides 18(slides 18--35)35) ……

Informal understandingInformal understanding

<c0> ||| <c1> ||| <d0><c0> <c0> |||||| <c1> <c1> |||||| <d0><d0>

We can formalise the expression of We can formalise the expression of
those traces a bit better those traces a bit better ……

<a0, b0, a1, b1>
<a0, a1, b0, b1>
<a0, a1, b1, b0>

<a0, b0, a1, b1><a0, b0, a1, b1>
<a0, a1, b0, b1><a0, a1, b0, b1>
<a0, a1, b1, b0><a0, a1, b1, b0>

interleaveinterleave

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable) LivenessLiveness

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 69

FormalFormal

Recall our informal understanding of (at Recall our informal understanding of (at
least some of) the opening traces of least some of) the opening traces of
DeviceDevice (slides 18(slides 18--35)35) ……

<a0><a0><a0>

Informal understandingInformal understanding

We can formalise the expression of We can formalise the expression of
those traces a bit better those traces a bit better ……

<b0> ||| <a1, b1><b0> <b0> |||||| <a1, b1><a1, b1>

<c0> ||| <c1> ||| <d0><c0> <c0> |||||| <c1> <c1> |||||| <d0><d0>

interleaveinterleave

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable) LivenessLiveness

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 70

FormalFormal

Recall our informal understanding of (at Recall our informal understanding of (at
least some of) the opening traces of least some of) the opening traces of
DeviceDevice (slides 18(slides 18--35)35) ……

<a0><a0><a0>

Informal understandingInformal understanding

We can formalise the expression of We can formalise the expression of
those traces a bit better those traces a bit better ……

<b0> ||| <a1, b1><b0> <b0> |||||| <a1, b1><a1, b1>

<c0> ||| <c1> ||| <d0><c0> <c0> |||||| <c1> <c1> |||||| <d0><d0>

<a0>; (<b0> ||| <a1, b1>); (<c0> ||| <c1> ||| <d0>)<a0>; (<b0> <a0>; (<b0> |||||| <a1, b1>); (<c0> <a1, b1>); (<c0> |||||| <c1> <c1> |||||| <d0>)<d0>)

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable) LivenessLiveness

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 71

<a0>; (<b0> ||| <a1, b1>); (<c0> ||| <c1> ||| <d0>)<a0>; (<b0> <a0>; (<b0> |||||| <a1, b1>); (<c0> <a1, b1>); (<c0> |||||| <c1> <c1> |||||| <d0>)<d0>)

FormalFormal

We can formalise the expression of We can formalise the expression of
those traces a bit better those traces a bit better ……

AndAnd, still using our intuitive understanding,, still using our intuitive understanding,
guess the next cycle of events guess the next cycle of events ……

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable) LivenessLiveness

<a0>; (<b0> ||| <a1, b1>); (<c0> ||| <c1> ||| <d0>)
<a0>; (<b0> ||| <a1, b1>); (<c0> ||| <c1> ||| <d1>)
<a0>; (<b0> <a0>; (<b0> |||||| <a1, b1>); (<c0> <a1, b1>); (<c0> |||||| <c1> <c1> |||||| <d0>)<d0>)
<a0>; (<b0> <a0>; (<b0> |||||| <a1, b1>); (<c0> <a1, b1>); (<c0> |||||| <c1> <c1> |||||| <d1>)<d1>)

;;

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 72

<a0>; (<b0> ||| <a1, b1>); (<c0> ||| <c1> ||| <d0>)
<a0>; (<b0> ||| <a1, b1>); (<c0> ||| <c1> ||| <d1>)
<a0>; (<b0> <a0>; (<b0> |||||| <a1, b1>); (<c0> <a1, b1>); (<c0> |||||| <c1> <c1> |||||| <d0>)<d0>)
<a0>; (<b0> <a0>; (<b0> |||||| <a1, b1>); (<c0> <a1, b1>); (<c0> |||||| <c1> <c1> |||||| <d1>)<d1>)

;;((()))***

FormalFormal

We can formalise the expression of We can formalise the expression of
those traces a bit better those traces a bit better ……

AndAnd, still using our intuitive understanding,, still using our intuitive understanding,
guess the next cycle of events guess the next cycle of events ……

AndAnd the rest the rest ……

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable) LivenessLiveness

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 73

FormalFormal

From such trace expressions, we can From such trace expressions, we can
directly write down an directly write down an occamoccam--ππ process process
that offers all of them that offers all of them ……

askask

ansans

DeviceDevice

a0a0 b0b0 c0c0 a1a1 b1b1 c1c1

P0P0 P1P1 P2P2

barbar

d0d0 d1d1

pingping

Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable)

<a0>; (<b0> ||| <a1, b1>); (<c0> ||| <c1> ||| <d0>)
<a0>; (<b0> ||| <a1, b1>); (<c0> ||| <c1> ||| <d1>)
<a0>; (<b0> <a0>; (<b0> |||||| <a1, b1>); (<c0> <a1, b1>); (<c0> |||||| <c1> <c1> |||||| <d0>)<d0>)
<a0>; (<b0> <a0>; (<b0> |||||| <a1, b1>); (<c0> <a1, b1>); (<c0> |||||| <c1> <c1> |||||| <d1>)<d1>)

;;((()))***

LivenessLiveness

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 74

FormalFormal

From such trace expressions, we can From such trace expressions, we can
directly write down an directly write down an occamoccam--ππ process process
that offers all of them that offers all of them ……

Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable)

<a0>; (<b0> ||| <a1, b1>); (<c0> ||| <c1> ||| <d0>)
<a0>; (<b0> ||| <a1, b1>); (<c0> ||| <c1> ||| <d1>)
<a0>; (<b0> <a0>; (<b0> |||||| <a1, b1>); (<c0> <a1, b1>); (<c0> |||||| <c1> <c1> |||||| <d0>)<d0>)
<a0>; (<b0> <a0>; (<b0> |||||| <a1, b1>); (<c0> <a1, b1>); (<c0> |||||| <c1> <c1> |||||| <d1>)<d1>)

;;((()))***

VERIFYVERIFY PROCPROC DeviceSpecDeviceSpec ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!,,
a1?a1?, , b1?b1?, , c1!c1!, , d0!d0!, , d1!d1!))

WHILE TRUEWHILE TRUE
INT w, x, y, z:INT w, x, y, z:
SEQSEQ

... phase 0... phase 0

... phase 1 ... phase 1
::

LivenessLiveness

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 75

FormalFormal

From such trace expressions, we can From such trace expressions, we can
directly write down an directly write down an occamoccam--ππ process process
that offers all of them that offers all of them ……

Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable)

<a0>; (<b0> ||| <a1, b1>); (<c0> ||| <c1> ||| <d0>)
<a0>; (<b0> ||| <a1, b1>); (<c0> ||| <c1> ||| <d1>)
<a0>; (<b0> <a0>; (<b0> |||||| <a1, b1>); (<c0> <a1, b1>); (<c0> |||||| <c1> <c1> |||||| <d0>)<d0>)
<a0>; (<b0> <a0>; (<b0> |||||| <a1, b1>); (<c0> <a1, b1>); (<c0> |||||| <c1> <c1> |||||| <d1>)<d1>)

;;((()))***

{{{{{{ phase 0phase 0
SEQSEQ
a0 ? wa0 ? w
PARPAR

b0 ? xb0 ? x
SEQSEQ

a1 ? ya1 ? y
b1 ? Zb1 ? Z

PARPAR
c0 ! 0c0 ! 0
c1 ! 0c1 ! 0
d0 ! 0d0 ! 0

}}}}}}

LivenessLiveness

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 76

FormalFormal

From such trace expressions, we can From such trace expressions, we can
directly write down an directly write down an occamoccam--ππ process process
that offers all of them that offers all of them ……

Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable)

<a0>; (<b0> ||| <a1, b1>); (<c0> ||| <c1> ||| <d0>)
<a0>; (<b0> ||| <a1, b1>); (<c0> ||| <c1> ||| <d1>)
<a0>; (<b0> <a0>; (<b0> |||||| <a1, b1>); (<c0> <a1, b1>); (<c0> |||||| <c1> <c1> |||||| <d0>)<d0>)
<a0>; (<b0> <a0>; (<b0> |||||| <a1, b1>); (<c0> <a1, b1>); (<c0> |||||| <c1> <c1> |||||| <d1>)<d1>)

;;((()))***

{{{{{{ phase 1phase 1
SEQSEQ
a0 ? wa0 ? w
PARPAR

b0 ? xb0 ? x
SEQSEQ

a1 ? ya1 ? y
b1 ? Zb1 ? Z

PARPAR
c0 ! 0c0 ! 0
c1 ! 0c1 ! 0
d1 ! 0d1 ! 0

}}}}}}

LivenessLiveness

This generation This generation
can be automated.can be automated.

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 77

VERIFYVERIFY PROCPROC DeviceSpecDeviceSpec ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!,,a1?a1?, , b1?b1?, , c1!c1!, , d0!d0!, , d1!d1!))
......

::

FormalFormal Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable)

<a0>; (<b0> ||| <a1, b1>); (<c0> ||| <c1> ||| <d0>)
<a0>; (<b0> ||| <a1, b1>); (<c0> ||| <c1> ||| <d1>)
<a0>; (<b0> <a0>; (<b0> |||||| <a1, b1>); (<c0> <a1, b1>); (<c0> |||||| <c1> <c1> |||||| <d0>)<d0>)
<a0>; (<b0> <a0>; (<b0> |||||| <a1, b1>); (<c0> <a1, b1>); (<c0> |||||| <c1> <c1> |||||| <d1>)<d1>)

;;((()))***

DeviceSpecDeviceSpec is an explicit specification of all signal patterns we is an explicit specification of all signal patterns we
expect (or need) expect (or need) DeviceDevice to be able to perform:to be able to perform:

DeviceDevice was not was not implementedimplemented as as DeviceSpecDeviceSpec because of the three because of the three
independent functions (independent functions (weapons systemsweapons systems, , vision processingvision processing and and
motion stabilitymotion stability) it had to perform.) it had to perform. ProcessProcess--oriented designoriented design led to its led to its
three communicating subthree communicating sub--systems.systems.
Whilst our intuition indicated that the first two lines of Whilst our intuition indicated that the first two lines of DeviceSpecDeviceSpec
reflected the initial behaviour of reflected the initial behaviour of DeviceDevice, it was unclear whether the , it was unclear whether the
pattern repeated cleanly as its subpattern repeated cleanly as its sub--components started looping.components started looping.

LivenessLiveness

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 78

VERIFYVERIFY PROCPROC DeviceSpecDeviceSpec ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!,,a1?a1?, , b1?b1?, , c1!c1!, , d0!d0!, , d1!d1!))
......

::

FormalFormal Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable)

<a0>; (<b0> ||| <a1, b1>); (<c0> ||| <c1> ||| <d0>)
<a0>; (<b0> ||| <a1, b1>); (<c0> ||| <c1> ||| <d1>)
<a0>; (<b0> <a0>; (<b0> |||||| <a1, b1>); (<c0> <a1, b1>); (<c0> |||||| <c1> <c1> |||||| <d0>)<d0>)
<a0>; (<b0> <a0>; (<b0> |||||| <a1, b1>); (<c0> <a1, b1>); (<c0> |||||| <c1> <c1> |||||| <d1>)<d1>)

;;((()))***

DeviceSpecDeviceSpec is an explicit specification of all signal patterns we is an explicit specification of all signal patterns we
expect (or need) expect (or need) DeviceDevice to be able to perform:to be able to perform:

However:However:

VERIFY VERIFY DeviceDevice REFINES.FDREFINES.FD DeviceSpecDeviceSpec ✔
This is all we need. Any traces performed by This is all we need. Any traces performed by DeviceDevice are allowed are allowed
by by DeviceSpecDeviceSpec –– so itso it’’s safe. Any failures reached by s safe. Any failures reached by DeviceDevice are are
allowed by allowed by DeviceSpecDeviceSpec –– so itso it’’s as s as alivealive as as DeviceSpecDeviceSpec (which (which
was built always to offer everything in the specified trace pattwas built always to offer everything in the specified trace pattern).ern).

LivenessLiveness

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 79

VERIFYVERIFY PROCPROC DeviceSpecDeviceSpec ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!,,a1?a1?, , b1?b1?, , c1!c1!, , d0!d0!, , d1!d1!))
......

::

FormalFormal Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable)

<a0>; (<b0> ||| <a1, b1>); (<c0> ||| <c1> ||| <d0>)
<a0>; (<b0> ||| <a1, b1>); (<c0> ||| <c1> ||| <d1>)
<a0>; (<b0> <a0>; (<b0> |||||| <a1, b1>); (<c0> <a1, b1>); (<c0> |||||| <c1> <c1> |||||| <d0>)<d0>)
<a0>; (<b0> <a0>; (<b0> |||||| <a1, b1>); (<c0> <a1, b1>); (<c0> |||||| <c1> <c1> |||||| <d1>)<d1>)

;;((()))***

DeviceSpecDeviceSpec is an explicit specification of all signal patterns we is an explicit specification of all signal patterns we
expect (or need) expect (or need) DeviceDevice to be able to perform:to be able to perform:

However:However:

VERIFY VERIFY DeviceDevice REFINES.FDREFINES.FD DeviceSpecDeviceSpec ✔
Without this verification, we may be tempted to add another barrWithout this verification, we may be tempted to add another barrier ier
((barbar) sync at the end of each loop of) sync at the end of each loop of P0P0 and and P1P1 and halfand half--loop of loop of P2P2. .
The above The above refinementrefinement shows that the required pattern does indeed shows that the required pattern does indeed
repeat cleanly and, so, this overhead is unnecessary.repeat cleanly and, so, this overhead is unnecessary.

LivenessLiveness

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 80

VERIFYVERIFY PROCPROC DeviceSpecDeviceSpec ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!,,a1?a1?, , b1?b1?, , c1!c1!, , d0!d0!, , d1!d1!))
......

::

FormalFormal Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable)

<a0>; (<b0> ||| <a1, b1>); (<c0> ||| <c1> ||| <d0>)
<a0>; (<b0> ||| <a1, b1>); (<c0> ||| <c1> ||| <d1>)
<a0>; (<b0> <a0>; (<b0> |||||| <a1, b1>); (<c0> <a1, b1>); (<c0> |||||| <c1> <c1> |||||| <d0>)<d0>)
<a0>; (<b0> <a0>; (<b0> |||||| <a1, b1>); (<c0> <a1, b1>); (<c0> |||||| <c1> <c1> |||||| <d1>)<d1>)

;;((()))***

DeviceSpecDeviceSpec is an explicit specification of all signal patterns we is an explicit specification of all signal patterns we
expect (or need) expect (or need) DeviceDevice to be able to perform:to be able to perform:

However:However:

VERIFY VERIFY DeviceDevice REFINES.FDREFINES.FD DeviceSpecDeviceSpec ✔
Rather than being deduced after implementation, Rather than being deduced after implementation, DeviceSpecDeviceSpec may may
be part of the specification for be part of the specification for DeviceDevice. We certainly need assurance . We certainly need assurance
of the behaviour of of the behaviour of DeviceDevice to use it securely with other components. to use it securely with other components.
All its patterns of synchronisation (for All its patterns of synchronisation (for safetysafety and and livenessliveness questions) questions)
can be trivially deduced from can be trivially deduced from DeviceSpecDeviceSpec..

LivenessLiveness

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 81

VERIFYVERIFY PROCPROC DeviceSpecDeviceSpec ((CHAN INTCHAN INT a0?a0?, , b0?b0?, , c0!c0!,,a1?a1?, , b1?b1?, , c1!c1!, , d0!d0!, , d1!d1!))
......

::

FormalFormal Behaviour: occam-π (verifyable)Behaviour: Behaviour: occamoccam--ππ (verifyable)(verifyable)

<a0>; (<b0> ||| <a1, b1>); (<c0> ||| <c1> ||| <d0>)
<a0>; (<b0> ||| <a1, b1>); (<c0> ||| <c1> ||| <d1>)
<a0>; (<b0> <a0>; (<b0> |||||| <a1, b1>); (<c0> <a1, b1>); (<c0> |||||| <c1> <c1> |||||| <d0>)<d0>)
<a0>; (<b0> <a0>; (<b0> |||||| <a1, b1>); (<c0> <a1, b1>); (<c0> |||||| <c1> <c1> |||||| <d1>)<d1>)

;;((()))***

DeviceSpecDeviceSpec is an explicit specification of all signal patterns we is an explicit specification of all signal patterns we
expect (or need) expect (or need) DeviceDevice to be able to perform:to be able to perform:

However:However:

VERIFY VERIFY DeviceDevice REFINES.FDREFINES.FD DeviceSpecDeviceSpec ✔
We also have:We also have:

VERIFY VERIFY DeviceSpec DeviceSpec REFINES.FDREFINES.FD DeviceDevice ✔
But thatBut that’’s just icing on the cake! s just icing on the cake! ☺☺ ☺☺ ☺☺

LivenessLiveness

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 82

VERIFYVERIFY DEADLOCK.FREE.FD DEADLOCK.FREE.FD DeviceDevice

FormalFormal

For simplicity, most process For simplicity, most process argumentsarguments are omitted in are omitted in VERIFYVERIFY
assertions assertions –– the the occamoccam--ππ compiler supplies all necessary compiler supplies all necessary eventsevents ::

Verify Assertions : compilationVerify Assertions : Verify Assertions : compilationcompilation

channel a0_42_, b0_42_, c0_42_, a1_42_,channel a0_42_, b0_42_, c0_42_, a1_42_,
b1_42_, c1_42_, d0_42_, d1_42_b1_42_, c1_42_, d0_42_, d1_42_

assert Device (a0_42_, b0_42_, c0_42_, a1_42_,assert Device (a0_42_, b0_42_, c0_42_, a1_42_,
b1_42_, c1_42_, d0_42_, d1_42_)b1_42_, c1_42_, d0_42_, d1_42_)

:[deadlock free [FD]]:[deadlock free [FD]]

The The CSPCSPMM channel names are generated from the channel names are generated from the occamoccam--ππ CHANCHAN
and and BARRIERBARRIER parameter names of the asserted process, suffixed parameter names of the asserted process, suffixed
by a unique number generated by the compiler.by a unique number generated by the compiler.

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 83

VERIFYVERIFY NOTNOT TERMINATES TERMINATES DeviceDevice

FormalFormal Verify Assertions : compilationVerify Assertions : Verify Assertions : compilationcompilation

assert not SKIP [FD=assert not SKIP [FD=
Device (a0_42_, b0_42_, c0_42_, a1_42_,Device (a0_42_, b0_42_, c0_42_, a1_42_,

b1_42_, c1_42_, d0_42_, d1_42_) b1_42_, c1_42_, d0_42_, d1_42_) \\ EventsEvents

The The CSPCSPMM channel names are generated from the channel names are generated from the occamoccam--ππ CHANCHAN
and and BARRIERBARRIER parameter names of the asserted process, suffixed parameter names of the asserted process, suffixed
by a unique number generated by the compiler.by a unique number generated by the compiler.

For simplicity, most process For simplicity, most process argumentsarguments are omitted in are omitted in VERIFYVERIFY
assertions assertions –– the the occamoccam--ππ compiler supplies all necessary compiler supplies all necessary eventsevents ::

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 84

VERIFYVERIFY NOTNOT TERMINATES TERMINATES DeviceDevice

FormalFormal Verify Assertions : compilationVerify Assertions : Verify Assertions : compilationcompilation

assert not SKIP [FD=assert not SKIP [FD=
Device (a0_42_, b0_42_, c0_42_, a1_42_,Device (a0_42_, b0_42_, c0_42_, a1_42_,

b1_42_, c1_42_, d0_42_, d1_42_) b1_42_, c1_42_, d0_42_, d1_42_) \\ EventsEvents

Subsequent assertions about the same process may reuse channels Subsequent assertions about the same process may reuse channels
previously generated.previously generated.

For simplicity, most process For simplicity, most process argumentsarguments are omitted in are omitted in VERIFYVERIFY
assertions assertions –– the the occamoccam--ππ compiler supplies all necessary compiler supplies all necessary eventsevents ::

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 85

FormalFormal Verify Assertions : compilationVerify Assertions : Verify Assertions : compilationcompilation

assert DeviceSpec (a0_42_, b0_42_, c0_42_, a1_42_,assert DeviceSpec (a0_42_, b0_42_, c0_42_, a1_42_,
b1_42_, c1_42_, d0_42_, d1_42_)b1_42_, c1_42_, d0_42_, d1_42_)

[FD=[FD=
Device (a0_42_, b0_42_, c0_42_, a1_42_,Device (a0_42_, b0_42_, c0_42_, a1_42_,

b1_42_, c1_42_, d0_42_, d1_42_)b1_42_, c1_42_, d0_42_, d1_42_)

VERIFY VERIFY DeviceDevice REFINES.FDREFINES.FD DeviceSpecDeviceSpec

Subsequent assertions about the same process may reuse channels Subsequent assertions about the same process may reuse channels
previously generated. [previously generated. [Note:Note: processes in processes in refinementrefinement assertions assertions
should have the same parameter signatures, though the formal should have the same parameter signatures, though the formal
names can be different].names can be different].

Subsequent assertions about the same process may reuse channels Subsequent assertions about the same process may reuse channels
previously generated.previously generated.

For simplicity, most process For simplicity, most process argumentsarguments are omitted in are omitted in VERIFYVERIFY
assertions assertions –– the the occamoccam--ππ compiler supplies all necessary compiler supplies all necessary eventsevents ::

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 86

FormalFormal Verify Assertions : verified dataVerify Assertions : Verify Assertions : verified dataverified data

The only arguments needed for The only arguments needed for CSPCSPMM assertions are those for assertions are those for
occamoccam--ππ VERIFYVERIFY data parameters. data parameters. Channels Channels and and barriersbarriers can be can be
supplied automatically. Nonsupplied automatically. Non--VERIFYVERIFY data parameters are irrelevant.data parameters are irrelevant.

PROC PROC SystemSystem ((VALVAL VERIFY INTVERIFY INT nn, , CHANCHAN VERIFY INTVERIFY INT out!out!))

For example, if we need an assertion about:For example, if we need an assertion about:

we must supply a value for we must supply a value for nn, since we have declared it relevant:, since we have declared it relevant:

VERIFYVERIFY DEADLOCK.FREE.FD DEADLOCK.FREE.FD System (42, _)System (42, _)

where the underscore indicates arguments that are either irrelevwhere the underscore indicates arguments that are either irrelevant ant
((nonnon--VERIFYVERIFY data) or automatic (data) or automatic (channels channels and and barriersbarriers).).

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 87

FormalFormal Verify Assertions : verification GUIVerify Assertions : Verify Assertions : verificationverification GUIGUI

LaterLater, we plan an option for the , we plan an option for the occamoccam--ππ compiler just to generate compiler just to generate
CSPCSPMM code to be picked up by a code to be picked up by a GUIGUI with facilities for interactive with facilities for interactive
generation, checking and reporting of generation, checking and reporting of VERIFYVERIFY assertions. These assertions. These
will be similar to those given by the will be similar to those given by the FDR2FDR2 GUIGUI, but processes and , but processes and
assertions will be in terms of the assertions will be in terms of the occamoccam--ππ sources. sources. FDR2FDR2, or some , or some
derivative, remains the underlying workhorse for model checking.derivative, remains the underlying workhorse for model checking.

The The GUIGUI will allow flexible exploration of assertions with will allow flexible exploration of assertions with VERIFYVERIFY
data values. It will also prove useful when some assertions takedata values. It will also prove useful when some assertions take a a
long time to check long time to check …… rather than wait for all checks to complete rather than wait for all checks to complete
during compilation (as a single batch of assertions to during compilation (as a single batch of assertions to FDR2FDR2).).

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 88

Further study: Further study: Further study:

Reflection on Case Study (Device)Reflection on Case Study Reflection on Case Study (Device)(Device)

All sorts of All sorts of whatwhat--ifsifs on the behaviour of the system can be on the behaviour of the system can be
explored and answered without running any code explored and answered without running any code …… e.g.e.g.

If the (internal) ping communications were
removed, does Check still hold?
If the (internal) If the (internal) pingping communications were communications were
removed, does removed, does CheckCheck still hold?still hold?

Do the a0 and a1 signals strictly alternate?Do the Do the a0a0 and and a1a1 signals strictly alternate?signals strictly alternate?

Do the b0 and b1 signals strictly alternate?Do the Do the b0b0 and and b1b1 signals strictly alternate?signals strictly alternate?

If we added an extra bar sync at the end of
each cycle in P0 and P1 and half-cycle in P2,
would it make any difference?

If we added an extra If we added an extra barbar sync at the end of sync at the end of
each cycle in each cycle in P0P0 and and P1P1 and halfand half--cycle in cycle in P2P2, ,
would it make any difference?would it make any difference?

If the elevator cabin is not at a floor, might the
floor doors to the elevator shaft still open?
If the elevator cabin is not at a floor, might the If the elevator cabin is not at a floor, might the
floor doors to the elevator shaft still open?floor doors to the elevator shaft still open?

NoNo

YesYes

NoNo

NoNo

Another exercise Another exercise ……

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 89

The Dining PhilosophersThe Dining Philosophers

The story of The story of The Dining PhilosophersThe Dining Philosophers is due to is due to EdsgerEdsger
DijkstraDijkstra –– one of the founding fathers of Computer Science.one of the founding fathers of Computer Science.

It illustrates a classic problem in concurrency: how to share It illustrates a classic problem in concurrency: how to share
resources safely between competing consumersresources safely between competing consumers..

//

////

//

//

http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD310.PDFhttp://www.cs.utexas.edu/users/EWD/ewd03xx/EWD310.PDFhttp://www.cs.utexas.edu/users/EWD/ewd03xx/EWD310.PDF

Historical documentHistorical document

Extra Case Study ☺Extra Case StudyExtra Case Study ☺☺

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 90

CollegeCollege

thinkingthinking

eatingeating

FF

FF

FF

FF FF

PP

PPPP

PP

PP

A new, really A new, really reallyreally neat, solution (Neil Brown / PHW)neat, solution (Neil Brown / PHW)

eatBareatBar

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 91

VERIFY PROCVERIFY PROC PhilPhil ((CHAN INTCHAN INT thinking!thinking!,, eating!eating!,, BARRIERBARRIER eatBareatBar))
WHILE TRUEWHILE TRUE

SEQSEQ
thinking ! 0thinking ! 0
SYNC SYNC eatBareatBar
eating ! 0eating ! 0
SYNC SYNC eatBareatBar

::

thinkingthinking

eatingeating
eatBareatBar PP

PhilPhil ((thinkingthinking, , eatingeating,, eatBareatBar) =) =
letlet

Phil_0_ Phil_0_ ==
thinking thinking -->> eatBareatBar -->>
eatingeating -->> eatBareatBar -->> Phil_0_Phil_0_

withinwithin
Phil_0_Phil_0_

::

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 92

CollegeCollege

FF

FF

FF

FF FF

PP

PPPP

PP

PP

thinkingthinking

eatingeating
eatBareatBar

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 93

VERIFY PROCVERIFY PROC ForkFork ((BARRIERBARRIER eatBarRighteatBarRight, , eatBarLefteatBarLeft))
WHILE TRUEWHILE TRUE

ALTALT
SYNC SYNC eatBarRighteatBarRight
SYNC SYNC eatBarRighteatBarRight

SYNC SYNC eatBarLefteatBarLeft
SYNC SYNC eatBarLefteatBarLeft

::

FF
eatBarRighteatBarRight

eatBarLefteatBarLeft

ForkFork ((eatBarRighteatBarRight, , eatBarLefteatBarLeft) =) =
letlet

Fork_0_ Fork_0_ ==
eatBarRighteatBarRight -->> eatBarRighteatBarRight -->> Fork_0_Fork_0_
[][]
eatBarLefteatBarLeft -->> eatBarLefteatBarLeft -->> Fork_0_ Fork_0_

withinwithin
Fork_0_Fork_0_

::

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 94

VERIFY PROCVERIFY PROC PhilosophersPhilosophers (([[nPhils]CHANnPhils]CHAN INTINT thinking!thinking!,, eating!eating!,,
[[nPhils]BARRIERnPhils]BARRIER eatBareatBar))

PAR id = 0 FOR PAR id = 0 FOR nPhilsnPhils
Phil (Phil (thinking[idthinking[id]!]!, , eating[ideating[id]!]!, , eatBar[ideatBar[id]]))

::

PhilosophersPhilosophers ((thinkingthinking, , eatingeating,, eatBareatBar) =) =
|||||| id id :: {0..(nPhils {0..(nPhils –– 1)} @1)} @

Phil (Phil (thinking.idthinking.id,, eating.ideating.id,, eatBar.ideatBar.id))

00

11

22

33

44
VAL INT VAL INT nPhilsnPhils IS 5:IS 5:

nPhilsnPhils = 5= 5

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 95

PhilosophersPhilosophers ((thinkingthinking, , eatingeating,, eatBareatBar) =) =
|||||| id id :: {0..(nPhils {0..(nPhils –– 1)} @1)} @

Phil (Phil (thinking.idthinking.id,, eating.ideating.id,, eatBar.ideatBar.id))

VERIFY PROCVERIFY PROC PhilosophersPhilosophers (([[nPhils]CHANnPhils]CHAN INTINT thinking!thinking!, , eating!eating!,,
[[nPhils]BARRIERnPhils]BARRIER eatBareatBar))

PAR id = 0 FOR PAR id = 0 FOR nPhilsnPhils
Phil (Phil (thinking[idthinking[id]!]!,, eating[ideating[id]!]!,, eatBar[ideatBar[id]]))

::

00

11

22

33

44
VAL INT VAL INT nPhilsnPhils IS 5:IS 5:

nPhilsnPhils = 5= 5

… except that FDR2 uses much
less memory and time if replicated
(or merely repeated) processes
take no parameters, but instead
use event renaming to wire up the
different instances.

…… except that except that FDR2FDR2 uses uses much much
less memory and timeless memory and time if replicated if replicated
(or merely repeated) processes (or merely repeated) processes
take take no parametersno parameters,, but instead but instead
use use event renamingevent renaming to wire up the to wire up the
different instances.different instances.

channelchannel thinking_r0_thinking_r0_, , eating_r0_eating_r0_,, eatBar_r0_eatBar_r0_

PhilosophersPhilosophers ((thinkingthinking, , eatingeating,, eatBareatBar) =) =
letlet

Philosophers_0 = Phil Philosophers_0 = Phil ((thinking_r0_thinking_r0_, , eating_r0_eating_r0_,, eatBar_r0_eatBar_r0_))
withinwithin

|||||| id id :: {0..(nPhils {0..(nPhils –– 1)} @1)} @
Philosophers_0 Philosophers_0 [[[[
thinking_r0_ thinking_r0_ <<-- thinking.idthinking.id,,
eating_r0_eating_r0_ <<-- eating.ideating.id,,
eatBar_r0_eatBar_r0_ <<-- eatBar.ideatBar.id))

]]]]

Note:Note: the threethe three
declared channels aredeclared channels are

not actually used !!not actually used !!

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 96

VERIFY PROCVERIFY PROC ForksForks (([[nPhils]BARRIERnPhils]BARRIER eatBareatBar))
PAR id = 0 FOR PAR id = 0 FOR nPhilsnPhils

VAL INT right IS id:VAL INT right IS id:
VAL INT left IS (id + 1)VAL INT left IS (id + 1)\\nPhils:nPhils:
ForkFork ((eatBar[righteatBar[right]],, eatBar[lefteatBar[left]]))

::

ForksForks ((eatBareatBar) =) =
|||| id id :: {0..(nPhils {0..(nPhils –– 1)} @1)} @

[{ [{ eatBar.ideatBar.id,, eatBar.((ideatBar.((id + 1)%nPhils) + 1)%nPhils) }]}]
ForkFork ((eatBar.ideatBar.id,, eatBar.((ideatBar.((id + 1)%nPhils)+ 1)%nPhils)))

00

11

22

33

44
VAL INT VAL INT nPhilsnPhils IS 5:IS 5:

nPhilsnPhils = 5= 5

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 97

VERIFY PROCVERIFY PROC ForksForks (([[nPhils]BARRIERnPhils]BARRIER eatBareatBar))
PAR id = 0 FOR PAR id = 0 FOR nPhilsnPhils

VAL INT right IS id:VAL INT right IS id:
VAL INT left IS (id + 1)VAL INT left IS (id + 1)\\nPhils:nPhils:
ForkFork ((eatBar[righteatBar[right]],, eatBar[lefteatBar[left]]))

::

00

11

22

33

44
VAL INT VAL INT nPhilsnPhils IS 5:IS 5:

nPhilsnPhils = 5= 5

… except that FDR2 uses much
less memory and time if replicated
(or merely repeated) processes
take no parameters, but instead
use event renaming to wire up the
different instances.

…… except that except that FDR2FDR2 uses uses much much
less memory and timeless memory and time if replicated if replicated
(or merely repeated) processes (or merely repeated) processes
take take no parametersno parameters,, but instead but instead
use use event renamingevent renaming to wire up the to wire up the
different instances.different instances.

ForksForks ((eatBareatBar) =) =
|||| id id :: {0..(nPhils {0..(nPhils –– 1)} @1)} @

[{ [{ eatBar.ideatBar.id,, eatBar.((ideatBar.((id + 1)%nPhils) + 1)%nPhils) }]}]
ForkFork ((eatBar.ideatBar.id,, eatBar.((ideatBar.((id + 1)%nPhils)+ 1)%nPhils)))

channel channel eatBarRight_r2_eatBarRight_r2_, , eatBarLeft_r2_ eatBarLeft_r2_

ForksForks ((eatBareatBar) =) =
letlet

Forks_0 = Fork Forks_0 = Fork ((eatBarRight_r2_eatBarRight_r2_, , eatBarLeft_r2_eatBarLeft_r2_))
withinwithin

|||| id id :: {0..(nPhils {0..(nPhils –– 1)} @1)} @
[{ [{ eatBar.ideatBar.id,, eatBar.((ideatBar.((id + 1)%nPhils) + 1)%nPhils) }]}]
Forks_0Forks_0 [[[[

eatBarRight_r2_eatBarRight_r2_ <<-- eatBar.ideatBar.id,,
eatBarLeft_r2_eatBarLeft_r2_ <<-- eatBar.((ideatBar.((id + 1)%nPhils)+ 1)%nPhils)

]]]]

Note:Note: the twothe two
declared channels aredeclared channels are

not actually used !!not actually used !!

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 98

VERIFY PROCVERIFY PROC CollegeCollege (([[nPhils]CHANnPhils]CHAN INTINT thinking!thinking!, , eating!eating!))
[[nPhils]BARRIERnPhils]BARRIER eatBareatBar::
PARPAR

Philosophers (Philosophers (thinking!thinking!,, eating!eating!,, eatBareatBar))
Forks (Forks (eatBareatBar))

::

channelchannel eatBar_99_ : eatBar_99_ : {0..(nPhils {0..(nPhils –– 1)}1)}

CollegeCollege ((thinkingthinking, , eatingeating) =) =
((Philosophers (Philosophers (thinkingthinking,, eatingeating,, eatBar_99_eatBar_99_)) [|[| {| {| eatBar_99_eatBar_99_ |} |} |]|]
Forks (Forks (eatBar_99_eatBar_99_)))) \\ {| {| eatBar_99_eatBar_99_ |}|}

::

VAL INT VAL INT nPhilsnPhils IS 5:IS 5:

nPhilsnPhils = 5= 5

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 99

VERIFYVERIFY LIVELOCK.FREE LIVELOCK.FREE CollegeCollege

VERIFYVERIFY NOTNOT DETERMINISTIC.FD DETERMINISTIC.FD CollegeCollege

☺ ☺☺

VERIFY PROCVERIFY PROC CollegeCollege (([[nPhils]CHANnPhils]CHAN INTINT thinking!thinking!,, eating!eating!))
[[nPhils]BARRIERnPhils]BARRIER eatBareatBar::
PARPAR

Philosophers (Philosophers (thinking!thinking!,, eating!eating!,, eatBareatBar))
Forks (Forks (eatBareatBar))

::

VERIFYVERIFY DEADLOCK.FREE.FD DEADLOCK.FREE.FD CollegeCollege ✔
✔
✔

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 100

The previous model check verifies properties of a college The previous model check verifies properties of a college
with precisely with precisely 55 philosophers. The philosophers. The FDR2FDR2 model check is model check is
almost instant.almost instant.

Scaling to Scaling to 1010 philosophers puts a strain on my laptop philosophers puts a strain on my laptop –– it it
gets very hot and takes a few minutes. Scaling to gets very hot and takes a few minutes. Scaling to 2020 fails.fails.

//

////

//

//

There is a problem though /There is a problem thoughThere is a problem though //

In the In the FDR2FDR2 manual, Bill Roscoe explains how to verify a manual, Bill Roscoe explains how to verify a
college with college with 10^20010^200 philosophers philosophers …… we had better follow we had better follow
his guidelines his guidelines …… and tackle the black art of and tackle the black art of compressioncompression in in
model checking model checking ……

With our simpler college, we want to beat that scale! With our simpler college, we want to beat that scale!
Further, we would like to verify a college of any number of Further, we would like to verify a college of any number of
philosophers philosophers …… using induction.using induction.

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 101

The first guideline is The first guideline is notnot to build the to build the philosophersphilosophers and and forksforks
as separate subas separate sub--systems and, then, the college as their systems and, then, the college as their
parallel combination. This is what we did and it doesnparallel combination. This is what we did and it doesn’’t let t let
us use inductive reasoning very well.us use inductive reasoning very well.

Instead, first build a Instead, first build a philospherphilospher--forkfork pair. Next, build chains pair. Next, build chains
of of philospherphilospher--forkfork pairs using recursion (e.g. a chain of pairs using recursion (e.g. a chain of
length length nn is a chain of length is a chain of length (n(n--1)1) plus one more pair). plus one more pair).
Verify properties of the chain, for any Verify properties of the chain, for any nn. Finally, add one . Finally, add one
more pair that connects both ends of a chain and get the more pair that connects both ends of a chain and get the
college. Verify the college using verified properties of the college. Verify the college using verified properties of the
chain.chain.

//

////

//

//

Solving the problem ☺Solving the problem Solving the problem ☺☺

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 102

There are two further points that are needed: There are two further points that are needed: hidinghiding and and
compressioncompression..

//

////

//

//

First, note that the First, note that the thinkingthinking and and eatingeating reports from the reports from the
philosophersphilosophers play no role in the deadlock / livelock play no role in the deadlock / livelock
properties of the properties of the collegecollege. Each philosopher engages on its . Each philosopher engages on its
own own thinkingthinking and and eatingeating channels with the environment of channels with the environment of
the the collegecollege. The forks do not engage with those channels.. The forks do not engage with those channels.

Therefore, no Therefore, no thinkingthinking or or eatingeating report can block the report can block the
operations of the operations of the collegecollege. Verifying deadlock and livelock . Verifying deadlock and livelock
freedom in a college with the freedom in a college with the thinkingthinking and and eatingeating events events
hiddenhidden will also verify the result for a college that doesnwill also verify the result for a college that doesn’’t t
hide themhide them..

Solving the problem ☺Solving the problem Solving the problem ☺☺

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 103

PhilPhil’’ ((thinkingthinking, , eatingeating,, eatBareatBar) =) =
letlet

Phil_0_ Phil_0_ ==
thinking thinking -->> eatBareatBar -->>
eatingeating -->> eatBareatBar -->> Phil_0_Phil_0_

withinwithin
Phil_0_Phil_0_

::

VERIFY PROCVERIFY PROC PhilPhil ((CHAN INTCHAN INT thinking!thinking!,, eating!eating!,, BARRIERBARRIER eatBareatBar))
WHILE TRUEWHILE TRUE

SEQSEQ
thinking ! 0thinking ! 0
SYNC SYNC eatBareatBar
eating ! 0eating ! 0
SYNC SYNC eatBareatBar

::

thinkingthinking

eatingeating
eatBareatBar PP

Recall …Recall Recall ……

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 104

VERIFY PROCVERIFY PROC Phil.Phil. ((BARRIERBARRIER eatBareatBar))
CHAN INTCHAN INT thinking!thinking!, , eating!eating!: : ---- channel *ends* onlychannel *ends* only
Phil (Phil (thinking!thinking!, , eating!eating!, , eatBareatBar))

::

Hide …Hide Hide ……

eatBareatBar PP’’

channelchannel thinking_h0_thinking_h0_,, eating_h0_eating_h0_

PhilPhil’’ ((eatBareatBar) =) =
PhilPhil ((thinking_h0_thinking_h0_, , eating_h0_eating_h0_,, eatBareatBar))

\\ {| {| thinking_h0_thinking_h0_,, eating_h0_eating_h0_ |}|}

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 105

PhilPhil’’ ((eatBareatBar) =) =
letlet

Phil_0_ Phil_0_ == eatBareatBar -->> eatBareatBar -->> Phil_0_Phil_0_
withinwithin

Phil_0_Phil_0_
::

VERIFY PROCVERIFY PROC Phil.Phil. ((BARRIERBARRIER eatBareatBar))
WHILE TRUEWHILE TRUE

SEQSEQ
SYNC SYNC eatBareatBar
SYNC SYNC eatBareatBar

::

Which is the same as …Which is the same as Which is the same as ……

eatBareatBar PP’’

… but without changing source code ☺…… but without changing source code but without changing source code ☺☺

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 106

VERIFY PROCVERIFY PROC Phil.Phil. ((BARRIERBARRIER eatBareatBar))
CHAN INTCHAN INT thinking!thinking!, , eating!eating!: : ---- channel *ends* onlychannel *ends* only
Phil (Phil (thinking!thinking!, , eating!eating!, , eatBareatBar))

::

VERIFY SIZE VERIFY SIZE PhilPhil

VERIFY SIZE VERIFY SIZE Phil.Phil.

We can ask for the size of the state transition
machine generated by FDR …

We can ask for the size of the state transition We can ask for the size of the state transition
machine generated by FDR machine generated by FDR ……

eatBareatBar PP’’

4 states, 4 transitions4 states, 4 transitions4 states, 4 transitions

… not won yet … need to compress!!…… not won yet not won yet …… need to compress!!need to compress!!

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 107

Compress …Compress Compress ……

VERIFY PROCVERIFY PROC Phil..Phil.. ((BARRIERBARRIER eatBareatBar))
NORMALISENORMALISE ---- reduce state machine to normal formreduce state machine to normal form

Phil. (Phil. (eatBareatBar))
::

VERIFY SIZE VERIFY SIZE Phil..Phil..

eatBareatBar PP’’’’

PhilPhil’’’’ ((eatBareatBar) =) = normalise normalise ((PhilPhil’’ ((eatBareatBar))))

1 state, 1 transition1 state, 1 transition1 state, 1 transition

… a big win !! Adding such a (non-reporting, compressed)
philosopher to any system cannot increase the number of states.

…… a big win !! Adding such a (nona big win !! Adding such a (non--reporting, compressed) reporting, compressed)
philosopher to any system cannot increase the number of states.philosopher to any system cannot increase the number of states.

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 108

PhilPhil’’’’ ((eatBareatBar) =) =
letlet

Phil_0_ Phil_0_ == eatBareatBar -->> Phil_0_Phil_0_
withinwithin

Phil_0_Phil_0_
::

VERIFY PROCVERIFY PROC Phil..Phil.. ((BARRIERBARRIER eatBareatBar))
WHILE TRUEWHILE TRUE

SYNC SYNC eatBareatBar
::

And is the same as …And is the same as And is the same as ……

… but without changing source code ☺…… but without changing source code but without changing source code ☺☺

eatBareatBar PP’’’’

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 109

CollegeCollege

FF

FF

FF

FF FF

PP

PPPP

PP

PP

thinkingthinking

eatingeating
eatBareatBar

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 110

VERIFY PROCVERIFY PROC ForkFork ((BARRIERBARRIER eatBarRighteatBarRight, , eatBarLefteatBarLeft))
WHILE TRUEWHILE TRUE

ALTALT
SYNC SYNC eatBarRighteatBarRight
SYNC SYNC eatBarRighteatBarRight

SYNC SYNC eatBarLefteatBarLeft
SYNC SYNC eatBarLefteatBarLeft

::

VERIFY SIZE VERIFY SIZE ForkFork

FF
eatBarRighteatBarRight

eatBarLefteatBarLeft

3 states, 4 transitions3 states, 4 transitions3 states, 4 transitions

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 111

VERIFY PROCVERIFY PROC PhilForkPhilFork ((CHAN INTCHAN INT thinking!thinking!, , eating!eating!,,
BARRIERBARRIER eatBarRighteatBarRight,, eatBarLefteatBarLeft))

PARPAR
PhilPhil ((thinking!thinking!, , eating!eating!,, eatBarRighteatBarRight))
ForkFork ((eatBarRighteatBarRight,, eatBarLefteatBarLeft))

::

VERIFY SIZE VERIFY SIZE PhilForkPhilFork

eatBarRighteatBarRight

eatBarLefteatBarLeft

thinkingthinking

eatingeating

FF

PP

6 states, 9 transitions6 states, 9 transitions6 states, 9 transitions

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 112

VERIFY PROCVERIFY PROC PhilForkPhilFork.. ((BARRIERBARRIER eatBarRighteatBarRight,, eatBarLefteatBarLeft))
PARPAR

Phil..Phil.. ((eatBarRighteatBarRight))
ForkFork ((eatBarRighteatBarRight,, eatBarLefteatBarLeft))

::

VERIFY SIZE VERIFY SIZE PhilForkPhilFork..

VERIFY PROCVERIFY PROC PhilForkPhilFork.. ((BARRIERBARRIER eatBarRighteatBarRight,, eatBarLefteatBarLeft))
PARPAR

Phil..Phil.. ((eatBarRighteatBarRight))
ForkFork ((eatBarRighteatBarRight,, eatBarLefteatBarLeft))

::

VERIFY SIZE VERIFY SIZE PhilForkPhilFork..

VERIFY VERIFY PhilForkPhilFork. . EQUIVALENT.FD EQUIVALENT.FD ForkFork

3 states, 4 transitions3 states, 4 transitions3 states, 4 transitions

eatBarRighteatBarRight

eatBarLefteatBarLeft

FF

PP’’’’

… PhilFork. is the same as Fork ☺…… PhilForkPhilFork.. is the same as is the same as ForkFork ☺☺

✔

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 113

VERIFY PROCVERIFY PROC ChainChain ((VAL VERIFY VAL VERIFY INTINT lengthlength, , ---- assume >= 1assume >= 1
BARRIERBARRIER eatBarRighteatBarRight,, eatBarLefteatBarLeft))

IFIF
length = 1length = 1

PhilForkPhilFork.. ((eatBarRighteatBarRight,, eatBarLefteatBarLeft))
TRUETRUE

NORMALISENORMALISE
BARRIERBARRIER eatBarMiddleeatBarMiddle::
PARPAR

ChainChain ((length length –– 11,, eatBarRighteatBarRight,, eatBarMiddleeatBarMiddle))
PhilForkPhilFork.. ((eatBarMiddleeatBarMiddle,, eatBarLefteatBarLeft))

::

Now build a chain … using recursionNow build a chain Now build a chain …… using recursionusing recursion

Generating the CSPM code for this requires an extra care …
(because FDR2 does something it shouldn’t – claim!)
Generating the Generating the CSPCSPMM code for this requires an extra care code for this requires an extra care ……
(because (because FDR2FDR2 does something it shouldndoes something it shouldn’’t t –– claim!)claim!)

The following does not work correctly …The following does not work correctly The following does not work correctly ……

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 114

channel channel eatBarMiddleeatBarMiddle

ChainChain ((lengthlength,, eatBarRighteatBarRight,, eatBarLefteatBarLeft))
ifif length == 1length == 1 thenthen

PhilForkPhilFork’’ ((eatBarRighteatBarRight,, eatBarLefteatBarLeft))
elseelse

normalise (normalise (
((ChainChain ((length length –– 11,, eatBarRighteatBarRight,, eatBarMiddleeatBarMiddle))
[| {[| {eatBarMiddleeatBarMiddle} |]} |]
PhilForkPhilFork’’ ((eatBarMiddleeatBarMiddle,, eatBarLefteatBarLeft))

)) \\ {{eatBarMiddleeatBarMiddle}}
))

::

eatBarMiddle events “hidden” inside the recursive instance
of Chain get confused with the eatBarMiddle connecting
that instance with PhilFork’. / / /

eatBarMiddleeatBarMiddle events events ““hiddenhidden”” inside the recursive instance inside the recursive instance
of of ChainChain get confused with the get confused with the eatBarMiddleeatBarMiddle connecting connecting
that instance with that instance with PhilForkPhilFork’’. . // // //

We have to manufacture lots of eatBarMiddle events …We have to manufacture lots of We have to manufacture lots of eatBarMiddleeatBarMiddle events events ……

Now build a chain … using recursionNow build a chain Now build a chain …… using recursionusing recursion

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 115

channel channel eatBarMiddleeatBarMiddle : : IntInt

ChainChain ((lengthlength,, eatBarRighteatBarRight,, eatBarLefteatBarLeft))
ifif length == 1length == 1 thenthen

PhilForkPhilFork’’ ((eatBarRighteatBarRight,, eatBarLefteatBarLeft))
elseelse

normalise (normalise (
((ChainChain ((length length –– 11,, eatBarRighteatBarRight,, eatBarMiddleeatBarMiddle))
[| {[| {eatBarMiddleeatBarMiddle.length.length} |]} |]
PhilForkPhilFork’’ ((eatBarMiddleeatBarMiddle,, eatBarLefteatBarLeft))

)) \\ {{eatBarMiddleeatBarMiddle.length.length}}
))

::

… and use a different one for each length. Now we are OK! ☺ ☺ ☺…… and use a different one for each and use a different one for each lengthlength. Now we are OK! . Now we are OK! ☺☺ ☺☺ ☺☺

Now build a chain … using recursionNow build a chain Now build a chain …… using recursionusing recursion

But it really should not be up to us to declare and use this infinite set of
hidden events. Why doesn’t FDR2 just rename hidden events to unique
names that cannot be expressed by the FDR2 coder? Not doing so
seems to break the semantics of hiding … ???

But it really should not be up to us to declare and use this infBut it really should not be up to us to declare and use this infinite set of inite set of
hidden events. Why doesnhidden events. Why doesn’’t t FDR2FDR2 just rename hidden events to unique just rename hidden events to unique
names that cannot be expressed by the names that cannot be expressed by the FDR2FDR2 coder? coder? Not doing so Not doing so
seems to break the semantics of hiding seems to break the semantics of hiding …… ??????

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 116

VERIFY PROCVERIFY PROC ChainChain ((VAL VERIFY VAL VERIFY INTINT lengthlength,, ---- assume >= 1assume >= 1
BARRIERBARRIER eatBarRighteatBarRight,, eatBarLefteatBarLeft))

IFIF
length = 1length = 1

PhilForkPhilFork.. ((eatBarRighteatBarRight,, eatBarLefteatBarLeft))
TRUETRUE

NORMALISENORMALISE
BARRIERBARRIER eatBarMiddleeatBarMiddle::
PARPAR

ChainChain ((length length –– 11,, eatBarRighteatBarRight,, eatBarMiddleeatBarMiddle))
PhilForkPhilFork.. ((eatBarMiddleeatBarMiddle,, eatBarLefteatBarLeft))

::

VERIFY SIZE VERIFY SIZE ChainChain ((11, , __, , __))
VERIFY SIZE VERIFY SIZE ChainChain ((22, , __, , __))
VERIFY SIZE VERIFY SIZE ChainChain ((33, , __, , __))
VERIFY SIZE VERIFY SIZE ChainChain ((44, , __, , __))

VERIFY PROCVERIFY PROC ChainChain ((VAL VERIFY VAL VERIFY INTINT lengthlength,, ---- assume >= 1assume >= 1
BARRIERBARRIER eatBarRighteatBarRight,, eatBarLefteatBarLeft))

IFIF
length = 1length = 1

PhilForkPhilFork.. ((eatBarRighteatBarRight,, eatBarLefteatBarLeft))
TRUETRUE

NORMALISENORMALISE
BARRIERBARRIER eatBarMiddleeatBarMiddle::
PARPAR

ChainChain ((length length –– 11,, eatBarRighteatBarRight,, eatBarMiddleeatBarMiddle))
PhilForkPhilFork.. ((eatBarMiddleeatBarMiddle,, eatBarLefteatBarLeft))

::

VERIFY SIZE VERIFY SIZE ChainChain ((11, , __, , __)) ----> 3 states, 4 transitions> 3 states, 4 transitions
VERIFY SIZE VERIFY SIZE ChainChain ((22, , __, , __)) ----> 1 state, 2 transitions > 1 state, 2 transitions
VERIFY SIZE VERIFY SIZE ChainChain ((33, , __, , __)) ----> 1 state, 2 transitions > 1 state, 2 transitions
VERIFY SIZE VERIFY SIZE ChainChain ((44, , __, , __)) ----> 1 state, 2 transitions > 1 state, 2 transitions

What’s happening with the sizes?WhatWhat’’s happening with the sizes?s happening with the sizes?

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 117

VERIFY PROCVERIFY PROC ChainChain ((VAL VERIFY VAL VERIFY INTINT lengthlength, , ---- assume >= 1assume >= 1
BARRIERBARRIER eatBarRighteatBarRight,, eatBarLefteatBarLeft))

IFIF
length = 1length = 1

PhilForkPhilFork.. ((eatBarRighteatBarRight,, eatBarLefteatBarLeft))
TRUETRUE

NORMALISENORMALISE
BARRIERBARRIER eatBarMiddleeatBarMiddle::
PARPAR

ChainChain ((length length –– 11,, eatBarRighteatBarRight,, eatBarMiddleeatBarMiddle))
PhilForkPhilFork.. ((eatBarMiddleeatBarMiddle,, eatBarLefteatBarLeft))

::

How similar are they and might they deadlock?How similar are they and might they deadlock?How similar are they and might they deadlock?

From Chain (2, _, _) upwards, they can certainly livelock –
infinite sequences of eatBarMiddle events!
From From Chain (2, _, _)Chain (2, _, _) upwards, they can certainly upwards, they can certainly livelocklivelock ––
infinite sequences of infinite sequences of eatBarMiddleeatBarMiddle eventsevents!!

So, deadlock and refinement checking must only be done with
the failures model.
So, deadlock and refinement checking must only be done with So, deadlock and refinement checking must only be done with
the the failuresfailures model.model.

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 118

VERIFY PROCVERIFY PROC ChainChain ((VAL VERIFY VAL VERIFY INTINT lengthlength, , ---- assume >= 1assume >= 1
BARRIERBARRIER eatBarRighteatBarRight,, eatBarLefteatBarLeft))

......
::

VERIFY PROCVERIFY PROC ChainChain ((VAL VERIFY VAL VERIFY INTINT lengthlength, , ---- assume >= 1assume >= 1
BARRIERBARRIER eatBarRighteatBarRight,, eatBarLefteatBarLeft))

......
::

VERIFY DEADLOCK.FREE.F VERIFY DEADLOCK.FREE.F ChainChain ((11, , __, , __))
VERIFY DEADLOCK.FREE.F VERIFY DEADLOCK.FREE.F ChainChain ((22, , __, , __))
VERIFY DEADLOCK.FREE.F VERIFY DEADLOCK.FREE.F ChainChain ((33, , __, , __))
VERIFY DEADLOCK.FREE.F VERIFY DEADLOCK.FREE.F ChainChain ((44, , __, , __))
VERIFY DEADLOCK.FREE.F VERIFY DEADLOCK.FREE.F ChainChain ((55, , __, , __))

VERIFY VERIFY ChainChain ((11, , __, , __)) EQUIVALENT.F EQUIVALENT.F ChainChain ((22, , __, , __))
VERIFY VERIFY ChainChain ((22, , __, , __)) EQUIVALENT.F EQUIVALENT.F ChainChain ((33, , __, , __))
VERIFY VERIFY ChainChain ((33, , __, , __)) EQUIVALENT.F EQUIVALENT.F ChainChain ((44, , __, , __))
VERIFY VERIFY ChainChain ((44, , __, , __)) EQUIVALENT.F EQUIVALENT.F ChainChain ((55, , __, , __))

How similar are they and might they deadlock?How similar are they and might they deadlock?How similar are they and might they deadlock?

✔

✗

✔✔✔✔

✗✗✔
Let Let H(iH(i)) be the hypothesis that:be the hypothesis that:

ChainChain ((44, , __, , __)) EQUIVALENT.F EQUIVALENT.F ChainChain ((ii, , __, , __))

Clearly Clearly H(4)H(4) and, by model checking, and, by model checking, H(5)H(5)..

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 119

ChainChain ((44, , __, , __)) EQUIVALENT.F EQUIVALENT.F ChainChain ((ii, , __, , __))

We have We have H(4)H(4) and and H(5)H(5). Suppose . Suppose H(iH(i)) for any for any i >= 4i >= 4. Consider:. Consider:

ChainChain ((i+1i+1,, eatBarRighteatBarRight,, eatBarLefteatBarLeft))

BARRIERBARRIER eatBarMiddleeatBarMiddle::
PARPAR
ChainChain ((ii,, eatBarRighteatBarRight,, eatBarMiddleeatBarMiddle))
PhilForkPhilFork.. ((eatBarMiddleeatBarMiddle,, eatBarLefteatBarLeft))

This reduces to:This reduces to:

By By H(iH(i)), this is , this is EQUIVALENT.FEQUIVALENT.F toto::

BARRIERBARRIER eatBarMiddleeatBarMiddle::
PARPAR
ChainChain ((44,, eatBarRighteatBarRight,, eatBarMiddleeatBarMiddle))
PhilForkPhilFork.. ((eatBarMiddleeatBarMiddle,, eatBarLefteatBarLeft))

But this is the same as:But this is the same as: ChainChain ((55,, eatBarRighteatBarRight,, eatBarLefteatBarLeft))

Which, by Which, by H(5)H(5), is , is EQUIVALENT.FEQUIVALENT.F to:to: ChainChain ((44,, eatBarRighteatBarRight,, eatBarLefteatBarLeft))

H(iH(i)) is:is:

We have We have H(4)H(4) and and H(5)H(5)..

H(i+1)H(i+1)

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 120

ChainChain ((44, , __, , __)) EQUIVALENT.F EQUIVALENT.F ChainChain ((ii, , __, , __))

Clearly Clearly H(4)H(4) and, by model checking, and, by model checking, H(5)H(5). .

H(iH(i)) is:is:

We have just shown that, for any We have just shown that, for any i >= 4i >= 4, , H(iH(i)) impliesimplies H(i+1)H(i+1)..

By induction therefore, for all By induction therefore, for all i >= 4i >= 4, we have , we have H(iH(i))..

All chains of (no reporting)All chains of (no reporting) philosopherphilosopher--forkfork pairs with lengths equal pairs with lengths equal
to or greater than to or greater than 44 areare failures equivalentfailures equivalent. Further, all such chains . Further, all such chains
are are deadlock freedeadlock free (since model checking gave us that for chains of (since model checking gave us that for chains of
lengths lengths 11 through through 44).).

But … what about Colleges?But But …… what about what about CollegesColleges??

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 121

But … what about Colleges?But But …… what about what about CollegesColleges??

VERIFY PROCVERIFY PROC CollegeChainCollegeChain ((VAL VERIFY VAL VERIFY INTINT sizesize)) ---- assume >= 2assume >= 2
NORMALISENORMALISE

[2]BARRIER[2]BARRIER eatBareatBar::
PARPAR

PhilForkPhilFork.. ((eatBar[0]eatBar[0],, eatBar[1]eatBar[1]))
ChainChain ((size size –– 11,, eatBar[1]eatBar[1],, eatBar[0]eatBar[0]))

::

We can immediately deduce that all We can immediately deduce that all CollegeChainCollegeChainss with size equal to or with size equal to or
greater than greater than 55 areare failures equivalentfailures equivalent (since their (since their ChainChain subsub--components components
have lengths equal to or greater than have lengths equal to or greater than 44 and areand are failures equivalentfailures equivalent).).

VERIFY DEADLOCK.FREE.F VERIFY DEADLOCK.FREE.F CollegeChainCollegeChain ((22, , __, , __))
VERIFY DEADLOCK.FREE.F VERIFY DEADLOCK.FREE.F CollegeChainCollegeChain ((33, , __, , __))
VERIFY DEADLOCK.FREE.F VERIFY DEADLOCK.FREE.F CollegeChainCollegeChain ((44, , __, , __))
VERIFY DEADLOCK.FREE.F VERIFY DEADLOCK.FREE.F CollegeChainCollegeChain ((55, , __, , __))

✔✔✔✔
Hence, all Hence, all CollegeChainCollegeChainss with size equal to or greater than with size equal to or greater than 22 areare deadlock deadlock
freefree. Of course, with no reporting, they are hopelessly . Of course, with no reporting, they are hopelessly livelockedlivelocked !!

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 122

So … what about reporting Colleges?So So …… what about what about reportingreporting CollegesColleges??

An earlier argument showed that a An earlier argument showed that a deadlock freedeadlock free result for a college with result for a college with
external reports hiddenexternal reports hidden implies a implies a deadlock freedeadlock free result for a college with result for a college with
external reportsexternal reports (since the external reporting cannot cause internal (since the external reporting cannot cause internal
blocking). blocking). So all reporting colleges of any size are deadlockSo all reporting colleges of any size are deadlock--free.free.

The following argument shows that a college with external reportThe following argument shows that a college with external reports is alsos is also
livelock freelivelock free ……

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 123

VERIFY PROCVERIFY PROC PhilPhil ((CHAN INTCHAN INT thinking!thinking!,, eating!eating!,, BARRIERBARRIER eatBareatBar))
WHILE TRUEWHILE TRUE

SEQSEQ
thinking ! 0thinking ! 0
SYNC SYNC eatBareatBar
eating ! 0eating ! 0
SYNC SYNC eatBareatBar

::

thinkingthinking

eatingeating
eatBareatBar PP

From simple code inspection, a From simple code inspection, a PhilPhil
process cannot engage in two process cannot engage in two eatBareatBar
events (internal) without an (external) events (internal) without an (external)
intervening report.intervening report.

This could be modelThis could be model--checked, using checked, using
techniques discussed earlier, if it was techniques discussed earlier, if it was
felt necessary!felt necessary!

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 124

From simple code inspection, a From simple code inspection, a PhilPhil
process cannot engage in two process cannot engage in two eatBareatBar
events (internal) without an (external) events (internal) without an (external)
intervening report.intervening report.

This could be modelThis could be model--checked, using checked, using
techniques discussed earlier, if it was techniques discussed earlier, if it was
felt necessary!felt necessary!

For the college not to beFor the college not to be livelock freelivelock free …… it must be possible for it to it must be possible for it to
engage in an engage in an infiniteinfinite sequence of internal events sequence of internal events …… and the only internal and the only internal
events are events are eatBareatBarss. Suppose that this happens!. Suppose that this happens!

If the college has sizeIf the college has size nn, it has only , it has only nn eatBareatBarss. After at most . After at most (n+1)(n+1)
eatBareatBar events, at least one must have occurred at least twice. But thevents, at least one must have occurred at least twice. But the e
PhilPhil process engaging with that process engaging with that eatBareatBar must (by the above) have must (by the above) have
made an external report made an external report …… so the college is so the college is notnot livelockedlivelocked. .

This is a contradiction! So the supposition is false This is a contradiction! So the supposition is false –– and theand the college iscollege is
livelock freelivelock free..

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 125

Finally, the Brute Force ApproachFinally, the Brute Force ApproachFinally, the Brute Force Approach

In RoscoeIn Roscoe’’s book, chains are not built up s book, chains are not built up oneone--atat--aa--timetime like this like this (possibly (possibly
because the standard dining philosophers solution analysed does because the standard dining philosophers solution analysed does not not
collapse as nicely as this one, when reporting is hidden?)collapse as nicely as this one, when reporting is hidden?). Instead, they. Instead, they
are built up in powers of 10. We can do this too:are built up in powers of 10. We can do this too:

----** A chain of (A chain of (length^levellength^level)) philospherphilospher--fork pairs.fork pairs.
VERIFY PROCVERIFY PROC Chain2Chain2 ((VAL VERIFY VAL VERIFY INTINT levellevel,, lengthlength,,

BARRIERBARRIER eatBarRighteatBarRight,, eatBarLefteatBarLeft))
IFIF

level = 0level = 0
PhilForkPhilFork.. ((eatBarRighteatBarRight,, eatBarLefteatBarLeft))

TRUETRUE
NORMALISENORMALISE
[length[length--1]BARRIER1]BARRIER eatBareatBar::
PARPAR

Chain2Chain2 ((level level –– 11,, lengthlength,, eatBarRighteatBarRight,, eatBar[eatBar[00]]))
PARPAR id = 1id = 1 FORFOR length length -- 22

Chain2Chain2 ((level level –– 11,, lengthlength,, eatBar[eatBar[idid -- 11]],, eatBar[eatBar[idid]]))
Chain2Chain2 ((level level –– 11,, lengthlength,, eatBar[eatBar[lengthlength -- 22]],, eatBarLefteatBarLeft))

::

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 126

----** A chain of (A chain of (length^levellength^level)) philospherphilospher--fork pairs.fork pairs.
VERIFY PROCVERIFY PROC Chain2Chain2 ((VAL VERIFY VAL VERIFY INTINT levellevel,, lengthlength,,

BARRIERBARRIER eatBarRighteatBarRight,, eatBarLefteatBarLeft))
......

::

VERIFY DEADLOCK.FREE.F VERIFY DEADLOCK.FREE.F Chain2Chain2 ((00, , 1010, , __, , __))
VERIFY DEADLOCK.FREE.F VERIFY DEADLOCK.FREE.F Chain2Chain2 ((11, , 1010, , __, , __))
VERIFY DEADLOCK.FREE.F VERIFY DEADLOCK.FREE.F Chain2Chain2 ((1010, , 1010, , __, , __))
VERIFY DEADLOCK.FREE.F VERIFY DEADLOCK.FREE.F Chain2Chain2 ((100100, , 1010, , __, , __))
VERIFY DEADLOCK.FREE.F VERIFY DEADLOCK.FREE.F Chain2Chain2 ((10001000, , 1010, , __, , __))

VERIFY VERIFY Chain2Chain2 ((11, , 22, , __, , __)) EQUIVALENT.F EQUIVALENT.F Chain2Chain2 ((22, , 22, , __, , __))
VERIFY VERIFY Chain2Chain2 ((22, , 22, , __, , __)) EQUIVALENT.F EQUIVALENT.F Chain2Chain2 ((33, , 22, , __, , __))
VERIFY VERIFY Chain2Chain2 ((11, , 1010, , __, , __)) EQUIVALENT.F EQUIVALENT.F Chain2Chain2 ((22, , 1010,,__, , __))

✔✔✔✔✔

✔✔
✗

Finally, the Brute Force ApproachFinally, the Brute Force ApproachFinally, the Brute Force Approach

And the Colleges …And the And the CollegesColleges ……

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 127

Finally, the Brute Force ApproachFinally, the Brute Force ApproachFinally, the Brute Force Approach

----** A college of size (A college of size (length^levellength^level) + 1.) + 1.
VERIFY PROCVERIFY PROC CollegeChain2CollegeChain2 ((VAL VERIFY VAL VERIFY INTINT levellevel,, lengthlength))
NORMALISENORMALISE

[2]BARRIER[2]BARRIER eatBareatBar::
PARPAR

PhilForkPhilFork.. ((eatBar[0]eatBar[0],, eatBar[1]eatBar[1]))
Chain2Chain2 ((levellevel,, lengthlength,, eatBar[1]eatBar[1],, eatBar[0]eatBar[0]))

::

----** A college of size (A college of size (length^levellength^level) + 1.) + 1.
VERIFY PROCVERIFY PROC CollegeChain2CollegeChain2 ((VAL VERIFY VAL VERIFY INTINT levellevel,, lengthlength))
NORMALISENORMALISE

[2]BARRIER[2]BARRIER eatBareatBar::
PARPAR

PhilForkPhilFork.. ((eatBar[0]eatBar[0],, eatBar[1]eatBar[1]))
Chain2Chain2 ((levellevel,, lengthlength,, eatBar[1]eatBar[1],, eatBar[0]eatBar[0]))

::

VERIFY DEADLOCK.FREE.F VERIFY DEADLOCK.FREE.F CollegeChain2CollegeChain2 ((00, , 1010, , __, , __))
VERIFY DEADLOCK.FREE.F VERIFY DEADLOCK.FREE.F CollegeChain2CollegeChain2 ((11, , 1010, , __, , __))
VERIFY DEADLOCK.FREE.F VERIFY DEADLOCK.FREE.F CollegeChain2CollegeChain2 ((1010, , 1010,,__, , __))
VERIFY DEADLOCK.FREE.F VERIFY DEADLOCK.FREE.F CollegeChain2CollegeChain2 ((100100, , 1010,,__, , __))
VERIFY DEADLOCK.FREE.F VERIFY DEADLOCK.FREE.F CollegeChain2CollegeChain2 ((10001000, , 1010,,__, , __))
VERIFY DEADLOCK.FREE.F VERIFY DEADLOCK.FREE.F CollegeChain2CollegeChain2 ((20002000, , 1010,,__, , __))
VERIFY DEADLOCK.FREE.F VERIFY DEADLOCK.FREE.F CollegeChain2CollegeChain2 ((25002500, , 1010,,__, , __))

FDR2FDR2 verifies the first four above almost instantly. The college ofverifies the first four above almost instantly. The college of size size
(10^1000 + 1)(10^1000 + 1) takes around takes around 88 seconds and seconds and (10^2000 + 1)(10^2000 + 1) around around 2020
seconds. The last one crashes seconds. The last one crashes FDR2FDR2: : ““broken pipebroken pipe”” on the terminal on the terminal
launch window.launch window.

✔✔✔✔✔✔

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 128

Finally, the Brute Force ApproachFinally, the Brute Force ApproachFinally, the Brute Force Approach

----** A college of size (A college of size (length^levellength^level) + 1.) + 1.
VERIFY PROCVERIFY PROC CollegeChain2CollegeChain2 ((VAL VERIFY VAL VERIFY INTINT levellevel,, lengthlength))
NORMALISENORMALISE

[2]BARRIER[2]BARRIER eatBareatBar::
PARPAR

PhilForkPhilFork.. ((eatBar[0]eatBar[0],, eatBar[1]eatBar[1]))
Chain2Chain2 ((levellevel,, lengthlength,, eatBar[1]eatBar[1],, eatBar[0]eatBar[0]))

::

VERIFY DEADLOCK.FREE.F VERIFY DEADLOCK.FREE.F CollegeChain2CollegeChain2 ((20002000, , 1010, , __, , __))

The same arguments as before reveal that removing the The same arguments as before reveal that removing the report hidingreport hiding
from these colleges leaves them from these colleges leaves them deadlockdeadlock and and livelock freelivelock free..

For the college with For the college with (10^2000 + 1)(10^2000 + 1) philosophers, all we need is a universe philosophers, all we need is a universe
large enough to contain the computer on which to run it.large enough to contain the computer on which to run it.

We may actually need We may actually need severalseveral parallel universes. Establishing the barrier parallel universes. Establishing the barrier
syncs and channel communications between them is an open questiosyncs and channel communications between them is an open question.n.

✔

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 129

occam-π / CSPMoccamoccam--ππ / / CSPCSPMM

ReflectionReflectionReflection

occamoccam--ππ teams well with teams well with CSPCSPMM to provide efficient executables to provide efficient executables
and rich formal analysis.and rich formal analysis.

This presentation reflects a proposal to extend This presentation reflects a proposal to extend occamoccam--ππ to to
include include verification assertionsverification assertions (about (about deadlockdeadlock, , livelocklivelock, ,
determinismdeterminism and and refinementrefinement). Its compiler will generate suitably). Its compiler will generate suitably
abstracted abstracted CSPCSPMM and interact with the and interact with the FDR2FDR2 model checker, model checker,
feeding back results in terms of the source feeding back results in terms of the source occamoccam--ππ program.program.

Together with the ancient formal Together with the ancient formal Laws of occam Programming Laws of occam Programming , ,
this moves this moves occamoccam--ππ towards a process algebra in its own right. towards a process algebra in its own right.

**

http://portal.acm.org/citation.cfm?id=53255http://portal.acm.org/citation.cfm?id=53255http://portal.acm.org/citation.cfm?id=53255**

[A.W.Roscoe and C.A.R.Hoare, 1988][A.W.Roscoe and C.A.R.Hoare, 1988]

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 130

Aside:Aside: model checking found an error overlooked in developing model checking found an error overlooked in developing
the the ((DeviceDevice)) case study on paper (the need for case study on paper (the need for pingping)) …… which which
shows the necessity for formal checks shows the necessity for formal checks (especially when those (especially when those
responsible think they wonresponsible think they won’’t make mistakes!)t make mistakes!)..

ObservationObservationObservation

ReflectionReflectionReflection

Formal verification of the behaviour of concurrent processes canFormal verification of the behaviour of concurrent processes can
be achieved be achieved –– by studentsby students –– even though they engaged in only even though they engaged in only
simple reasoning themselves.simple reasoning themselves.
The complexity of synchronisation and communication analysed The complexity of synchronisation and communication analysed
goes far beyond the goes far beyond the embarrassingly parallelembarrassingly parallel..

Further reading: Further reading: Santa Claus: Formal Analysis of a Process Santa Claus: Formal Analysis of a Process
Oriented Solution Oriented Solution . . **

http:/doi.acm.org/10.1145/1734206.1734211http:/doi.acm.org/10.1145/1734206.1734211http:/doi.acm.org/10.1145/1734206.1734211**
TOPLAS, [April, 2010]TOPLAS, [April, 2010]

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 131

Class experience Class experience Class experience

ReflectionReflectionReflection

The The ((DeviceDevice)) case study presented was developed from one case study presented was developed from one
first worked through in a single lesson of a graduate class in first worked through in a single lesson of a graduate class in
concurrency at concurrency at UNLVUNLV in the spring of 2010.in the spring of 2010.

They had previously studied a range of concurrency approaches, They had previously studied a range of concurrency approaches,
including including processprocess--orientedoriented material from the material from the KentKent ““Concurrency Concurrency
Design and PracticeDesign and Practice”” course.course.

They were comfortable with using They were comfortable with using occamoccam--ππ in nonin non--trivial projects trivial projects
(thousands of interacting processes), so the example system (thousands of interacting processes), so the example system
here would be considered fairly simple.here would be considered fairly simple.

Nevertheless, it was appreciated that relying just on intuitive Nevertheless, it was appreciated that relying just on intuitive
understanding is unsafe understanding is unsafe –– especially if the application were especially if the application were
safety critical.safety critical.

https://moodle.kent.ac.uk/
external/course/view.php?id=31
https://https://moodle.kent.ac.ukmoodle.kent.ac.uk//

external/course/external/course/view.php?idview.php?id=31=31

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 132

Not only Not only Not only

cancan we (and we (and shouldshould we) teach concurrency at the start of we) teach concurrency at the start of
the undergraduate CS curriculum the undergraduate CS curriculum ……

A ThesisA ThesisA Thesis (for which we have experimental evidence)(for which we have experimental evidence)

But also But also But also

we we cancan (and we (and we shouldshould) teach formal analysis and verification) teach formal analysis and verification
of this concurrency at the same time of this concurrency at the same time ……

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 133

Not only Not only Not only

cancan we (and we (and shouldshould we) teach concurrency at the start of we) teach concurrency at the start of
the undergraduate CS curriculum the undergraduate CS curriculum ……

A ThesisA ThesisA Thesis (for which we have experimental evidence)(for which we have experimental evidence)

Fundamental primitives for software engineeringFundamental primitivesFundamental primitives for software engineeringfor software engineering

All are important. All are simple. All are available.AllAll are important. are important. AllAll are simple. are simple. AllAll are available.are available.

Sequence, variables, assignment, parameters,
concurrency, channels, synchronisation, …
SequenceSequence, , variablesvariables, , assignmentassignment, , parametersparameters, ,
concurrencyconcurrency, , channelschannels, , synchronisationsynchronisation, , ……

Because itBecause it’’s s
therethere

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 134

Not only Not only Not only

cancan we (and we (and shouldshould we) teach concurrency at the start of we) teach concurrency at the start of
the undergraduate CS curriculum the undergraduate CS curriculum ……

A ThesisA ThesisA Thesis (for which we have experimental evidence)(for which we have experimental evidence)

Because itBecause it’’s s
therethere

for complexityfor complexity

for performancefor performance

Because it Because it
scalesscalesBecause it Because it

simplifiessimplifies

CSP / CSP / ππ--calculuscalculus
occamoccam--ππ / JCSP/ JCSP

Process
Orientation
Process

Orientation

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 135

But also But also But also

we we cancan (and we (and we shouldshould) teach formal analysis and verification) teach formal analysis and verification
of this concurrency at the same time of this concurrency at the same time ……

A ThesisA ThesisA Thesis (for which we have experimental evidence)(for which we have experimental evidence)

Complex and high-performance systems cannot avoid
concurrent design, implementation and reasoning.
Complex and highComplex and high--performance systems cannot avoid performance systems cannot avoid
concurrent design, implementation concurrent design, implementation and reasoningand reasoning..

Common concurrency bugs are intermittent – not
repeatable on demand. Untestable in practice.
Common concurrency bugs are intermittent Common concurrency bugs are intermittent –– not not
repeatable on demand. repeatable on demand. Untestable in practiceUntestable in practice..

We stand on the shoulders of giants (who made the
theory and model checkers). We verify programs just
by writing programs … it becomes everyday practice.

We stand on the shoulders of giants (who made the We stand on the shoulders of giants (who made the
theory and model checkers). theory and model checkers). We verify programs just We verify programs just
by writing programs by writing programs …… it becomes everyday practice. it becomes everyday practice.

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 136

ObservationObservationObservation

Can we teach students Can we teach students (those who love to program, anyway)(those who love to program, anyway)
concurrency so that:concurrency so that:

they quickly develop a correct and intuitive understanding of the primitive
mechanisms (e.g. processes, communication, synchronisation, networks)
and higher level patterns (e.g. client-server, phased barrier, I/O-PAR) … ?

they quickly develop a correct and intuitive understanding of ththey quickly develop a correct and intuitive understanding of the primitive e primitive
mechanisms mechanisms (e.g. (e.g. processesprocesses, , communicationcommunication, , synchronisationsynchronisation, , networksnetworks))
and higher level patterns and higher level patterns (e.g. (e.g. clientclient--serverserver, , phased barrierphased barrier, , I/OI/O--PARPAR)) …… ??

they can use those primitives and patterns with the same fluency as they use
serial computing primitives, without tripping over dark hazards … ?
they can use those primitives and patterns with the same fluencythey can use those primitives and patterns with the same fluency as they use as they use
serial computing primitives, without tripping over dark hazards serial computing primitives, without tripping over dark hazards …… ??

they can use formal methods to verify good behaviour (e.g. freedom from
deadlock and livelock, safety, liveness), without training in the underlying
mathematics (process algebra, denotational semantics) … ?

they can use formal methods to verify good behaviour they can use formal methods to verify good behaviour (e.g. (e.g. freedom from freedom from
deadlock and livelockdeadlock and livelock, , safetysafety, , livenessliveness)), without training in the underlying , without training in the underlying
mathematics mathematics ((process algebraprocess algebra, , denotational semanticsdenotational semantics)) …… ??

they can do this as normal everyday practice, without any sense of fear … ?they can do this as normal everyday practice, without any sense they can do this as normal everyday practice, without any sense of fear of fear …… ??

they can develop their own patterns when the standard ones don’t apply … ?they can develop their own patterns when the standard ones donthey can develop their own patterns when the standard ones don’’t apply t apply …… ??

24-Jun-11 Copyleft (GPL) P.H.Welch and J.B.Pedersen 137

they quickly develop a correct and intuitive understanding of the primitive
mechanisms (e.g. processes, communication, synchronisation, networks)
and higher level patterns (e.g. client-server, phased barrier, I/O-PAR) … ?

they quickly develop a correct and intuitive understanding of ththey quickly develop a correct and intuitive understanding of the primitive e primitive
mechanisms mechanisms (e.g. (e.g. processesprocesses, , communicationcommunication, , synchronisationsynchronisation, , networksnetworks))
and higher level patterns and higher level patterns (e.g. (e.g. clientclient--serverserver, , phased barrierphased barrier, , I/OI/O--PARPAR)) …… ??

they can use those primitives and patterns with the same fluency as they use
serial computing primitives, without tripping over dark hazards … ?
they can use those primitives and patterns with the same fluencythey can use those primitives and patterns with the same fluency as they use as they use
serial computing primitives, without tripping over dark hazards serial computing primitives, without tripping over dark hazards …… ??

they can use formal methods to verify good behaviour (e.g. freedom from
deadlock and livelock, safety, liveness), without training in the underlying
mathematics (process algebra, denotational semantics) … ?

they can use formal methods to verify good behaviour they can use formal methods to verify good behaviour (e.g. (e.g. freedom from freedom from
deadlock and livelockdeadlock and livelock, , safetysafety, , livenessliveness)), without training in the underlying , without training in the underlying
mathematics mathematics ((process algebraprocess algebra, , denotational semanticsdenotational semantics)) …… ??

they can do this as normal everyday practice, without any sense of fear … ?they can do this as normal everyday practice, without any sense they can do this as normal everyday practice, without any sense of fear of fear …… ??

they can develop their own patterns when the standard ones don’t apply … ?they can develop their own patterns when the standard ones donthey can develop their own patterns when the standard ones don’’t apply t apply …… ??

ObservationObservationObservation

Can we teach students Can we teach students (those who love to program, anyway)(those who love to program, anyway)
concurrency so that:concurrency so that:

Yes
, w

e c
an

!

Yes
, w

e c
an

!

Yes
, w

e c
an

!

Any questions?Any questions?Any questions?

