Adding Formal Verification
to occam-Tt

Peter Welch®, Matt Pedersenb, Fred Barnes’,
Carl Ritson” and Neil Brown®
School of Computing, University of Kent, UK
"School of Computer Science, UNLV, USA

Complex Systems Modeliing and Simulation infrastructure

CPA 2011, University of Limerick,

. 22nd. June, 2011 —

occam-T, the process algebra

Alm;

To enable formal verification of occam-1 programs to be
conducted within the language itself ... as a matter of

course by the programmer.

How:

Extend occam-1t with verification qualifiers and assertions.
Modify the compiler to generate (minimal) CSP,, code from
programs using these qualifiers and assertions, bounce this
off the FDR model checker and report back in terms of the

source code.

occam-T, the process algebra

It's time!

autonomous < emergent & complex
(THESIS) oDN

;

“Use of autonomous systems will require developing new methods to
establish ‘certifiable trust in autonomy’ through Verification and
Validation (V&V) of the near-infinite state systems that result from
high levels of adaptability; the lack of suitable V&V methods today
prevents all but relatively low levels of autonomy from being certified
for use ... (This) will require access to as-yet undeveloped methods
for establishing certifiably reliable V&V.”

Werner J.A. Dahm, Chief Scientist of the U.S. Air Force (AF/ST),
“A Vision for Air Force Science & Technology (2010-2030)", May 2010

Example: autonomous robot component

The following example has been developed from one
first worked through in a single lesson of a graduate
class in concurrency at UNLV in the spring of 2010.

Example: autonomous robot component

a0 b0 cO al bl cl do di
V1 | 11
Device

Device : real-time controller for 8 channels (4 input, 4 output).

Example: autonomous robot component

a0 b0 cO al bl «ci do di
| | A | | A A A

I v

Device bar

Device : real-time controller for 8 channels (4 input, 4 output).

There are 3 sub-components: PO (weapons systems),
P1 (vision processing) and P2 (motion stabilizer).

They exchange information over internal channels (ask, ans,
ping) and all coordinate actions with an internal barrier (bar).

Example: autonomous robot component

a0 b0 cO al bl «ci do di
| | A | | A A A
v_ v v ¥
ask .
PO P1 RELN Y
ans
Device bar

CSP semantics apply. Channel communication is unbuffered
(sender waits for receiver and vice-versa). Any process
reaching a barrier waits for all processes to reach the barrier.

They exchange information over internal channels (ask, ans,
ping) and all coordinate actions with an internal barrier (bar).

Dutchtilt Desktops - Created 2007 - http:ffwww.chickita.btinternet.co.ukfwallpapers/ © 2003 Hasbro and TakaraTomy

Behaviour: two representations

a0 b0 cO al bl «ci do di
| | A | | A A A
v v - v v f
as .
PO P1 ">l P2 ‘
ans | | ‘
Device bar

occam-m: for compiling to a runnable system.

[memory overheads <= 32 bytes per process / synchronisation overheads
of order tens of nanoseconds / eats multicore nodes for breakfast.]

CSP: for forfmarzme
[FDR2 model cheCkalashes mple) TorMeareasanlng

Behaviour: one representation

a0 b0 cO al bl «cil do di
| | A | | A A A
vV v v
ask .
PO P1 RELN Y
ans
Device bar

occam-1. for compiling to a runnable system.

[memory overheads <= 32 bytes per process / synchronisation overheads
of order tens of nanoseconds / eats multicore nodes for breakfast.]

occam-T. for formal analysis.

[verify qualifiers and (FDR) assertions + other (simple) formal reasoning.]

Behaviour: what are we looking for?

a0

b0

cO
A

do di

A

A

v

v

PO

ask

Device

ans

ping

P2

bar

deadlock: might it ever stop?

[e.g. PO and P2 want to synchronise on bar, but P1 wants to ping.]

livelock: might it get busy ... but refuse all external signals?
[e.g. PO, P1 and P2 start engaging in an infinite sequence of internal
channel or barrier synchronisations (on ask, ans, ping and bar).]

Behaviour: what are we looking for?

a0 b0 cO al bl «ci do di
| | A | | A A A
v v v
ask .
PO — P1 "8 P2
ans
Device bar

safety: might it ever engage in an incorrect sequence of
external signals?

liveness: will it engage in correct sequences of external
signals, as required?

[Some specs allow alternative sequences to be performed — all are
correct, but an implementation must only do one and is free to choose.]

Behaviour: occarm-T (executable)

a0 b0 cO al bl «ci do di
| | A | | A A A

v k v
PO

ping

ans

Device bar

Behaviour: occarm-T (executable)

a0 b0 cO al bl «cl do di
A | A A A
v v
ask :
PO P1 el e2
ans
Device) bar

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!, BARRIER bar)
WHILE TRUE

INT %X, y, z:

SEQ
ask ? x -- take question
a0 ?y
ans ! O -- return answer (will depend on x and y)
bO ? z
SYNC bar -- wailt for the others
cO! O

Behaviour: occarm-T (executable)

a0 b0 cO al bl «cl do di
A | A A A
v) v Vv
as :
PO P1 el e2
ans
Device) bar

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,
BARRIER bar)
WHILE TRUE

INT X, y, z:

SEQ
ask 1 O -- ask question
ans ? x -- wait for answer
al ?y
bl ? z
SYNC bar -- wait for the others
cl! O
ping ' O -- update neighbour

Behaviour: occarm-T (executable)

a0 b0 cO al bl «cl do di

t L |1 t1

P2

Device) bar

PROC P2 (CHAN INT dO!, di!, ping?, BARRIER bar)
WHILE TRUE

INT Xx:

SEQ
SYNC bar -- wait for the others
do ' O
ping ? X -- receive update
SYNC bar -- wait for the others
di!' o
ping ? X -- receive update

Behaviour: occarm-T (executable)

a0 b0 cO al bl «cl do di
A A A A

|
y

P2

Device i bar

PROC Device (CHAN INT a0?, b0?, cO!, al?, bl?, cl!, dO!, dil})
CHAN INT ask, ans, ping:
BARRIER bar:
PAR ENROLL bar
PO (a0?, b0?, cO!, ask?, ans!, bar)
P1 (al?, bl?, cll!, ask!, ans?, ping!, bar)
P2 (dO!, di!, ping?, bar)

Informal

s Behaviour: occarm-T (executable)

BARRIER bar)
==p WHILE TRUE
INT x, y, z:
SEQ
ask ? x -
a0 ?y
ans !' O -
b0 ? 2z
SYNC bar -
cOt!'O0

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,

PROC P2 (CHAN INT dOo!, di!, ping?,
BARRIER bar)
== WHILE TRUE
take question INT x:
SEQ
return answer SYNC bar -- wait for others
do ' 0
wait for others ping ? X -- receive update
SYNC bar -- wait for others
di!' o
ping ? X -- receive update

BARRIER bar)
=Py WHILE TRUE
INT %, y, z:
SEQ
ask ' O --
ans ? x -
al ?y
bl ? z
SYNC bar -
ci!t!o
ping ' O -

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,

What patterns of

ask question 6)_(terna_ll (blue)
wait for answer Slgnalllng are
possible from

wait for the others Device?

update neighbour

Informal

s Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,
BARRIER bar)

=p WHILE TRUE PROC P2 (CHAN INT dO!, di!, ping?,
INT %, y, z: BARRIER bar)
SEQ ==l WHILE TRUE
ask ? x -- take question INT x:
a0 ? vy SEQ
ans ' O -- return answer SYNC bar -- wait for others
bo ? z do ' 0
SYNC bar -- wait for others ping ? X -- receive update
cOo!' 0 SYNC bar -- wait for others
: di!' o
ping ? X -- receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,
BARRIER bar)

mPp WHILE TRUE i
INT %, y, z: What's first?
SEQ

ask 1 O -- ask question

ans ? x -- wait for answer

al ?y

bl ? z

SYNC bar -- wait for the others

cl!o

ping ' O -- update neighbour

Informal

s Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,
BARRIER bar)

WHILE TRUE PROC P2 (CHAN INT dO!, di!, ping?,
INT %, y, z: BARRIER bar)
SEQ WHILE TRUE
malp ask ? X -- take question INT x:
a0 ? vy SEQ
ans ' 0O -- return answer == SYNC bar -- wait for others
bo ? z do ' 0
SYNC bar -- wait for others ping ? X -- receive update
cOo!' 0 SYNC bar -- wait for others
: dl ! o
ping ? X -- receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,
BARRIER bar)

WHILE TRUE : i
INT %, y, z: What's first?
SEQ

=)y ask ! O -- ask question
ans ? x -- wait for answer
al ?y
bl ? z
SYNC bar -- wait for the others
cl!o
ping ' O -- update neighbour

Informal

s Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,
BARRIER bar)

WHILE TRUE PROC P2 (CHAN INT dO!, di!, ping?,
INT %, y, z: BARRIER bar)
SEQ WHILE TRUE
ask ? x -- take question INT x:
mp a0 ? y SEQ
ans ' 0O -- return answer == SYNC bar -- wait for others
bo ? z do ' 0
SYNC bar -- wait for others ping ? X -- receive update
cOo!' 0 SYNC bar -- wait for others
: dl ! o
ping ? X -- receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,
BARRIER bar)

WHILE TRUE . g
INT %, y, z: What's first?
SEQ

ask 1 O -- ask question
=) NS ? X -- wait for answer
al ?y
bl ? z
SYNC bar -- wait for the others
cl!o <al0>
ping ' O -- update neighbour

Informal

s Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,
BARRIER bar)

WHILE TRUE PROC P2 (CHAN INT dO!, di!, ping?,
INT %, y, z: BARRIER bar)
SEQ WHILE TRUE
ask ? x -- take question INT x:
mp a0 ? y SEQ
ans ' 0O -- return answer == SYNC bar -- wait for others
bo ? z do ' 0
SYNC bar -- wait for others ping ? X -- receive update
cOo!' 0 SYNC bar -- wait for others
: dl ! o
ping ? X -- receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,
BARRIER bar)

WHILE TRUE :
INT x, y, z: What's second?
SEQ

ask 1 O -- ask question
=) NS ? X -- wait for answer
al ?y
bl ? z
SYNC bar -- wait for the others
cl!o <al0>
ping ' O -- update neighbour

Informal

Intuitive

Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,

BARRIER bar)
WHILE TRUE
INT x, y, z:
SEQ
ask ? x
a0 ?y
== ans ! O
b0 ? z
SYNC bar
cO!'O

-- take question
-- return answer

-- wait for others

PROC P2 (CHAN INT dOo!, di!, ping?,
BARRIER bar)
WHILE TRUE
INT x:
SEQ
== SYNC bar -
do ' 0
ping ? X -
SYNC bar -
dl ! o
ping ? X -

wait for others

receive update
wait for others

receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,

BARRIER bar)
WHILE TRUE
INT %, y, z:
SEQ
ask 1 O -- ask question
=) NS ? X -- wait for answer
al ?y
bl ? z

SYNC bar -- wait for the others

cl!o

ping ' O -- update neighbour

What's second?

<a0>

Informal

Intuitive

Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,

BARRIER bar)
WHILE TRUE
INT x, y, z:
SEQ
ask ? x
a0 ?y
ans !' O
=P H0 ? 2
SYNC bar
cOt!'O0

-- take question
-- return answer

-- wait for others

PROC P2 (CHAN INT dOo!, di!, ping?,
BARRIER bar)
WHILE TRUE
INT x:
SEQ
== SYNC bar -
do ' 0
ping ? X -
SYNC bar -
dl ! o
ping ? X -

wait for others

receive update
wait for others

receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,

BARRIER bar)
WHILE TRUE
INT %, y, z:
SEQ
ask 1 O -- ask question
ans ? x -- wait for answer
=y 2l ? y
bl ? z

SYNC bar -- wait for the others

cl!o

ping ' O -- update neighbour

What's second?

(59) or (@)

<a0>

Informal

Intuitive

Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,

BARRIER bar)
WHILE TRUE
INT x, y, z:
SEQ
ask ? x
a0 ?y
ans !' O
=P H0 ? 2
SYNC bar
cOt!'O0

-- take question
-- return answer

-- wait for others

PROC P2 (CHAN INT dOo!, di!, ping?,
BARRIER bar)
WHILE TRUE
INT x:
SEQ
== SYNC bar -
do ' 0
ping ? X -
SYNC bar -
dl ! o
ping ? X -

wait for others

receive update
wait for others

receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,

BARRIER bar)
WHILE TRUE
INT %, y, z:
SEQ
ask 1 O -- ask question
ans ? x -- wait for answer
=y 2l ? y
bl ? z

SYNC bar -- wait for the others

cl!o

ping ' O -- update neighbour

|f second, then?

<a0, bhO0>

Informal

Intuitive

Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,

BARRIER bar)
WHILE TRUE
INT x, y, z:
SEQ
ask ? x
a0 ?y
ans !' O
b0 ? z
== SYNC bar
cOt!'O0

-- take question
-- return answer

-- wait for others

PROC P2 (CHAN INT dOo!, di!, ping?,
BARRIER bar)
WHILE TRUE
INT x:
SEQ
== SYNC bar -
do ' 0
ping ? X -
SYNC bar -
dl ! o
ping ? X -

wait for others

receive update
wait for others

receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,

BARRIER bar)
WHILE TRUE
INT %, y, z:
SEQ
ask 1 O -- ask question
ans ? x -- wait for answer
=y 2l ? y
bl ? z

SYNC bar -- wait for the others

cl!o

ping ' O -- update neighbour

|f second, then?

<a0, b0, al>

Informal

Intuitive

Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,
BARRIER bar)

WHILE TRUE
INT x, y, z:
SEQ WHILE TRUE
ask ? x -- take question INT x:
a0 ? y SEQ
ans ! O -- return answer == SYNC bar
b0 ? z do'!'o
=y SYNC bar -- wait for others ping ? X
cOo!oO SYNC bar
: dl ! o
ping ? X

PROC P2 (CHAN INT dO!, di!, ping?,
BARRIER bar)

wait for others

receive update
wait for others

receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,
BARRIER bar)

WHILE TRUE
INT %, y, z:
SEQ

ask ' O
ans ? x
al ?y
=P hl ? z
SYNC bar
ci!t!o
ping ' O

ask question
wait for answer

wait for the others

update neighbour

|f ‘second then?
1) en ()

<a0, b0, al, bl>

Informal

Intuitive

Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,
BARRIER bar)

WHILE TRUE
INT x, y, z:
SEQ WHILE TRUE
ask ? x -- take question INT x:
a0 ? y SEQ
ans ! O -- return answer == SYNC bar
b0 ? z do'!'o
=y SYNC bar -- wait for others ping ? X
cOo!oO SYNC bar
: dl ! o
ping ? X

PROC P2 (CHAN INT dO!, di!, ping?,
BARRIER bar)

wait for others

receive update
wait for others

receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,
BARRIER bar)

WHILE TRUE
INT %, y, z:
SEQ

ask ' O
ans ? x
al ?y
bl ? z
== SYNC bar
ci!t!o
ping ' O

ask question
wait for answer

wait for the others

update neighbour

|f ‘second then?
1) en ()

<a0, b0, al, bl>

Informal

Intuitive

Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,

BARRIER bar)
WHILE TRUE
INT x, y, z:
SEQ
ask ? x
a0 ?y
ans !' O
=P H0 ? 2
SYNC bar
cO't!' 0

-- take question
-- return answer

-- wait for others

PROC P2 (CHAN INT dOo!, di!, ping?,
BARRIER bar)
WHILE TRUE
INT x:
SEQ
== SYNC bar -
do ' 0
ping ? X -
SYNC bar -
dl ! o
ping ? X -

wait for others

receive update
wait for others

receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,

BARRIER bar)
WHILE TRUE
INT x, y, z:
SEQ
ask 1 O -- ask question
ans ? x -- wait for answer
=y 2l ? y
bl ? z

SYNC bar -- wait for the others

cil!o

ping ' O -- update neighbour

packiracking ...

What's second?

(o) or (@)

<a0>

Informal

Intuitive

Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,

BARRIER bar)
WHILE TRUE
INT x, y, z:
SEQ
ask ? x
a0 ?y
ans !' O
=P H0 ? 2
SYNC bar
cOt!'O0

-- take question
-- return answer

-- wait for others

PROC P2 (CHAN INT dOo!, di!, ping?,
BARRIER bar)
WHILE TRUE
INT x:
SEQ
== SYNC bar -
do ' 0
ping ? X -
SYNC bar -
dl ! o
ping ? X -

wait for others

receive update
wait for others

receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,

BARRIER bar)
WHILE TRUE
INT %, y, z:
SEQ
ask 1 O -- ask question
ans ? x -- wait for answer
=y 2l ? y
bl ? z

SYNC bar -- wait for the others

cl!o

ping ' O -- update neighbour

|f second, then?

<a0, al>

Informal

Intuitive

Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,
BARRIER bar)

WHILE TRUE
INT x, y, z:
SEQ WHILE TRUE
ask ? x -- take question INT x:
a0 ? vy SEQ
ans ! O -- return answer == SYNC bar
=P H0 ? 2 do !0
SYNC bar -- wait for others ping ? x
cOo!oO SYNC bar
: dl ! o
ping ? X

PROC P2 (CHAN INT dO!, di!, ping?,
BARRIER bar)

wait for others

receive update
wait for others

receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,
BARRIER bar)

WHILE TRUE
INT %, y, z:
SEQ

ask 1 O
ans ? X
al ?y
== bl ? 2
SYNC bar
cil!t!o
ping ' O

ask question
wait for answer

wait for the others

update neighbour

|f second, then?

<a0, al>

(* any order)

Informal

Intuitive

Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,
BARRIER bar)

WHILE TRUE
INT x, y, z:
SEQ WHILE TRUE
ask ? x -- take question INT x:
a0 ? vy SEQ
ans ! O -- return answer == SYNC bar
=P H0 ? 2 do !0
SYNC bar -- wait for others ping ? x
cOo!oO SYNC bar
: dl ! o
ping ? X

PROC P2 (CHAN INT dO!, di!, ping?,
BARRIER bar)

wait for others

receive update
wait for others

receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,
BARRIER bar)

WHILE TRUE
INT %, y, z:
SEQ

ask 1 O
ans ? X
al ?y
== bl ? 2
SYNC bar
cil!t!o
ping ' O

ask question
wait for answer

wait for the others

update neighbour

|f second, then?

<a0, al, bO, bl>
<a0, al, bl, bO>

Informal

Intuitive

Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,
BARRIER bar)

WHILE TRUE
INT x, y, z:
SEQ WHILE TRUE
ask ? x -- take question INT x:
a0 ? y SEQ
ans ! O -- return answer == SYNC bar
b0 ? z do'!'o
== SYNC bar -- wait for others ping ? X
cOo!oO SYNC bar
: dl ! o
ping ? X

PROC P2 (CHAN INT dO!, di!, ping?,
BARRIER bar)

wait for others

receive update
wait for others

receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,
BARRIER bar)

WHILE TRUE
INT %, y, z:
SEQ

ask ' O
ans ? x
al ?y
bl ? z
== SYNC bar
ci!t!o
ping ' O

ask question
wait for answer

wait for the others

update neighbour

|f second, then?

<a0, al, bO, bl>
<a0, al, bl, bO>

Informal

s Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,
BARRIER bar)

WHILE TRUE PROC P2 (CHAN INT dO!, di!, ping?,
INT %, y, z: BARRIER bar)
SEQ WHILE TRUE
ask ? x -- take question INT x:
a0 ? vy SEQ
ans ' 0O -- return answer == SYNC bar -- wait for others
bo ? z do ' 0
== SYNC bar -- wait for others ping ? X -- receive update
cOo!' 0 SYNC bar -- wait for others
: dl ! o
ping ? X -- receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,

BARRIER bar)
WHILE TRUE
INT %, y, z:
SEQ
ask 1 O -- ask question
ans ? x -- wait for answer
al ?y
bl ? z
== SYNC bar -- wait for the others
cl!o
ping ' O -- update neighbour

<a0, b0, al, bl>
<a0, al, b0, bl>
<a0, al, bl, bO>

What next?

Informal

s Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,
BARRIER bar)

WHILE TRUE PROC P2 (CHAN INT dO!, di!, ping?,
INT %, y, z: BARRIER bar)
SEQ WHILE TRUE
ask ? x -- take question INT x:
a0 ? vy SEQ
ans ' O -- return answer SYNC bar -- wait for others
bo ? z == d0 ! O
SYNC bar -- wait for others ping ? X -- receive update
== cO ! O SYNC bar -- wait for others
: dl ! o
ping ? X -- receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,

WHILE Tgﬁgm =R ban <a0, b0, al, bl>
INT %, y, z: <a0, al, bO, bl>
SES\Sk 10 -- ask question <a0; al; bl, b0>

ans ? x -- wait for answer
b1 % % What next?

SYNC bar —- wait for the others *
= cl ! 0O
ping ' O -- update neighbour

(* any order)

Informal

s Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,
BARRIER bar)

WHILE TRUE PROC P2 (CHAN INT dO!, di!, ping?,
INT %, y, z: BARRIER bar)
SEQ WHILE TRUE
ask ? x -- take question INT x:
a0 ? vy SEQ
ans ' O -- return answer SYNC bar -- wait for others
bo ? z == d0 ! O
SYNC bar -- wait for others ping ? X -- receive update
== cO ! O SYNC bar -- wait for others
: dl ! o
ping ? X -- receive update

PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,

BARRIER bar) J g
WHILE TRUE That§ 18 pOSSIbI?
o " E orderings of the first 7
ask ! 0 -- ask question signals.
ans ? X -- wait for answer
o What happens when
SYNC bar -- wait for the others -
— o1 1 0 the sub-processes

ping ! O -- update neighbour Start Iooping?

Informal

s Behaviour: occarm-T (executable)

PROC PO (CHAN INT a0?, b0?, cO!, ask?, ans!,
BARRIER bar)

WHILE TRUE PROC P2 (CHAN INT dOo!, di!, ping?,
INT %, y, z: BARRIER bar)
SEQ WHILE TRUE
ask ? x -- take question INT x:
a0 ? vy SEQ
ans ' O -- return answer SYNC bar -- wait for others
bo ? z == d0 ! O
SYNC bar -- wait for others ping ? X -- receive update
= cO ! O SYNC bar -- wait for others
: di!' o
ping ? X -- receive update
PROC P1 (CHAN INT al?, bl?, cl!, ask!, ans?, ping!,
BARRIER bar) " :
WHILE TRUE Could PO signal again
;23 X, Y, 2: on a0 before P2 gave
ask ' 0 -- ask question Its first dQ?
ans ? x -- wait for answer
al ?
b1 2 o Are there some more
SYNC bar -- wait for the others I i . i
> oo possible first-7 signal
ping ! O -- update neighbour SequenceS?

@ Behaviour: occarm-T (verifyable)

a0 b0 cO al bl cl do di
A | A A A
v v) v v
as :
«—— ping
PO P1 P2
Y —>
ans
Device) bar

With verification qualifiers and assertions, we can ask the
occam-m compiler to model check the previous intuition
(which was only about the opening behaviour of the system)
and answer the open gquestions (and more) about its
continuous behaviour.

The compiler does this by generating CSP,,, a declarative
(functional) language, from the occam-m source and using the
FDR2 model checker.

@ Verify Qualifiers: data

If we generated CSP,, that fully reflected the semantics of the
occam-Tt source code, we would quickly produce a system

with too many states for any feasible model checking.
For instance, a single INT variable has 4G possible states!

By default, therefore, data values are ignored when generating
the CSP,,. For instance:

c !

PROC P (VAL INT i, CHAN INT c!)

maps just to:

P (c) = ¢ -> SKIP

@ Verify Qualifiers: data

occam-m code dependant on tests of untracked run-time
values map to non-deterministic choice:

PROC Q (VAL INT i, CHAN INT c!, d!)
IF

] 42

L

TRUE

QC O Il

maps to:

Q (c, d) =c -> SKIP |~] d -> SKIP

@ Verify Qualifiers: data

If data values are significant, we qualify their types:

PROC Q (VAL VERIFY INT 1, CHAN INT c!, d!)

IF

i1 = 42

L
T

pY)
QC O Il
m

Such data variables are tracked and the above now maps to:

Q (1, c, d) =
if i1 == 42 then ¢ -> SKIP else d -> SKIP

@ Verify Qualifiers: data

If data values are significant, we qualify their types:

PROC Q (VAL VERIFY INT 1, CHAN VERIFY INT c!, d!)
IF
i1 = 42
L
E
L

TR

QC O Il

Such data variables and channel messages are tracked and
the above now maps to:

Q (i, c, d =
if i == 42 then c!i -> SKIP else d!i -> SKIP

@ Compiling: occam-1t 2 CSP,,

a0 b0 cO al bl «cl do di
A A

v v

Device

PO (a0, b0, cO, ask, ans, bar) =
let
PO_0O_
within
PO_0O_

ask -> a0 -> ans -> b0 -> bar -> c0 -> PO_0O_

Compiling: occam-1t = CSP,,

a0 b0 cO al bl «cl do di
A A A A

P2

P1 (al, bl, cl, ask, ans, ping, bar) =
let
P1.O_ = ask -> ans -> al -> bl -> bar -> cl1 -> ping -> P1_0_
within
P1 O_

Compiling: occam-1t = CSP),
R S © o
e

P2

P2 (dO, dl1, ping, bar) =
let
P2 0 = bar -> dO -> ping -> bar -> dl1 -> ping -> P2_0_
within
P2_0_

@ Compiling: occam-1t 2 CSP,,

a0 b0 cO al bl «cl do di
A A A A

v_v v_v

PO P1

P2

Device i bar

PROC Device (CHAN INT a0?, b0?, cO!, al?, bl?, cl!, dO!, dil})
CHAN INT ask, ans, ping:
BARRIER bar:
PAR ENROLL bar
PO (a0?, b0?, cO!, ask?, ans!, bar)
P1 (al?, bl?, cll!, ask!, ans?, ping!, bar)
P2 (dO!, di!, ping?, bar)

@ Compiling: occam-nt =2 CSP,,

a0 b0 cO al bl «cl do di
A | A A A
v v) v v
as :
«—— ping
PO P1 P2
— =
ans
Device) bar

channel ask 0_, ans_0_, ping_0O_, bar_0_

local channels are
declared globally, used
locally, hidden and not
used again

Device (a0, b0, cO, al, bl, ci, dO, dl) =
let
Device 0_ =
(PO (a0, b0, cO, ask 0, ans_ 0O _, bar_0)
[l {ask 0, ans_ 0 _, bar_O0_} 1]
P1 (a1, bl, cl1, ask 0 , ans_0O_, ping_O_, bar_0))
\ {ask 0, ans_0_}
within
(Device_0_ [] {ping O _, bar_0 } 1]
P2 (dO, di, ping O _, bar_0))
\ {ping O _, bar_0_}

@ Verify Assertions : occam-T

VERIFY <assertion>
VERIFY NOT <assertion>

<assertion>

DETERMINISTIC.F <process>
DETERMINISTIC.FD <process>
DEADLOCK.FREE.F <process>
DEADLOCK.FREE.FD <process>
L1VELOCK.FREE <process>
TERMINATES <process>

<process> REFINES.T <process>
<process> REFINES.F <process>
<process> REFINES.FD <process>

Only VAL VERIFY
operands need to be
supplied (channels and
barriers are supplied
automatically)

where
<process> is an
instance of a PROC

@ Verify Assertions : occam-m

Without testing the system, we can assert straight away that Device

IS deterministic and free from deadlock and livelock — and that it
doesn’t terminate:

VERIFY DETERMINISTIC.FD Device
VERIFY DEADLOCK.FREE.FD Device
VERIFY LIVELOCK.FREE Device
VERIFY NOT TERMINATES Device

and the compiler says: “ J !

© © © © ©

@ Verify Qualifiers: processes

To verify behaviours beyond determinism, deadlock and
livelock freedom and termination, we need some way to
express the behaviours we want. We can use occam-T
for this, together with refinement.

VERIFY PROC P (...)

The occam-nt compiler generates only €SP,, from such
declarations — no executable code.

Within VERIFY processes, certain restrictions occam-m Iimposes
(currently) can be removed — for instance, output guards and
barrier guards are allowed.

Only VERIFY processes can invoke VERIFY processes.

@ Behaviour: occarm-T (verifyable)

To check whether particular event @

sequences (traces) may initially be ~
performed by Device ... e.g. =——p | [nformal understanding

<a0, b0, al, bl>
<a0, al, b0, bl>
<a0, al, bl, bO>

What next?

() (&) («)
o)

Define processes that have

(* any order)
choice in the matter ... e.g.

@ Behaviour: occarm-T (verifyable)

INT Xx:
SEQ

a0 ? x
b0 ? x
al ? x
bl ? x
do ' O
cO!' O
cl!'O
STOP

VERIFY PROC TO (CHAN INT a0?, b0O?, cO!, al?, bl?, cl!, dO!, dit)

Define processes that have
choice in the matter ... e.g.

o)

VERIFY TO REFINES.T Device

v

Informal understanding

<a0, b0, al, bl>
<a0, al, b0, bl>
<a0, al, bl, bO>

What next?

(<9) (=) ()

(* any order)

... Which verifies our
intuition ©©O

@ Behaviour: occarm-T (verifyable)

INT Xx:
SEQ

a0 ? x
b0 ? x
al ? x
bl ? x
do ' O
cO!' O
cl!'O
STOP

VERIFY PROC TO (CHAN INT a0?, b0O?, cO!, al?, bl?, cl!, dO!, dit)

Informal understanding

<a0, b0, al, bl>
<a0, al, b0, bl>
<a0, al, bl, bO>

What next?

Define processes that have
choice in the matter ... e.g.

o)

VERIFY TO REFINES.T Device

(<9) (=) ()

(* any order)

<a0, b0, al, bl, dO, c0, cl>is
clearly a trace of TO. Therefore, it is
also a trace of Device.

@ Behaviour: occarm-T (verifyable)

INT Xx:
SEQ

a0 ? x
b0 ? x
al ? x
do ' O
bl ? x
cO!' O
cl!'O
STOP

VERIFY PROC T1 (CHAN INT a0?, b0?, cO!, al?, bl?, cl!, dO!, dit)

Define processes that have
choice in the matter ... e.g.

o)

VERIFY T1 REFINES.T Device

X

Informal understanding

<a0, b0, al, bl>
<a0, al, b0, bl>
<a0, al, bl, bO>

What next?

(<9) (=) ()

(* any order)

... Which verifies our
intuition ©©O

@ Behaviour: occarm-T (verifyable)

VERIFY PROC T1 (CHAN INT a0?, b0?, cO!, al?, bl?, ci!, dO!, di!)
INT x:
SEQ
o Informal understanding
3(1) ':)(; <a0, b0, al, bi>
@ <a0, al, b0, bl>
cO!oO <a0, al, bl, bO>
1!
gTOP 0 What next?
(1) (0
Defi_ne processes that have D (* any order)
choice in the matter ... e.g.

- At least one trace of T1 is not a trace
VERIFY T1 REFINES.T Device X of Device. Comparing TO and T1,

the fault lies in the mis-ordering of
dO and b1l.

@ Behaviour: occam-T (verityable)

a0 b0 cO al bl «ci do di
| | A | | A A A
v_ v v ¥
ask .
PO P1 RELN Y
ans
Device bar

Let’s ask a more difficult question about the continuous running of
the system. Suppose the robot would do something very bad if its
controller Device were ever to accept a signal twice on a0 without

a signal on dO or d1 in between. Might this ever happen?

Simple: write a process that checks all signals to/from Device,
looking for the bad scenario and deliberately deadlocks (the
monitored system) if spotted. This is just programming ...

@ Behaviour: occam-T (verityable)

alive

Check S
A A A A
a0l bO| cO al]l bl] c1 do| di
\ \ \ 4 v
ask .
L ping
PO : P1 —> P2
ans
Device bar

Simple: write a process that checks all signals to/from Device,

looking for the bad scenario and deliberately deadlocks (the
monitored system) if spotted. This is just programming ...

@ Behaviour: 0ccam-T (verityable) @

Check ﬂ)

aol bol COT all bll clT dOT d1T
Let’s ask a more difficult question about the continuous running of

the system. Suppose the robot would do something very bad if its
controller Device were ever to signal twice on a0 without a signal

on dO or d1 in between. Might this ever happen?

Simple: write a process that checks all signals to/from Device,
looking for the bad scenario and deliberately deadlocks (the
monitored system) if spotted. This is just programming ...

@ Behaviour: occam-T (verityable)

VERIFY PROC Check (CHAN INT aO!, bO!, c0?, al!, bl!, cl?,
d0?, di1?, alive!)
—* n : the number of a0 signals since the last dO or dl
INITIAL VERIFY INT n IS O:
WHILE TRUE
SEQ
alive ! O
IF
n >= 2
STOP -- refuse all further signals (forcing deadlock)

TRUE
--- process next signal (maintain n)

Let’s ask a more difficult question about the continuous running of
the system. Suppose the robot would do something very bad if its
controller Device were ever to signal twice on a0 without a signal

on dO or d1 in between. Might this ever happen?

@ Behaviour: occam-T (verityable)

{{{ process next signal (maintain n)
INT x:
ALT
a0 ' 0
n:=n+1
bO ! O
SKIP
cO ? x

n = the number of a0

signals received since the
last dO or di

SKIP
al ' O
SKIP
bl ' 0
SKIP
cl ? x
SKIP
do ? x
n :=0
dl ? x

n :=0
33}

This is an ALT with four input
and four output guards

7 O Y W S A

Device

CheckDevice

VERIFY PROC CheckDevice (CHAN INT alive!)
CHAN INT aO, al, bO, bl, cO, cl, dO, di:
PAR
Check (aO!, b0O!, c0?, al!, bl!, cl1?, dO?, di1?, alive!l)
Device (a0?, b0?, cO!, al?, bl?, cl!, do!, dit})

Device

CheckDevice

VERIFY DEADLOCK.FREE.FD CheckDevice J

If Check stops, CheckDevice will deadlock.
Therefore, Check never stops ... and the bad thing can’t happen.

Device

L ERTEE

CheckDevice

VERIFY DEADLOCK.FREE.FD CheckDevice J

Note: protocol checking monitors, such as Check, are sometimes used live to ensure
adherence at run-time (e.g. in device drivers). We are using Check purely for static
analysis — it is not there at run-time and, therefore, has no impact on performance.

@ Behaviour: 0ccam-T (verifyable)

aO bO cO al bl cl d0 d1
‘l(‘lr) v V¥
as :
PO P1 el e2
ans
Device) bar)

So far, our checks have concerned safety — namely that our system
will not do harm (incorrect things). This is not enough! After all, the
STOP process does not do incorrect things — it does nothing. STOP

trace refines every process. Trace refinement is not enough.

A CSP failure is a state that a system reaches (represented by its

trace to that point) where it may refuse to synchronise with its
environment on some given set of events.

Process P failure refines Q if (all traces of P are traces of Q) and
(all failures of P are failures of Q).

@ Behaviour: 0ccam-T (verifyable)

aO bO cO al bl cl d0 d1
‘l(‘l/) v v
as H
PO P1 el e2
ans
Device) bar i

Failure refinement makes a powerful statement! P can only do traces
of Q (so its safe). More: the failures of P are allowed by Q. If Pand Q

execute the same trace to a state where their environment offers a
set of events that Q will not refuse, then P also will not refuse.

A CSP failure is a state that a system reaches (represented by its
trace to that point) where it may refuse to synchronise with its
environment on some given set of events.

Process P failure refines Q if (all traces of P are traces of Q) and
(all failures of P are failures of Q).

@ Behaviour: 0ccam-T (verifyable)

aO bO cO all bl cl d0 d1
‘lr Jr) v v
as H
PO P1 el e2
ans
Device i bar y

We can describe “P failure refines Q” in a positive way: whenever Q
stays alive (engaging with its environment), so does P (and in the
same way). So, If Q is a specification explicitly defining the required
patterns of synchronisation, P will provide them.

A CSP failure is a state that a system reaches (represented by its

trace to that point) where it may refuse to synchronise with its
environment on some given set of events.

Process P failure refines Q if (all traces of P are traces of Q) and
(all failures of P are failures of Q).

@ Behaviour: 0ccam-T (verifyable)

aO bO cO all bl cl d0 d1
\b ‘l/ ask \l' \b ;
PO % P1 P p2
Device : bar

Recall our informal understanding of (at
least some of) the opening traces of Informal understanding
Device (slides 18-35) ... =————p <a0. b0, al. bi>

_ _ <a0, al, bO, bl>
We can formalise the expression of <a0, al, bl, bo>

those traces a bit better ...

What next?

(<9) (=) ()

(* any order)

@ Behaviour: 0ccam-T (verifyable)

aO bO cO al bl cl d0 d1
‘l(‘lr) v V¥
as :
PO P1 el e2
ans
Device) bar)

Recall our informal understanding of (at

least some of) the opening traces of Informal understanding
Device (slides 18-35) ... =————p <al. b0. al. bl>

: : <a0, al, b0, bl>
We can formalise the expression of <a0, al, bl. bO>
those traces a bit better ... —————

<c0> ||| <c1> ||| <do>

A
interleave

@ Behaviour: 0ccam-T (verifyable)

aO bO cO al bl cl d0 d1
‘l(‘lr) v V¥
as :
PO P1 el e2
ans
Device) bar

Recall our informal understanding of (at
least some of) the opening traces of Informal understanding
Device (slides 18-35) ... =—————p

<al0>

We can formalise the expression of
those traces a bit better ... ——

<b0> ||| <al, bl>

<c0> ||| <c1> ||| <do>

interleave

@ Behaviour: 0ccam-T (verifyable)

aO bO cO all bl cl d0 d1
‘lr Jr) v v
as H
PO P1 el e2
ans
Device i bar y

Recall our informal understanding of (at
least some of) the opening traces of Informal understanding
Device (slides 18-35) ... =—————p

<al0>

We can formalise the expression of
those traces a bit better ... \

<b0> ||| <al, bl>

<c0> ||| <c1> ||| <do>

<a0>; (<b0> ||| <al, b1>); (<c0> ||| <c1> ||| <d0>)

@ Behaviour: 0ccam-T (verifyable)

aO bO cO al bl cl d0 d1
‘l(‘l/) v v
as H
PO P1 el e2
ans
Device) bar i

And, still using our intuitive understanding,
guess the next cycle of events ...

We can formalise the expression of
those traces a bit better ... \

<a0>; (<b0> ||| <al, bl>); (<c0> ||| <c1> ||| <d0>);
<a0>; (<b0> ||| <al, bl>); (<c0> ||| <cl1> ||| <d1>)

@ Behaviour: 0ccam-T (verifyable)

aO bO cO all bl cl d0 d1
‘lr Jr) v v
as H
PO P1 el e2
ans
Device i bar y

And, still using our intuitive understanding,
guess the next cycle of events ...

We can formalise the expression of
those traces a bit better ... \ And the rest ..

/

<a0>; (<b0> ||| <al, bl>); (<c0> ||| <c1> ||| <d0>);
<a0>; (<b0> ||| <al, bl>); (<c0> ||| <cl1> ||| <d1>)

@ Behaviour: 0ccam-T (verityable) @

a0 b0 cO al bl cl do di
A A A A
v ¥) v v
as H
PO P1 el e2
ans
Device) bar i

From such trace expressions, we can
directly write down an occam-T process
that offers all of them ...

<a0>; (<b0> ||| <al, bl>); (<c0> ||| <c1> ||| <d0>);: §*
<a0>; (<b0> ||| <al, bl>); (<c0> ||| <cl1> ||| <d1>)

@ Behaviour: occam-T (verityable)

VERIFY PROC DeviceSpec (CHAN INT a0?, b0?, cO!,
al?, bl?, ci!, do!, di})

WHILE TRUE
INT w, X, y, 2:
SEQ
phase 0
phase 1

From such trace expressions, we can
directly write down an occam-T process
that offers all of them ...

<a0>; (<b0> ||| <al, bl>); (<c0> ||| <c1> ||| <d0>);: §*
<a0>; (<b0> ||| <al, bl>); (<c0> ||| <cl1> ||| <d1>)

@ Behaviour: occam-T (verityable)

{{{ phase 0O
SEQ

a0 ? w
PAR
b0 ? x
SEQ
al ?y
bl ? Z
PAR
cO!'oO
cl!O
do ' O

1335

From such trace expressions, we can
directly write down an occam-T process
that offers all of them ...

<a0>; (<b0> ||| <al, bl>); (<c0> ||| <c1> ||| <d0>);: §*
<a0>; (<b0> ||| <al, bl>); (<c0> ||| <cl1> ||| <d1>)

@ Behaviour: occam-T (verityable)

{{{ phase 1 —
SEQ
a0 ? w
PAR
bO ? x
SEQ
al ?y
bl ? Z
PAR
cO!' O
ci!t! o
di!' o <

1335

From such trace expressions, we can
directly write down an occam-T process
that offers all of them ...

This generation

can be automated.

<a0>; (<b0> ||| <al, bl>); (<c0> ||| <c1> ||| <d0>);
<a0>; (<b0> ||| <al, bl>); (<c0> ||| <cl1> ||| <d1>)

@ Behaviour: occam-T (verityable)

VERIFY PROC DeviceSpec (CHAN INT a0?, bO?, cO!,al?, bl?, cl!, dO!, di!)

DeviceSpec is an explicit specification of all signal patterns we
expect (or need) Device to be able to perform:

<a0>; (<b0> ||| <al, bl>); (<c0> ||| <c1> ||| <d0>);: §*
<a0>; (<b0> ||| <al, bl>); (<c0> ||| <cl1> ||| <d1>)

Device was not implemented as DeviceSpec because of the three

iIndependent functions (weapons systems, vision processing and
motion stability) it had to perform. Process-oriented design led to its
three communicating sub-systems.

Whilst our intuition indicated that the first two lines of DeviceSpec
reflected the initial behaviour of Device, it was unclear whether the

pattern repeated cleanly as its sub-components started looping.

@ Behaviour: occam-T (verityable)

VERIFY PROC DeviceSpec (CHAN INT a0?, bO?, cO!,al?, bl?, cl!, dO!, di!)

DeviceSpec is an explicit specification of all signal patterns we
expect (or need) Device to be able to perform:

<a0>; (<b0> ||| <al, bl>); (<c0> ||| <c1> ||| <d0>);: §*
<a0>; (<b0> ||| <al, bl>); (<c0> ||| <cl1> ||| <d1>)

However:

VERIFY Device REFINES.FD DeviceSpec

v

This is all we need. Any traces performed by Device are allowed
by DeviceSpec — so it's safe. Any failures reached by Device are
allowed by DeviceSpec — so it’s as alive as DeviceSpec (which
was built always to offer everything in the specified trace pattern).

@ Behaviour: occam-T (verityable)

VERIFY PROC DeviceSpec (CHAN INT a0?, bO?, cO!,al?, bl?, cl!, dO!, di!)

DeviceSpec is an explicit specification of all signal patterns we
expect (or need) Device to be able to perform:

<a0>; (<b0> ||| <al, bl>); (<c0> ||| <c1> ||| <d0>); §*
<a0>; (<b0> ||| <al, bl>); (<c0> ||| <cl1> ||| <d1>)

However:

VERIFY Device REFINES.FD DeviceSpec J

Without this verification, we may be tempted to add another barrier
(bar) sync at the end of each loop of PO and P1 and half-loop of P2.

The above refinement shows that the required pattern does indeed
repeat cleanly and, so, this overhead is unnecessary.

@ Behaviour: occam-T (verityable)

VERIFY PROC DeviceSpec (CHAN INT a0?, bO?, cO!,al?, bl?, cl!, dO!, di!)

DeviceSpec is an explicit specification of all signal patterns we
expect (or need) Device to be able to perform:

<a0>; (<b0> ||| <al, bl>); (<c0> ||| <c1> ||| <d0>);: §*
<a0>; (<b0> ||| <al, bl>); (<c0> ||| <cl1> ||| <d1>)

However:

VERIFY Device REFINES.FD DeviceSpec J

Rather than being deduced after implementation, DeviceSpec may
be part of the specification for Device. We certainly need assurance
of the behaviour of Device to use it securely with other components.
All its patterns of synchronisation (for safety and liveness questions)
can be trivially deduced from.DeviceSpec.

@ Behaviour: occam-T (verityable)

VERIFY PROC DeviceSpec (CHAN INT a0?, bO?, cO!,al?, bl?, cl!, dO!, di!)

DeviceSpec is an explicit specification of all signal patterns we
expect (or need) Device to be able to perform:

<a0>; (<b0> ||| <al, bl>); (<c0> ||| <c1> ||| <d0>);: §*
<a0>; (<b0> ||| <al, bl>); (<c0> ||| <cl1> ||| <d1>)

However:

VERIFY Device REFINES.FD DeviceSpec J

We also have:

VERIFY DeviceSpec REFINES.FD Device ‘/

But that’s just icing on the cake! © © ©

@ Verify Assertions : compilation

For simplicity, most process arguments are omitted in VERIFY
assertions — the occam-m compiler supplies all necessary events.

VERIFY DEADLOCK.FREE.FD Device

channel a0_42 , b0 42 , c0 42 , al 42,
bl 42 , c1 42 , dO_42 , d1_42_

assert Device (a0 42 , b0 42 , c0 42 , al 42 ,
bl 42 , cl1 42 , d0O_42 , dl1_42)
:[deadlock free [FD]]

The CSP,, channel names are generated from the occam-m CHAN
and BARRIER parameter names of the asserted process, suffixed

by a unigue number generated by the compiler.

@ Verify Assertions : compilation

For simplicity, most process arguments are omitted in VERIFY
assertions — the occam-m compiler supplies all necessary events:

VERIFY NOT TERMINATES Device

assert not SKIP [FD=
Device (a0_42_ , b0 42 , c0 42 , al 42 ,
bl 42 , cl1_42_, dO_42_ , d1_42) \ Events

The CSP,, channel names are generated from the occam-m CHAN
and BARRIER parameter names of the asserted process, suffixed

by a unigue number generated by the compiler.

@ Verify Assertions : compilation

For simplicity, most process arguments are omitted in VERIFY
assertions — the occam-m compiler supplies all necessary events:

VERIFY NOT TERMINATES Device

assert not SKIP [FD=
Device (a0_42_ , b0 42 , c0 42 , al 42 ,
bl 42 , cl1 42 , d0_42 , d1_42) \ Events

Subseguent assertions about the same process may reuse channels
previously generated.

@ Verify Assertions : compilation

For simplicity, most process arguments are omitted in VERIFY
assertions — the occam-m compiler supplies all necessary events.

VERIFY Device REFINES.FD DeviceSpec

assert DeviceSpec (a0_42 , b0 42 , c0 42 , al_42_,
bl 42 , cl1 42 , d0O_42 , d1_42)
[FD=
Device (a0_42_ , b0 42 , c0 42 , al 42 ,
bl 42 , cl1 42 , d0O_ 42 , d1_42)

Subseguent assertions about the same process may reuse channels
previously generated. [Note: processes in refinement assertions
should have the same parameter signatures, though the formal
names can be different].

@ Verify Assertions : verified data

The only arguments needed for CSP,, assertions are those for

occam-m VERIFY data parameters. Channels and barriers can be
supplied automatically. Non-VERIFY data parameters are irrelevant.

For example, if we need an assertion about:

PROC System (VAL VERIFY INT n, CHAN VERIFY INT out!)

we must supply a value for n, since we have declared it relevant:

VERIFY DEADLOCK.FREE.FD System (42,)

where the underscore indicates arguments that are either irrelevant
(non-VERIFY data) or automatic (channels and barriers).

@ Verify Assertions : verification GUI

Later, we plan an option for the occam-m compiler just to generate
CSP,, code to be picked up by a GUI with facilities for interactive
generation, checking and reporting of VERIFY assertions. These
will be similar to those given by the FDR2 GUI, but processes and
assertions will be in terms of the occam-m sources. FDR2, or some
derivative, remains the underlying workhorse for model checking.

The GUI will allow flexible exploration of assertions with VERIFY
data values. It will also prove useful when some assertions take a
long time to check ... rather than wait for all checks to complete
during compilation (as a single batch of assertions to FDR2).

Reflection on Case Study (Device)

Further study:

All sorts of what-ifs on the behaviour of the system can be
explored and answered without running any code ... e.g.

If the (internal) ping communications were
removed, does Check still hold?

Do the a0 and al signals strictly alternate?

Do the b0 and bl signals strictly alternate?

If we added an extra bar sync at the end of
each cycle in PO and P1 and half-cycle in P2,
would it make any difference?

If the elevator cabin is not at a floor, might the

. Another exercise ...
floor doors to the elevator shaft still open?

® O

g J The Dining Philosophers

The story of The Dining Philosophers is due to Edsger
Dijkstra — one of the founding fathers of Computer Science.

It illustrates a classic problem in concurrency: how to share
resources safely between competing consumers.

http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD310. PDF

<:::EE;;;caldoc;;;;E:::>

thinking

eatBar

eating

College P

// \\
/7 \\

A new, really really neat, solution (Neil Brown / PHW)

VERIFY PROC Phil (CHAN INT thinking!, eating!, BARRIER eatBar)
WHILE TRUE
SEQ
thinking ! O
SYNC eatBar
eating ! O thinking
SYNC eatBar eatBar P —

L

- eating

Phil (thinking, eating, eatBar) =
let
Phil_0_ =
thinking -> eatBar >
eating —> eatBar -> Phil_0O_
within
Phil_O_

thinking

eating

College

<

eatBar
P

//
77

\\
W

VERIFY PROC Fork (BARRIER eatBarRight, eatBarlLeft)
WHILE TRUE
ALT
SYNC eatBarRight ‘
SYNC eatBarRight eatBarRight
SYNC eatBarlLeft
SYNC eatBarLeft

eatBarLeft

Fork (eatBarRight, eatBarlLeft) =
let
Fork 0 =
eatBarRight -> eatBarRight -> Fork 0_
L[]
eatBarLeft > eatBarlLeft -> Fork 0O_
within
Fork O_

VAL INT nPhils IS 5:

AM}

nPhils = 5

3

\// 2\\j
7 R

VERIFY PROC Philosophers ([nPhils]CHAN INT thinking!, eating!,
[nPhi ls]BARRIER eatBar)
PAR id = O FOR nPhils
Phil (thinking[id]!, eating[id]!, eatBar[id])

Philosophers (thinking, eating, eatBar) =
11l id - {O..(nPhils - 1)} @
Phil (thinking.id, eating.id, eatBar.id)

... except that FDR2 uses much
less memory and time if replicated

AM}

(or merely repeated) processes 1

take no parameters, but instead

use event renaming to wire up the 3

different instances. _ 7 T \uiy,
(4 W

channel thinking_r0_, eating _r0_, eatBar_ro0_

Philosophers (thinking, eating, eatBar) =
let
Philosophers_0 = Phil (thinking_r0_, eating_rO0_, eatBar_r0)
within
11l id - {O..(nPhils - 1)} @
Phillosophers O [[
thinking_r0_ <- thinking.id,
eating_r0_ <- eating.id,
eatBar_r0O_ <- eatBar.id)

11

Note: the three
declared channels are
not actually used !!

VAL INT nPhils IS 5:

a0

nPhils = 5

3

\//

2

\

(44

W

VERIFY PROC Forks ([nPhils]BARRIER eatBar)
PAR id = 0 FOR nPhils
VAL INT right IS id:
VAL INT left IS (id + 1)\nPhils:
Fork (eatBar[right], eatBar[left])

Forks (eatBar) =
Il id - {O..(nPhils — 1)} @
[{ eatBar.id, eatBar.((id + 1)%nPhils) }1
Fork (eatBar.id, eatBar.((id + 1)%nPhils))

... except that FDR2 uses much
less memory and time if replicated

AM}

(or merely repeated) processes 1

take no parameters, but instead

use event renaming to wire up the 3

different instances. _ 7 T \uiy,
(4 W

Note: the two
declared channels are

not actually used !!
/

channel eatBarRight_r2_, eatBarlLeft_r2_

Forks (eatBar) =
let
Forks_0 = Fork (eatBarRight_r2_, eatBarLeft_r2)
within
Il id : {O..(nPhils - 1)} @
[{ eatBar.id, eatBar.((id + 1)%nPhils) }]
Forks O [L
eatBarRight_r2_ <- eatBar.id,
eatBarLeft_r2_ <- eatBar.((id + 1)%nPhils)

11

VAL INT nPhils IS 5:

a
A

nPhils = 5

\// \ j
"7 W

VERIFY PROC College ([nPhils]CHAN INT thinking!, eating!)
[nPhils]BARRIER eatBar:
PAR
Philosophers (thinking!, eating!, eatBar)
Forks (eatBar)

channel eatBar_99_ : {O0..(nPhils - 1)}

College (thinking, eating) =
(Philosophers (thinking, eating, eatBar_99) [| {] eatBar_99_ |} |1
Forks (eatBar_99)) \ {| eatBar_99_ |}

AM}

\ /i \ j
"7 W

VERIFY PROC College ([nPhils]CHAN INT thinking!, eating!)
[nPhils]BARRIER eatBar:
PAR
Philosophers (thinking!, eating!, eatBar)
Forks (eatBar)

VERIFY DEADLOCK.FREE.FD College J

VERIFY LIVELOCK.FREE College J @ @ @

VERIFY NOT DETERMINISTIC.FD College J

®@® There is a problem though' ®

The previous model check verifies properties of a college
with precisely 5 philosophers. The FDR2 model check is
almost instant.

Scaling to 10 philosophers puts a strain on my laptop — it
gets very hot and takes a few minutes. Scaling to 20 fails.

In the FDR2 manual, Bill Roscoe explains how to verify a
college with 107200 philosophers ... we had better follow
his guidelines ... and tackle the black art of compression in
model checking ...

With our simpler college, we want to beat that scale!
Further, we would like to verify a college of any number of
philosophers ... using induction.

®

. ®
®§J® Solving the problem @
®

The first guideline is not to build the philosophers and forks
as separate sub-systems and, then, the college as their
parallel combination. This is what we did and it doesn’t let
us use inductive reasoning very well.

Instead, first build a philospher-fork pair. Next, build chains
of philospher-fork pairs using recursion (e.g. a chain of
length n is a chain of length (n-1) plus one more pair).
Verify properties of the chain, for any n. Finally, add one
more pair that connects both ends of a chain and get the
college. Verify the college using verified properties of the
chain.

®@® Solving the problem ©

There are two further points that are needed: hiding and
compression.

First, note that the thinking and eating reports from the
philosophers play no role in the deadlock / livelock
properties of the college. Each philosopher engages on its
own thinking and eating channels with the environment of
the college. The forks do not engage with those channels.

Therefore, no thinking or eating report can block the
operations of the college. Verifying deadlock and livelock
freedom in a college with the thinking and eating events
hidden will also verify the result for a college that doesn’t
hide them.

Recall ...

VERIFY PROC Phil (CHAN INT thinking!, eating!, BARRIER eatBar)
WHILE TRUE
SEQ
thinking ! O
SYNC eatBar
eating ! O thinking
SYNC eatBar eatBar P —

L

- eating

Phil® (thinking, eating, eatBar) =
let
Phil_0_ =
thinking -> eatBar >
eating —> eatBar -> Phil_0_
within
Phil_O_

VERIFY PROC Phil. (BARRIER eatBar)
CHAN INT thinking!, eating!: —- channel *ends* only

Phil (thinking!, eating!, eatBar)

channel thinking_hO_, eating_hO_

Phil® (eatBar) =
Phil (thinking_hO_, eating_hO_, eatBar)
\ {] thinking_hO_, eating_hO_ |}

Which is the same as ...

VERIFY PROC Phil. (BARRIER eatBar)
WHILE TRUE
SEQ
SYNC eatBar
SYNC eatBar

\2?

Phil® (eatBar) =
let
Phil_O_ = eatBar -> eatBar -> Phil_0O_
within
Phil_O_

... but without changing source code ©

We can ask for the size of the state transition

machine generated by FDR ...

VERIFY PROC Phil. (BARRIER eatBar)
CHAN INT thinking!, eating!: -- channel *ends* only
Phil (thinking!, eating!, eatBar)

VERIFY SIZE Phil eatBar P*
VERIFY SIZE Phil. XKT////////

\

4 states, 4 transitions

... hot won yet ... need to compress!!

Compress ...

VERIFY PROC Phil.. (BARRIER eatBar)
NORMALISE -- reduce state machine to normal form

Phil. (eatBar)

1 state, 1 transition

VERIFY SIZE Phil..

Phil®® (eatBar) = normalise (Phil’® (eatBar))

... abigwin !l Adding such a (non-reporting, compressed)

philosopher to any system cannot increase the number of states.

And Is the same as ...

VERIFY PROC Phil.. (BARRIER eatBar)
WHILE TRUE
SYNC eatBar

Phil®*® (eatBar) =
let
Phil_O_ = eatBar -> Phil_0O_
within
Phil_O_

... but without changing source code ©

thinking

eating

College

<

eatBar
P

//
77

\\
W

VERIFY PROC Fork (BARRIER eatBarRight, eatBarlLeft)
WHILE TRUE
ALT
SYNC eatBarRight .
SYNC eatBarRight eatBarRight
SYNC eatBarlLeft
SYNC eatBarlLeft

eatBarLeft

VERIFY SIZE Fork

3 states, 4 transitions

VERIFY PROC PhillFork (CHAN INT thinking!, eating!,
BARRIER eatBarRight, eatBarlLeft)
PAR
Phil (thinking!, eating!, eatBarRight)
Fork (eatBarRight, eatBarlLeft)

VERIFY SIZE PhilFork

thinking
P —

eating

eatBarRight

eatBarLeft

6 states, 9 transitions

VERIFY PROC PhilFork. (BARRIER eatBarRight, eatBarlLeft)
PAR
Phil.. (eatBarRight)
Fork (eatBarRight, eatBarlLeft)

VERIFY SI1ZE PhilFork.

eatBarRight P**

eatBarLeft

VERIFY PhilFork. EQUIVALENT.FD Fork

3 states, 4 transitions

... PhilFork. is the same as Fork ©

Now build a chain ... using recursion

VERIFY PROC Chain (VAL VERIFY INT length, —-- assume >= 1
BARRIER eatBarRight, eatBarlLeft)

IF
length = 1
PhilFork. (eatBarRight, eatBarlLeft)
TRUE
NORMALISE
BARRIER eatBarMiddle:

PAR
Chain (length — 1, eatBarRight, eatBarMiddle)

PhilFork. (eatBarMiddle, eatBarlLeft)

Generating the CSP,, code for this requires an extra care ...
(because FDRZ does something it shouldn’'t — claim!)

The following does not work correctly ...

Now build a chain ... using recursion

channel eatBarMiddle

Chain (length, eatBarRight, eatBarlLeft)

if length == 1 then
PhilFork® (eatBarRight, eatBarlLeft)
else

normalise (
(Chain (length — 1, eatBarRight, eatBarMiddle)

[| {eatBarMiddle} |]
PhilFork”® (eatBarMiddle, eatBarlLeft)

) \ {eatBarMiddle}

eatBarMiddle events “hidden” inside the recursive instance
of Chain get confused with the eatBarMiddle connecting

that instance with PhilFork>. ® ® ®

We have to manufacture lots of eatBarMiddle events ...

Now build a chain ... using recursion

channel eatBarMiddle : Int

Chain (length, eatBarRight, eatBarlLeft)

if length == 1 then
PhilFork® (eatBarRight, eatBarlLeft)
else

normalise (
(Chain (length — 1, eatBarRight, eatBarMiddle)

[| {eatBarMiddle.length} |]
PhilFork”® (eatBarMiddle, eatBarlLeft)
) \ {eatBarMiddle.length}

... and use a different one for each Iength. Now we are OK! © © ©

But it really should not be up to us to declare and use this infinite set of

hidden events. Why doesn’'t FDRZ just rename hidden events to unique
names that cannot be expressed by the FDRZ coder? Not doing so
seems to break the semantics of hiding ... ???

What’'s happening with the sizes?

VERIFY PROC Chain (VAL VERIFY INT length, —-- assume >= 1
BARRIER eatBarRight, eatBarlLeft)
IF
length = 1
PhilFork. (eatBarRight, eatBarlLeft)
TRUE
NORMAL ISE
BARRIER eatBarMiddle:
PAR
Chain (length — 1, eatBarRight, eatBarMiddle)
PhilFork. (eatBarMiddle, eatBarlLeft)
VERIFY SIZE Chain (1, _,) --> 3 states, 4 transitions
VERIFY SIZE Chain (2, _,) --> 1 state, 2 transitions
VERIFY SIZE Chain (3, _,) --> 1 state, 2 transitions
VERIFY SIZE Chain (4, _, D) --> 1 state, 2 transitions

How similar are they and might they deadlock?

VERIFY PROC Chain (VAL VERIFY INT length, —-- assume >=
BARRIER eatBarRight, eatBarlLeft)

IF
length = 1
PhilFork. (eatBarRight, eatBarlLeft)
TRUE
NORMALISE
BARRIER eatBarMiddle:

PAR
Chain (length — 1, eatBarRight, eatBarMiddle)

PhilFork. (eatBarMiddle, eatBarlLeft)

1

From Chain (2, _,) upwards, they can certainly livelock —
Infinite sequences of eatBarMiddle events!

So, deadlock and refinement checking must only be done with
the failures model.

How similar are they and might they deadlock?

VERIFY

VERIFY
VERIFY
VERIFY
VERIFY
VERIFY

VERIFY
VERIFY
VERIFY
VERIFY

PROC Chain (VAL VERIFY INT length,

DEADLOCK.FREE.F
DEADLOCK.FREE.F
DEADLOCK.FREE.F
DEADLOCK.FREE.F
DEADLOCK.FREE.F

(1,
(2,
@,
4,

Chain
Chain
Chain
Chain

Ll

Chain (1,
Chain (2,
Chain (3,
Chain (4,
Chain (5,

|
Ll
BN N

EQUIVALENT.F Chain (2,
EQUIVALENT.F Chain (3,
EQUIVALENT.F Chain (4,
EQUIVALENT.F Chain (5,

—— assume >=
BARRIER eatBarRight, eatBarlLeft)

LU
Qe

1

Let H(i) be the hypothesis that:

Chain (4,

_» _) EQUIVALENT.F Chain (i,

—)

Clearly H(4) and, by model checking, H(5).

H(i) is: Chain (4, _,) EQUIVALENT.F Chain (i, _,)

We have H(4) and H(5). Suppose H(i) for any i >=4. Consider:

Chain (i+l1l, eatBarRight, eatBarLeft)

This reduces to:

PAR

BARRIER eatBarMiddle:

Chain (i, eatBarRight, eatBarMiddle) H(i+1)
PhilFork. (eatBarMiddle, eatBarLeft)

By H(i), this is EQUIVALENT.F to:

PAR

BARRIER eatBarMiddle:

Chain (4, eatBarRight, eatBarMiddle)
PhilFork. (eatBarMiddle, eatBarlLeft)

But this is the same as:

Which, by H(5), is EQUIVALENT.F to: | Chain (4, eatBarRight, eatBarlLeft)

Chain (5, eatBarRight, eatBarlLeft)

H(i) is: Chain (4, _,) EQUIVALENT.F Chain (i, _,)

Clearly H(4) and, by model checking, H(5).
We have just shown that, for any i >= 4, H(i) implies H(i+1).

By induction therefore, for all i >= 4, we have H(i).

All chains of (no reporting) philosopher-fork pairs with lengths equal
to or greater than 4 are failures equivalent. Further, all such chains
are deadlock free (since model checking gave us that for chains of
lengths 1 through 4).

But ... what about Colleges?

But ... what about Colleges?

VERIFY PROC CollegeChain (VAL VERIFY INT size) -- assume >= 2
NORMALISE
[2]BARRIER eatBar:
PAR
PhillFork. (eatBar[0]., eatBar[1])
Chain (size - 1, eatBar[1], eatBar[0])

We can immediately deduce that all Coll legeChains with size equal to or
greater than 5 are failures equivalent (since their Chain sub-components
have lengths equal to or greater than 4 and are failures equivalent).

VERIFY DEADLOCK.FREE.F CollegeChain (2, _,)

VERIFY DEADLOCK.FREE.F CollegeChain (3, _,)
VERIFY DEADLOCK.FREE.F CollegeChain (4, _,)
VERIFY DEADLOCK.FREE.F CollegeChain (5, _,)

Hence, all Col legeChains with size equal to or greater than 2 are deadlock
free. Of course, with no reporting, they are hopelessly livelocked !

So ... what about reporting Colleges?

An earlier argument showed that a deadlock free result for a college with
external reports hidden implies a deadlock free result for a college with
external reports (since the external reporting cannot cause internal

blocking). So all reporting colleges of any size are deadlock-free.

The following argument shows that a college with external reports is also
livelock free ...

From simple code inspection, a Phil / \
process cannot engage in two eatBar
events (internal) without an (external)

y v\

w

intervening report.

This could be model-checked, using
techniques discussed earlier, if it was
felt necessary! \ ,{/ \},‘ j

VERIFY PROC Phil (CHAN INT thinking!, eating!, BARRIER eatBar)
WHILE TRUE

SEQ -
thinking ! O eatBar P thmkmg#:
SYNC eatBar eating
eating ' O

SYNC eatBar

From simple code inspection, a Phil / \
process cannot engage in two eatBar
events (internal) without an (external)
intervening report.

h\
w

This could be model-checked, using
techniques discussed earlier, if it was
felt necessary! \ ,{/ \},‘ j

For the college not to be livelock free ... it must be possible for it to
engage in an infinite sequence of internal events ... and the only internal
events are eatBars. Suppose that this happens!

If the college has size n, it has only n eatBars. After at most (n+1)
eatBar events, at least one must have occurred at least twice. But the
Phil process engaging with that eatBar must (by the above) have
made an external report ... so the college is not livelocked.

This is a contradiction! So the supposition is false — and the college is
livelock free.

Finally, the Brute Force Approach

In Roscoe’s book, chains are not built up one-at-a-time like this (possibly
because the standard dining philosophers solution analysed does not
collapse as nicely as this one, when reporting is hidden?). Instead, they
are built up in powers of 10. We can do this too:

--* A chain of (length”™level) philospher-fork pairs.

VERIFY PROC Chain2 (VAL VERIFY INT level, length,
BARRIER eatBarRight, eatBarlLeft)

IF
level = 0
PhilFork. (eatBarRight, eatBarLeft)
TRUE
NORMAL ISE
[length-1]BARRIER eatBar:
PAR
Chain2 (level - 1, length, eatBarRight, eatBar[0])
PAR id = 1 FOR length - 2
Chain2 (level — 1, length, eatBar[id - 1], eatBar[id])
Chain2 (level - 1, length, eatBar[length - 2], eatBarlLeft)

Finally, the Brute Force Approach

--* A chain of (length”™level) philospher-fork pairs.
VERIFY PROC Chain2 (VAL VERIFY INT level, length,
BARRIER eatBarRight, eatBarlLeft)

VERIFY DEADLOCK.FREE.F Chain2 (0, 10, _,) v 4
VERIFY DEADLOCK.FREE.F Chain2 (1, 10, _,) v 4
VERIFY DEADLOCK.FREE.F Chain2 (10, 10, _, D)
VERIFY DEADLOCK.FREE.F Chain2 (100, 10, _,) /.
VERIFY DEADLOCK.FREE.F Chain2 (1000, 10, ,)
VERIFY Chain2 (1, 2, _, _) EQUIVALENT.F Chain2 (2, 2, _, D X
VERIFY Chain2 (2, 2, _, _) EQUIVALENT.F Chain2 (3, 2, ,) «
VERIFY Chain2 (1, 10, ,) EQUIVALENT.F Chain2 (2, 10, .,)

And the Colleges ...

Finally, the Brute Force Approach

--* A college of size (length”™level) + 1.
VERIFY PROC CollegeChain2 (VAL VERIFY INT level, length)
NORMAL ISE
[2]BARRIER eatBar:
PAR
PhilFork. (eatBar[0], eatBar[1])
Chain2 (level, length, eatBar[1l]., eatBar[0])

VERIFY DEADLOCK.FREE.F CollegeChain2 (0, 10, ,)
VERIFY DEADLOCK.FREE.F CollegeChain2 (1, 10, _,)
VERIFY DEADLOCK.FREE.F CollegeChain2 (10, 10, ,)

VERIFY DEADLOCK.FREE.F CollegeChain2 (100, 10, ,)
VERIFY DEADLOCK.FREE.F CollegeChain2 (1000, 10, ,)
VERIFY DEADLOCK.FREE.F CollegeChain2 (2000, 10, ,)
VERIFY DEADLOCK.FREE.F CollegeChain2 (2500, 10, ,)

NN QN

FDR2 verifies the first four above almost instantly. The college of size
(1071000 + 1) takes around 8 seconds and (1072000 + 1) around 20
seconds. The last one crashes FDR2: “broken pipe” on the terminal
launch window.

Finally, the Brute Force Approach

--* A college of size (length”™level) + 1.
VERIFY PROC CollegeChain2 (VAL VERIFY INT level, length)
NORMAL ISE
[2]BARRIER eatBar:
PAR
PhilFork. (eatBar[0], eatBar[1])
Chain2 (level, length, eatBar[1l]., eatBar[0])

VERIFY DEADLOCK.FREE.F CollegeChain2 (2000, 10, _,) J

The same arguments as before reveal that removing the report hiding
from these colleges leaves them deadlock and livelock free.

For the college with (1072000 + 1) philosophers, all we need is a universe
large enough to contain the computer on which to run it.

We may actually need several parallel universes. Establishing the barrier
syncs and channel communications between them is an open question.

Reflection

occam-T / CSP,,

occam-1t teams well with CSP,, to provide efficient executables
and rich formal analysis.

This presentation reflects a proposal to extend occam-1 to
include verification assertions (about deadlock, livelock,
determinism and refinement). Its compiler will generate suitably
abstracted CSP,, and interact with the FDR2 model checker,
feeding back results in terms of the source occam-T program.
Together with the ancient formal Laws of occam Programming *,
this moves occam-m towards a process algebra in its own right.

http://portal .acm.org/cirtation.cfm?1d=53255

[A.W.Roscoe and C.A.R.Hoare, 1988]

Reflection

Formal verification of the behaviour of concurrent processes can
be achieved — by students — even though they engaged in only
simple reasoning themselves.

The complexity of synchronisation and communication analysed
goes far beyond the embarrassingly parallel.

Aside: model checking found an error overlooked in developing
the (Device) case study on paper (the need for ping) ... which
shows the necessity for formal checks (especially when those
responsible think they won't make mistakes!).

Further reading: Santa Claus: Formal Analysis of a Process
Oriented Solution *

http:/dor.acm.org/10.1145/1734206.1734211

TOPLAS, [April, 2010]

Reflection

Class experience

The (Device) case study presented was developed from one

first worked through in a single lesson of a graduate class in
concurrency at UNLV in the spring of 2010.

They had previously studied a range of concurrency approaches,
including process-oriented material from the Kent “Concurrency

Design and Practice” course. https://moodle.kent.ac.uk/
external/course/view.php?id=31

They were comfortable with using occam-1 in non-trivial projects

(thousands of interacting processes), so the example system
here would be considered fairly simple.

Nevertheless, it was appreciated that relying just on intuitive
understanding is unsafe — especially if the application were
safety critical.

A Thesis (for which we have experimental evidence)

can we (and should we) teach concurrency at the start of
the undergraduate CS curriculum ...

we can (and we should) teach formal analysis and verification
of this concurrency at the same time ...

A Thesis (for which we have experimental evidence)

can we (and should we) teach concurrency at the start of
the undergraduate CS curriculum ...

Because it's
there

Sequence, variables, assignment, parameters,
concurrency, channels, synchronisation, ...

I \
/
Fundamental primitives for software engineering

{
All are important. All are simple. All are available.

A Thesis (for which we have experimental evidence)

can we (and should we) teach concurrency at the start of
the undergraduate CS curriculum ...

Because it
scales

Because it's

there Because it

simplifies

7
Process -)
Bifareiien for complexity
|
CSP / m-calculus for performance

occam-1t / JCSP

A Thesis (for which we have experimental evidence)

Complex and high-performance systems cannot avoid
concurrent design, implementation and reasoning.

Common concurrency bugs are intermittent — not
repeatable on demand. Untestable in practice.

We stand on the shoulders of giants (who made the
theory and model checkers). We verify programs just
by writing programs ... it becomes everyday practice.

\
|

we can (and we should) teach formal analysis and verification
of this concurrency at the same time ...

Can we teach students (those who love to program, anyway)

concurrency so that:

they quickly develop a correct and intuitive understanding of the primitive
mechanisms (e.g. processes, communication, synchronisation, networks)
and higher level patterns (e.g. client-server, phased barrier, I/O-PAR) ... ?

they can use those primitives and patterns with the same fluency as they use
serial computing primitives, without tripping over dark hazards ... ?

they can develop their own patterns when the standard ones don’t apply ... ?

they can use formal methods to verify good behaviour (e.g. freedom from
deadlock and livelock, safety, liveness), without training in the underlying
mathematics (process algehbra, denetational semantics) ... 2

they can do this as normal everyday practice, without any sense of fear ... ?

Any guestions?

Can we teach students (those who love to program, anyway)
concurrency so that:

they quickly develop a correct and intuitive understeg e primitive
mechanisms (e.g. processes, communication, Svg 1, hetworks)
and higher level patterns (e.g. client-server, pl 7, IO-PAR) ... ?

they can use those primitives and patteg same fluency as they use
serial computing primitives, without g dark hazards ... ?

they can develop their own paig me standard ones don’t apply ... ?

they can use formal meig 7/ good behaviour (e.g. freedom from
deadlock and livelocly 1ess), without training in the underlying
mathematics (prog denotational semantics) ... 2

they can do thiS al everyday practice, without any sense of fear ... ?

