
Process-Oriented Subsumption Architectures
in Swarm Robotic Systems

Jeremy Posso
Department of Computer Science, University of York

Adam Sampson
IAMG, University of Abertay Dundee

Jon Simpson
School of Computing, University of Kent

Jon Timmis
Department of Electronics, University of York



Introduction

● Jeremy Posso's MSc project at York in 2009
– Supervised by Jon Timmis

– Worked with Jon Simpson on architecture, and 
Adam Sampson on Player/Stage bindings

● Robotic control is an inherently concurrent 
problem: sensors, actuators...

● Process-oriented programming should be a 
convenient way to implement control systems

– Transterpreter, Plumbing...



Subsumption architecture

● Layered behaviours
– Map sensor inputs 

to actuator outputs

● Suppressors
● Inhibitors
● No planning –

purely reactive
● Modular √ 

Compositional ?

Sensor 
data

Actuators

turn on AC

open windows

close windows

Behavioural
module

S

Suppress

I

Inhibit



Past work

● CPA 2006: Simpson, Jacobsen and Jadud, 
“Mobile Robot Control: the Subsumption 
Architecture and occam-π”

– Implemented subsumptive control components
in a process-oriented system

● CPA 2009: Simpson and Ritson, “Toward 
Process Architectures for Behavioural Robotics”

– Compared subsumption with other approaches; 
identified scalability problems



Swarm robotics

● Several robots collaborate to perform a task
– May involve engineering emergence

● Local intelligence, not remote control
● Robustness
● Flexibility
● How can we use a process-oriented subsumptive 

control system in a swarm context?



The task

● Foraging: common swarm problem
● Many identical robots collect pieces of rubbish 

from a field, and deposit them in a bin
● Robots must coordinate to avoid collisions,

while covering as much ground as possible
● Robots have limited battery life – must recharge 

at charging stations when low



The robot

● Pioneer platform, modelled within Stage
– Realistic, noisy... so nondeterministic

● Gripper for collecting rubbish
● Camera for spotting rubbish, other robots, 

chargers and the bin
– Rubbish is red, robots are blue...

● Sonar for avoiding walls, etc.
● All driven through the Player library

– … which Jeremy significantly
improved our bindings to



Design

● First we identify the high-level behaviours
– Arrange in priority order, most important last

● Explore
● Avoid collisions
● Acquire rubbish
● Deposit rubbish
● Recharge
● Collaborate



Design

● Then we can break those down into simpler 
behaviours, and map those to processes

● e.g. Avoid collisions
– Move forwards

– … unless you're about to run into something

– If sonar senses something to one side, turn away 
from it



The control system



The process network

(see paper for
more detail)



Trials

● Four robots, 
sixteen 
pieces of 
rubbish

● Success 
when all 
rubbish in bin 
within twenty 
minutes



Video



Results

● Ran 20 trials...
● … of which only 5 were completely successful

● It works sometimes – why not always?



Diagnosis

● Some robots wander around but don't pick up or 
put down rubbish...

● Some behaviours aren't working
● Part of the control system has deadlocked
● … but no way to detect this until it's used
● This appears to be a common problem with 

complex subsumptive controllers



Desiderata

● Synchronous channels aren't a good fit here –
we want overwriting-buffered channels

– Can we identify new design patterns for safe 
programming with asynchronous 
communications?

● We don't have good tools for debugging or 
performance analysis (e.g. tracking latency)

– The Transterpreter can give you the data...

– … we just need to display/explore it



Conclusion

● We've built a complex subsumptive control 
system using process-oriented techniques

● Design and implementation straightforward
● It works... sometimes!

– We need better tools to tune and debug it

● Previous attempts at subsumption in occam-π 
built much simpler systems, and didn't run into 
these scalability problems



Future work

● Build subsumptive swarm systems that span 
multiple robots

– e.g. allow one robot to suppress behaviours in 
another robot

● Investigate other approaches for complex 
problems like this

– e.g. Colony architecture

Any questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

