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Introduction

● Jeremy Posso's MSc project at York in 2009
– Supervised by Jon Timmis

– Worked with Jon Simpson on architecture, and 
Adam Sampson on Player/Stage bindings

● Robotic control is an inherently concurrent 
problem: sensors, actuators...

● Process-oriented programming should be a 
convenient way to implement control systems

– Transterpreter, Plumbing...



Subsumption architecture

● Layered behaviours
– Map sensor inputs 

to actuator outputs

● Suppressors
● Inhibitors
● No planning –

purely reactive
● Modular √ 

Compositional ?
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Past work

● CPA 2006: Simpson, Jacobsen and Jadud, 
“Mobile Robot Control: the Subsumption 
Architecture and occam-π”

– Implemented subsumptive control components
in a process-oriented system

● CPA 2009: Simpson and Ritson, “Toward 
Process Architectures for Behavioural Robotics”

– Compared subsumption with other approaches; 
identified scalability problems



Swarm robotics

● Several robots collaborate to perform a task
– May involve engineering emergence

● Local intelligence, not remote control
● Robustness
● Flexibility
● How can we use a process-oriented subsumptive 

control system in a swarm context?



The task

● Foraging: common swarm problem
● Many identical robots collect pieces of rubbish 

from a field, and deposit them in a bin
● Robots must coordinate to avoid collisions,

while covering as much ground as possible
● Robots have limited battery life – must recharge 

at charging stations when low



The robot

● Pioneer platform, modelled within Stage
– Realistic, noisy... so nondeterministic

● Gripper for collecting rubbish
● Camera for spotting rubbish, other robots, 

chargers and the bin
– Rubbish is red, robots are blue...

● Sonar for avoiding walls, etc.
● All driven through the Player library

– … which Jeremy significantly
improved our bindings to



Design

● First we identify the high-level behaviours
– Arrange in priority order, most important last

● Explore
● Avoid collisions
● Acquire rubbish
● Deposit rubbish
● Recharge
● Collaborate



Design

● Then we can break those down into simpler 
behaviours, and map those to processes

● e.g. Avoid collisions
– Move forwards

– … unless you're about to run into something

– If sonar senses something to one side, turn away 
from it



The control system



The process network

(see paper for
more detail)



Trials

● Four robots, 
sixteen 
pieces of 
rubbish

● Success 
when all 
rubbish in bin 
within twenty 
minutes



Video



Results

● Ran 20 trials...
● … of which only 5 were completely successful

● It works sometimes – why not always?



Diagnosis

● Some robots wander around but don't pick up or 
put down rubbish...

● Some behaviours aren't working
● Part of the control system has deadlocked
● … but no way to detect this until it's used
● This appears to be a common problem with 

complex subsumptive controllers



Desiderata

● Synchronous channels aren't a good fit here –
we want overwriting-buffered channels

– Can we identify new design patterns for safe 
programming with asynchronous 
communications?

● We don't have good tools for debugging or 
performance analysis (e.g. tracking latency)

– The Transterpreter can give you the data...

– … we just need to display/explore it



Conclusion

● We've built a complex subsumptive control 
system using process-oriented techniques

● Design and implementation straightforward
● It works... sometimes!

– We need better tools to tune and debug it

● Previous attempts at subsumption in occam-π 
built much simpler systems, and didn't run into 
these scalability problems



Future work

● Build subsumptive swarm systems that span 
multiple robots

– e.g. allow one robot to suppress behaviours in 
another robot

● Investigate other approaches for complex 
problems like this

– e.g. Colony architecture

Any questions?
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