Experiments in Multicore and Distributed
Parallel Processing using JCSP

Jon KERRIDGE
School of Computing, Edinburgh Napier University, Edinburgh UK, EHI0 5DT

j.kerridge@napier.ac.uk

Abstract. It is currently very difficult to purchase any form of computer system be
it, notebook, laptop, desktop server or high performance computing system that does
not contain a multicore processor. Yet the designers of applications, in general, have
very little experience and knowledge of how to exploit this capability. Recently, the
Scottish Informatics and Computer Science Alliance (SICSA) issued a challenge to
investigate the ability of developers to parallelise a simple Concordance algorithm.
Ongoing work had also shown that the use of multicore processors for applications
that have internal parallelism is not as straightforward as might be imagined. Two
applications are considered: calculating m using Monte Carlo methods and the
SICSA Concordance application. The ease with which parallelism can be extracted
from a single application using both single multicore processors and distributed
networks of such multicore processors is investigated. It is shown that naive
application of parallel programming techniques does not produce the desired results
and that considerable care has to be taken if multicore systems are to result in
improved performance. Meanwhile the use of distributed systems tends to produce
more predictable and reasonable benefits resulting from parallelisation of
applications.

Keywords: multicore processors, distributed processing, parallel programming,
Groovy, JCSP, Monte Carlo methods, concordance.

Introduction

The common availability of systems that use multicore processors is such that it is now
nearly impossible to buy any form of end-user computer system that does not contain a
multicore processor. However, the effective use of such multicore systems to solve a single
large problem is sufficiently challenging that SICSA, the Scottish Informatics and
Computer Science Alliance, recently posed a challenge to evaluate different approaches to
parallelisation for a concordance problem. There will be other challenges to follow. The
concordance problem is essentially input/output bound and thus poses particular problems
for parallelisation. As a means of comparison, a simple compute bound problem is also
used as an experimental framework: namely the calculation of m using a Monte Carlo
method.

The aim of the experiments reported in this paper is to investigate simple
parallelisation approaches (using the JCSP packages [1, 2] for Java, running on a variety of
Windows platforms) and see whether they provide any improvement in performance over a
sequential solution. In other words, is parallelisation worth the effort? In section 2,
experiments using the Monte Carlo calculation of & are presented. Section 3 describes and
discusses the experiments undertaken with the concordance example. Finally, some
conclusions are drawn.

1. Calculating @ Using Monte Carlo Methods

The calculation of n using Monte Carlo statistical methods provides an approximation
based on the relation of the area of a square to an inscribed circle [3]. Given a circle of
radius 7 inscribed in a square of side 2r, the areas of the circle and square are, respectively,
mwPand 4 — so, the ratio of these areas is m/4. Hence, if sufficient random points are
selected within the square, approximately /4 of the points should lie within the circle.

The algorithm proceeds by selecting a large number of points (N = 1,024,000) at
random and determining how many lie within the inscribed circle (M). Thus if sufficient
points are chosen, w can be approximated by (M/N)*4. The following sequential algorithm,
Listing 1, written in Groovy [4], captures the method assuming a value of » = 1 (and using
only the top-right quadrant of the circle). The algorithm is repeated 10 times and the results,
including timings, are averaged.

01 def r = new Random()

02 def timer = new CSTimer ()
03 def pi =20

04 def int N = 10240000

05 def startTime = timer.read()

06 for (run in 1..10) {

07 print "-"

08 def int M = 0

09 for (1 in 1..N){

10 def x = r.nextDouble ()

11 def y = r.nextDouble ()

12 if (((x*x) + (y*y)) < 1.0) M=M + 1
13 }

14 pi = pi + ((double)M)/ ((double)N) * 4.0
15 }

16 def endTime = timer.read()

17 def elapsedTime = (endTime - startTime) /10

18 pi =pi / 10.0
19 println "\nS$pi, SelapsedTime"

Listing 1. Sequential implementation of & estimation.

The ‘obvious’ way to parallelise this algorithm is to split the task over a number of
workers (W), such that each worker undertakes N/W iterations. A manager process is
needed to initiate each worker and collate the results when all the workers have completed
their task. Listing 2 shows the definition of such a worker process using Groovy Parallel
and JCSP.

20 class Worker implements CSProcess {

21 def ChannellInput inChannel
22 def ChannelOutput outChannel
23

24 void run () {

25 def r = new Random{()

26 for (run in 1..10){

27 def N = inChannel.read()
28 def int M = 0

29 for (1 in 1..N){

30 def x = r.nextDouble ()
31 def y = r.nextDouble /()
32 if (((x*x) + (y*y)) < 1.0) M=M+ 1
33 }

34 outChannel.write (M)

35 }

36 }

37 }

Listing 2. Worker process definition.

The corresponding manager process is shown in Listing 3. Each run of the calculation
is initiated by a communication from the manager process to each worker {52}'. The
manager process then waits for the returned value of M from each worker {53}.

38 class Manager implements CSProcess {

39 def ChannelOutputList outChannels

40 def ChannellInputList inChannels

41

42 void run () {

43 def timer = new CSTimer ()

44 def startTime = timer.read()

45 def workers = outChannels.size ()

46 def pi = 0.0

47 def N = 10240000

48 def iterations = N / workers

49 for (run in 1..10) {

50 print "."

51 def M = 0

52 for (w in 0 ..< workers) outChannels[w].write (iterations)
53 for (w in 0 ..< workers) M = M + inChannels[w].read()
54 pi = pi + ((((double)M)* 4.0) / ((double)N))
55 }

56 def endTime = timer.read|()

57 def elapsedTime = (endTime - startTime) /10

58 pi = pi / 10.0

59 println "\n$workers, $pi, $elapsedTime"

60 }

61l }

Listing 3. Manager process definition.

This parallel formulation has the advantage that it can be executed as a single parallel
within one Java Virtual Machine (JVM) or over several JVMs using net channels.
Furthermore, the JVMs can be executed on one or more cores in a single machine or over
several machines, simply by changing the manner of invocation.

1.1 Experimental Framework

The experiments were undertaken on a number of different machines and also over a
distributed system in which each node comprised a multicore processor. Table 1 shows the
three different machine types that were used.

Table 1. Specification of the experimental machines used in the experiments.

Speed L2Cache RAM Operating Size

Name CPU cores (Ghz) (MB) (GB) System bits
Office E8400 2 3.0 6 2 Windows XP 32
Home Q8400 4 2.66 4 8 Windows 7 64
Lab E8400 2 3.0 6 2 Windows 7 32

The Lab and Office machines were essentially the same except that the Lab machines
were running under Windows 7 as opposed to XP. The Home machine was a quad core 64-
bit machine. The Lab machines were also part of a distributed system connected by a 100
Mbit/sec Ethernet connected to the internet and thus liable to fluctuation depending on
network traffic.

' The notation {n} and {n..m} refer to line numbers in one of the Listings. Each line is uniquely numbered.

1.2 Single Machine Performance

The experiments on a single machine were undertaken as follows. The sequential algorithm
was executed on each machine type to determine the ‘sequential’ performance of each
machine. The average performance for the sequential version over 10 runs for each
machine type is shown in Table 2. The effect of the 64-bit architecture on the Home
machine is immediately apparent. Using the Windows Task Manager to observe CPU usage
on each of the machines it was noted that the maximum CPU usage was never more than
50%.

Table 2. Sequential performance of each machine.

Office Home Lab

Time (secs) 4.378 2.448 4.508

The parallel version of the algorithm was then executed on each machine in a single
JVM with various numbers of worker processes. The corresponding times and associated
speedup is shown in Table 3. The performance in each case was monitored using the Task
Manager and in each case the CPU usage was reported as 100%. However, the only version
which showed any speedup of the parallel version over the sequential version was the
Home machine with 2 workers. In all other cases the use of many parallel workers induced
a slowdown even though the CPU was indicating a higher percentage use. The same
behaviour was observed by Dickie [5] when undertaking the same Monte Carlo based
calculation of @ in a .NET environment. It was observed that as the number of threads
increased CPU usage rose to 100% and overall completion time got worse. Further analysis
using Microsoft’s Concurrency Visualizer tool [6] showed this additional processor usage
was taken up with threads being swapped.

Table 3. Parallel performance with varying number of workers in a single JVM.

Office Home Lab
Workers (secs) Speedup (secs) Speedup (secs) Speedup

2 4.621 0.947 2.429 1.008 4.724 0.954
4 4.677 0.936 8.171 0.300 4.685 0.962
8 4.591 0.954 7.827 0.313 4902 0.920
6 4735 0.925 7.702 0.318 4.897 0.921
32 4.841 0.904 7.601 0.322 5.022 0.898
64 4936 0.887 7.635 0.321 5.161 0.873
128 5.063 0.865 7.541 0.325 5319 0.848

-_—

The Office and Lab machines use the same processor (E8400) and both show a gradual
slowdown as the number of workers is increased. Whereas, the Home machine (Q8400)
initially shows a speedup then followed by an initial dramatic decrease in performance
which then slowly gets worse. An explanation of this could be that the L2 cache on the
Q8400 is 4MB whereas the E8400 has 6MB and that this has crucially affected the overall
performance.

The parallel version of the algorithm was then reconfigured to run in a number of
JVMs assuming each JVM was connected by a TCP/IP based network utilising the net
channel capability of JCSP. The intention in this part of the experiment was to run each

JVM on a separate core. Each JVM was initiated from the command line by a separate
execution of the java environment. The experiments were conducted twice: once just using
the command line java command directly and secondly using the Windows start
command so that the affinity of the JVM to a particular core could be defined. This would,
it was hoped, ensure that each JVM was associated with a distinct core thereby increasing
the parallelism. In the case of the Home and Lab machines this appeared to have no effect.
In the case of the Office machine an effect was observed and the execution using the start
command had a similar performance to the Lab Machine. Table 4 shows the performance
from runs that did not use the start command.

Table 4. Parallel performance with varying number of JVMs in a single machine.

Office Home Lab
JVMs (secs) Speedup (secs) Speedup (secs) Speedup

2 4517 0.969 2.195 1.115 4.369 1.032
4 4.534 0.966 1.299 1.885 4.323 1.043
8 4.501 0.973 1.362 1.797 4.326 1.042

The Office machine, which uses Windows XP showed a slowdown when run without
the start command, whereas the other two machines both showed speedups, relative to
the sequential solution. These machines use Windows 7 and, as there was no difference in
the performance when using start or not, it can be deduced that Windows 7 does try to
allocate new JVMs to different cores.

The Home machine has 4 cores and it can be seen that the best speedup is obtained
when 4 JVMs are used. Similarly, the Lab machine has two cores and again the best
speedup occurs when just two JVMs are utilised.

1.3 Distributed Performance

The multi JVM version of the algorithm was now configured to run over a number of
machines using a standard 100 Mbit/sec Ethernet TCP/IP network. These experiments
involved Lab machines only, which have two cores. One of the machines ran the
TCPIPNode Server, the Manager process and one Worker in one core. The TCPIPNode
Server is only used to set up the net channel connections at the outset of processing. The
Manager is only used to initiate each Worker and then to receive the returned results and
thus does not impose a heavy load on the system. The performance using both two and four
machines is shown in Table 5.

Table 5. Performance using multiple JVMs on two and four machines.

Two Machines Four Machines

JVMs Time (secs) Speedup Time (secs) Speedup

2 4.371 1.031

4 2.206 2.044 2.162 2.085
8 1.229 3.668
6 1.415 3.186

—

The best performance is obtained when the number of JVMs used is the same as the
number of available cores. Unfortunately, the best speedup relates to the number of
machines and not the number of available cores.

1.4 Conclusions Resulting from the Monte Carlo m Experiments

The Monte Carlo determination of © is essentially an application that is processor bound
with very little opportunity for communication. Hence the normal behaviour of CSP-based
parallelism, with many processes ready to execute but awaiting communication, does not
happen. JCSP currently relies on the underlying JVM to allocate and schedule its threads
(that implement JCSP processes) over multiple cores. In turn, the JVM relies on the
underlying operating system (Windows, in our experiments). The disappointing observation
is that this combination seems to have little ability to make effective use of multiple cores
for this kind of application. Utilising parallel processes within a single JVM had little effect
and the result was worse performance. Performance improvement was only achieved when
multiple machines were used in a distributed system.

2. Concordance Related Experiments

The SICSA Concordance challenge [7] was specified as follows:
Given: a text file containing English text in ASCII encoding and an integer N.

Find: for all sequences, up to length N, of words occurring in the input file, the
number of occurrences of this sequence in the text, together with a list of start
indices. Optionally, sequences with only I occurrence should be omitted.

A set of appropriate text files of various sizes was also made available, with which
participants could test their solutions. A workshop was held on 13" December 2010 where
a number of solutions were presented. The common feature of many of the presented
solutions was that as the amount of parallelism was increased the solutions got slower.
Most of the solutions adopted some form of Map-Reduce style of architecture using some
form of tree data structure.

The approach presented here is somewhat different in that it uses a distributed solution
and a different data structure. The use of a distributed solution using many machines was
obvious from the work undertaken on Monte Carlo n. The data structures were chosen so
they could be accessed in parallel, thereby enabling a single processor to progress the
application using as many parallel processes as possible. However, the number of such
parallel processes was kept small as it had been previously observed that increased numbers
of parallel processes tended to reduce performance.

The Concordance problem is essentially input-output bound and thus a solution needs
to be adopted that mitigates such effects. For example, one of the text files is that of the
Bible which is 4.681 MB in size and comprises 802,300 words. For N=6 (the string length)
and ignoring strings that only occur once, this produces an output file size of 26.107 MB.

2.1 Solution Approach

It was decided to use N as the basis for parallelisation of the main algorithm. The value of
N was likely to be small and thus would not require a large number of parallel processes on
each machine. It was thus necessary to create data structures that could read the data

structures in parallel (with each value of N accessed by a separate process). One approach
to processing character strings is to convert each word to an integer value based on the sum
of the ASCII values of each character in the word. This has the benefit that subsequent
processing uses integer comparisons, which are much quicker than string comparisons.

The approach used to parallelise the reading of the input file was to split it into equal
sized blocks, in terms of the number of words and then send each block to a worker
process. The input blocks were distributed in turn over the available worker processes.
Once a worker process received a block it would do some initial processing, which should
be completed before the next block was to be received. This initial processing removed any
punctuation from the words and then calculated the integer value of each word in the block.
Some initial experiments determined that a block size of 6k words was a good compromise
between the overall time taken to read the file and the ability of a worker process to
complete the initial processing before the next block needed to be received so that the read
process was not delayed. This appeared to be a good compromise for the number of
workers being used, which were 4, 8 and 12.

The worker process could now calculate the values for N = 2..6 (N=6 was the
maximum value chosen?). This was simply undertaken by summing the requisite number of
integers in turn from the single word sequence values previously calculated during the
initial phase. This could be easily parallelised because each process would need to read the
N=1 values but would write to a separate data structure for N = 2..6. This was then
undertaken for each block in the worker. The blocks were structured so that last N-1 words
were repeated at the start of the next block. This meant that there was no need to transfer
any values between workers during processing.

The second phase of the algorithm was to search each of the N sequences to find equal
values, which were placed in a map comprising the value and the indices where the value
was found. Only sequences with equal values could possibly be made from the same string
of words. However, some values could be created from different sequences of words
(simply because the sum of the characters making up the complete string was the same) and
these need eliminating (see below).

This phase was repeated for each block in the worker. The result was that for each
block a map structure was created which recorded the start index where sequences of equal
value were found in that block. Experiments were undertaken to apply some form of hash
algorithm to the creation of the value of a sequence. It was discovered that the effect was
negligible in that the number of clashes remained more or less constant; the only aspect that
changed was where the clashes occurred. Yet again this processing could be parallelised
because each set of sequence values could be read in parallel and the resulting map could
also be written in parallel as they were separated in N.

Each of these maps was then processed to determine which sequence values
corresponded to different word sequences. This resulted in another map which comprised
each distinct word sequence as the key and the indices where that string was found in the
block. Yet again, this processing was parallelisable in N. At the end of this phase, each
block contained a partial concordance for the strings it contained in a map with the
sequence value as key and a further map of the word strings and indices as the entry in N
distinct data structures.

The penultimate phase merged each of the partial concordances contained in each
block to a concordance for the worker process as a whole. This was also parallelisable in N.
The final phase was to merge to the worker concordances into a final complete concordance
for each of the values of N. Initially, the sequence values in each data structure were sorted

2 N=6 was chosen because it was known that the string “God saw that it was good” occurs several times in
Genesis.

so that a merge operation could be undertaken with the workers sending entries in a known
order to the process undertaking the merge. In the first instance the entries were sent to the
initial process that read the input file where the complete concordance was created in a
single file by merging the concordance entries from each worker in a manner similar to a
tape merge. In a second implementation, additional processes were run in each worker that
just sent the entries for one value of N to a separate merge process. There was thus N such
merge processes each generating a single output file for the corresponding value of N. The
effect of each of these parallelisations is considered in the following subsections.

2.2 The Effect of Phase Parallelisation

Each parallelisation did improve the performance of the application as a whole. For
example, the second phase where each sequence for N = 1..6 is searched to find the indices
of equal sequence values. The sequential version of the processing is shown in Listing 4.

62 def localEqualWordMapListN = [] // contains an element for each N value
63 for (1 in 1..N) localEqualWordMapListN[i] = [] // initialise to empty list
64 def maxLength = BL - N

65 for (WordBlock wb in wordBlocks) {

66 // sequential version that iterates through the sequenceBlockList
67 for (SequenceBlock sb in wb.sequenceBlockList) {

68 // one sb for each value of N

69 def length = maxLength

70 def sequencelength = sb.sequencelist.size()

71 if (sequencelength < maxLength) length = sequencelength // last block
72 def equalMap = defs.extractEqualValues (length,

73 wb.startIndex,

74 sb.sequencelist)

75 def equalWordMap = defs.extractUniqueSequences (equalMap,

76 sb.Nvalue,

77 wb.startIndex,
78 wb.bareWords)
79 localEqualWordMapListN[sb.Nvalue] << equalWordMap

80 }

81 }

Listing 4. Sequential version of equal map processing.

The data structure localEqualWordMapListN {62}is used to hold the map comprising
the sequence value as key which has an entry, which is itself a map comprising the word
string as key and the indices where the word string starts as the entry. Each of the map
entries is initialised to an empty list {63}. The variables maxLength {64} and length
{69..71} are used to determine how many values in the sequence values are to be used an
varies with the block size and the value of N. The last block may only be partially full.

The wordBlock structure {65} holds all the data structures associated with each block
and these are held in a list called wordBlocks. The loop {65..81} iterates over each such
WordBlock. Within each WordBlock there are N sequenceBlocks and the loop {76..80}
iterates over each of these. Each iteration initially finds the location of each sequence value
that has multiple instances in the block. This is achieved by the method
extractUniqueSequences {72} which stores the result in the map equalMap. The map
equalMap is then passed to the method extractUniquesequences {75} which creates the
required output map, which is then appended to localEqualWordMapListN {79}. The
crucial aspect of this process is that there are N sequenceBlocks. Thus, the process can be
parallelised in N (as shown in Listings 5 and 6).

It can be seen that lines {82..85} are the same as {62..65}. Lines {86..93} create a list
of process instances using the collect method of Groovy. The process ExtractEqualMaps
{87} utilises the same parameters as the methods used in the sequential version. The

process list procNet {86} is then executed in a PAR {94}. This has the effect of
determining the 1ocalEqualWordMapListN {82} for each value of N in parallel.

82 def localEqualWordMapListN = [] // contains an element for each N value
83 for (i in 1..N) localEqualWordMapListN[i] = []

84 def maxLength = BL - N

85 for (WordBlock wb in wordBlocks) {

86 def procNet = (1..N).collect { n ->

87 new ExtractEqualMaps(n: n, maxLength: maxLength,

88 startIndex: wb.startIndex, words: wb.bareWords,

89 sequencelist: wb.sequenceBlockList[n-1].sequencelist,
90 localMap: localEqualWordMapListN[n]) }

91 new PAR (procNet) .run()

92 }

Listing 5. Parallel invocation of ExtractEqualMaps.

Listing 6 shows the definition of the process ExtractEqualMaps. By inspection it can
be seen that the internal method calls of extractBEqualvalues {104} and
extractUniqueSequences {106} are essentially the same as those in the sequential
version except that they refer to the properties of the process rather than the actual
variables. The definition is, however, unusual because it contains no channel properties. In
this case the process will access memory locations that are shared between the parallel
instances of the process. However the data structures were designed so that multiple
processes can read the structures but they write to separate data structures ensuring there
are no memory synchronisation and contention probems.

93 class ExtractEqualMaps implements CSProcess {

94 def n

95 def maxLength

96 def startIndex

97 def sequencelist

98 def words

99 def localMap

100 void run () {

101 def length = maxLength

102 def sequencelength = sequencelist.size()

103 if (sequencelength < maxLength) length = sequencelength
104 def equalMap = defs.extractEqualValues (length, startIndex,
105 sequencelist)

106 def equalWordMap = defs.extractUniqueSequences (equalMap,
107 n, startIndex, words)
108 localMap << equalWordMap

109 }

110 1}

Listing 6. Definition of the process ExtractEqualMaps.
2.3 Performance Improvements Resulting from Internal Parallelisation

Table 6 shows the performance data for the ExtractEqualMap phase of the algorithm.
Worker Style 1 is the sequential version of the algorithm and the parallel version is
represented as Style 2. The speedup resulting from increasing the number of workers is
linear and is very close to the reasonable limit represented by the increased number of
workers. The speedup due to the change in algorithm is about 2.5 times, which, given that
N =3, is in fact for more encouraging than was achieved in the Monte Carlo © experiments.
In these experiments no attempt was made to run multiple JVMs on each machine.

Table 6. Analysis of parallelisation performance by workers and technique (N=3).

V\gi}r’l'(: r Workers 1ime Speedup by Speedup
(secs) workers by style
1 4 138.263
1 8 69.584 1.99
2 4 53.600 2.58
2 8 27.559 1.94 2.52
2 12 17.957 2.98

2.4 Effect of Parallelising the Merge Phase

Table 7 shows the total time for worker processing for a system employing 12 workers for
increasing values of N. The time taken is determined by the last worker to finish its task.
The workers are of Style 2 which has all internal phases parallelised. Only the merge phase
is sequential. It can be seen that the ratio of the time taken is increasing more rapidly than
the ratio of the file output size, thus real benefit can be achieved by overlapping the merge
phase.

Table 7. Performance of the sequential merge for 12 workers.

N Total Time Time Output File Size

(secs) Ratio Size (KB) Ratio
3 44.034 17,798
4 62.044 1.41 21,412 1.20
5 82.003 1.86 23,926 1.34
6 102.896 2.34 25,810 1.45

The effect of overlapping the merge phase rather than writing all the output to a single
file by undertaking N merges each of which writes to its own file is shown in Table 8.
Worker Style 2 has all phases of the internal algorithm fully parallelised but writes the final
concordance to file using a sequence of merges for each value of N. Whereas Worker Style
3 undertakes the merge of each value of N in parallel by having a separate merge process
running on its own machine. The worker process has an internal set of N parallel processes
that write the entries of each partial concordance to each of the N merge processes.

By comparing the values in Tables 7 and 8 it can be seen that the increase is now more
in line with the increase in the size of the output file. The improvement is unlikely to be
linear as the size of each output file varies. The largest file is associated with N = 1 because
that file contains all instances of places where any single word has been repeated. In the
case of the bible N=1 constitutes about 25% of the total output. The overall improvement
for N = 6 in using the parallel merge represents a speed up of 1.61 and is thus worthwhile.

Table 8. Performance of the parallel merge phase for 12 workers.

Worker Total Time Time
Style (secs) Ratio
2 3 44.034
2 6 102.896
3 3 32.319 1.36
3 6 63.866 1.61

2.5 Overall Processing Improvements

As a final experiment the performance of the system with two different input files was
undertaken for N = 6 and 12 workers. This is shown in Table 9. The input file WaD
contains the text for Elizabeth Gaskell’s Wives and Daughters. The comparison is
undertaken on the basis of the number of words in the input file, the size of the output file,
the size of the file for N = 1 and the total processing time. As can be seen the smallest ratio
is that for the Time, implying that as the size of the input file varies the overall time will
increase at the smallest rate.

Table 9. Ratio analysis for Bible and Wives and Daughters.

Total Output Outputfor Time

Words ~""kB) N=1(KB) (secs)

Bible 802,300 26,107 6,297 63.809
WaD 268,500 5,488 2,044 27.302

Ratio 2.99 4.76 3.08 2.34

3. Conclusions

These experiments have produced interesting and sometimes unexpected results. Perhaps
the most disappointing result was that obtained in the calculation of © where it seems that,
for compute bound processing, the ability of the associated JVM (supporting JCSP) and/or
the operating system automatically to make effective use of multiple cores was limited.

The concordance example, however, produces more promising results in two ways.
First the effect of introducing parallelism to the individual phases that make up the
algorithm always improved the performance of the phase. Secondly, these improvements
were achieved without taking any account of the fact that the machines were dual core,
which is what the parallel system designer would wish. The fact that the improvements
were achieved using a distributed system is also encouraging given the number of high
performance clusters being built.

The key aspect of the success of the concordance solution was that it was designed
parallel from the outset in terms of its internal data structures and the manner in which the
processes were to communicate. A highly optimised sequential solution was not the starting
point as this would have been much harder to parallelise.

The solution has the benefit of being scalable in terms of the value of N and the
number of workers. It also has the benefit of being capable of scaling to any size of input
file. If the available memory size in all the workers were insufficient to hold all the data
structures then these could be written to file as required. Solutions that assume sufficient
memory to hold the entire input file and the internal data structures are not scalable in the
same manner.

Finally, the time taken to process the Bible input file, for N = 6, sequentially was 210
seconds in comparison to the 64 seconds taken by the parallel version.

Acknowledgements

The author gratefully acknowledges the very helpful comments made by the anonymous
referees and also the efforts of the editors in improving the coherence and presentation of
this paper.

References

[17 JCSP Home Page, http://www.cs.kent.ac.uk/projects/ofa/jcsp/, accessed 28 April, 2011.

[2] P.H. Welch, N.C.C. Brown, J. Moores, K. Chalmers, and B. Sputh. “Integrating and Extending JCSP”. In
A.A. McEwan, S. Schneider, W. Ifill, and P.H. Welch, editors, Communicating Process Architectures
2007, volume 65 of Concurrent Systems Engineering Series, pp. 349-370, Amsterdam, The Netherlands,
July 2007. IOS Press. ISBN: 978-1-58603-767-3.

[3] E. Andersson. “Calculation of Pi Uisng Monte Carlo Methods”,
http://www.eveandersson.com/pi/monte—carlo-circle, accessed 28" April, 2011

[4] JKerridge, K Barclay and J Savage. “Groovy Parallel! A Return to the Spirit of occam? ”, in JJ Broenink
et al (Eds.), Communicating Process Architectures 2005, pp. 13-28, I0S Press, Amsterdam, 2005.

[5] S Dickie. “Can design patterns (and other software engineering techniques) be effectively used to
overcome concurrency and parallelism problems that occur during the development stages of video
games?”, MSc Thesis, School of Computing, Edinburgh Napier University, 2010.

[6] Microsoft, Visual Studio 2010 Concurrency Visualizer, see http://msdn.microsoft.com/en-
us/magazine/ee336027.aspx, accessed 28" April, 2011.

[7] SICSA Concordance Challenge,
http://www.macs.hw.ac.uk/sicsawiki/index.php/MultiCoreChallenge, accessed 28™ April,
2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

