CONPASU-tool:
A Concurrent Process Analysis Support
Tool based on Symbolic Computation

Yoshinao ISOBE*!
2National Institute of Advanced Industrial Science and Tedbgy, Japan

Abstract. This paper presents an analysis-method of concurrentggesavith value-
passing which may cause infinite-state systems. The methsists of two steps:
sequentialisation and state-reduction. In the sequésatadn, the symbolic transition
graph of a given concurrent process is derived by symbokgatfpnal semantics. In
the state-reduction, the number of states in the symbalitsttion graph is reduced by
removing needless internal transitions. Furthermore gghper introduces an analysis-
tool calledCONPASU, which implements the analysis-method, and demonstrates h
CONPASU can be used for automatically analyzing concurrent prease$r example,
it can extract abstract behaviors, which are useful for tstdading complex behav-
iors, by focusing on some interesting events.

Keywords. symbolic operational semantics, automatic analysis &tate-reduction,
infinite state process, value-passing process algebra

Introduction

Concurrent processes, which consist of communicating oot-processes, are needed in
parallel computation environments such as multi-core CRW distributed systems. It is,
however, not easy to completely understand the whole behaf/concurrent processes be-
cause it is a result of interactions between communicatimgponent-processes. For exam-
ple, in order to know the causality between events perforateitie different component-
processes, internal communications between the compqnecgesses must be considered.

Process algebrauch as CSP [1,2] and CCS [3] is a formal framework for analyzi
concurrent processes. In process algeinnglementationgnd specificationf concurrent
processes can be formally described, and then equalittderarefinements between an im-
plementation and a specification can be checked. In geieeamplementation is a model to
express the structure of the concurrent-process and tlavioes of its component-processes,
while the specification is often a sequential process toesgthe whole behavior of the
concurrent-process.

Various tools [4,5,6,7], callechodel checkerbased on process algebra have been de-
veloped for automatically checking such equalities andfbnements, when formal descrip-
tions of an implementation and a specification are giveneikample, the following expres-
sion is a formal description (in CSP) of the concurrent pssa@®PL which consists of two
component-processés and0UT.

!Corresponding Author: Yoshinao Isobe, Information Tedbgyp Research Institute, National Institute of
Advanced Industrial Science and Technology, Tsukuba @e2td-1-1, Umezono, Tsukuba, Ibaraki, 305-8568
Japan, E-maily-isobe@aist.go. jp.

THPL = (T [|{] com |}[] 0UT) \ {] com |}
IN = in?X — com!x — IN
OUT = com?y — out!ly — 0UT

The first line defines the structureIMPL, and the second and the third lines define behaviors
of IN andQUT, respectively. The meaning of symbols such-ass explained in Section 1.
Here, we assume to expect tHaPL behaves like a buffer whose capacity2isthus the
specification can be formally described as follows:

SPEC = in”X — SPEC1(X)
SPEC1(y) = in?X — SPEC2(X,y) O outly — SPEC
SPEC2(X, y) = out!y — SPEC1(X)

In fact, the behaviors afMPL andSPEC are equal (e.qg. failures-equivalent [2]) and the equality
can be automatically checked by the model checker FDR [#Eif&ange of input is finitised.

As shown in the example aMPL andSPEC, model checker is very useful for checking
relations between an implementation and a specificatiag, ltowever, sometimes difficult
to formally describe specifications. Implementations sagtVPL are often hierarchical and
complex, but they can be more mechanically described thecifsgations such a3PEC be-
cause designs of structures of systems and behaviors ofawnts are usually given while
it is often difficult to formally describe expected behagiaf systems. Our analysis-tool
CONPASU can automatically generate the specifica8®BC from the implementatiodMPL.

In this paper, we present an analysis-method for generapegifications (i.e. sequen-
tial processes) from implementations of concurrent preegdased on CSP (Communicat-
ing Sequential Processes) [1,2] with value-passing. Tladyais-method consists of two
steps: sequentialisation of concurrent processes by dicmperational semantics and state-
reduction by removing needless internal transitions. gdssible to extract abstract behav-
iors from the whole behavior by focusing on only interestavgnts. Then, we introduce an
analysis-tooCONPASU, which implements the analysis-method, and demonstratattama-
lyzes concurrent processes. The analysis-method@¥RASU have the following features:

e Symbolic transition graphs can be ofténite even for value-passing processes with
variables whose ranges are infinite because variables anestantiated to values.

e Each symbolic transition has assignments (e.g= n+ 1) for updating variables and
it has a location for indicating which processes parti@patthe transition.

e The presented state-reduction method can be directlyeapfaithe symbolic transi-
tion graphs without instantiating variables.

e The tool CONPASU generates symbolic transition graphs from concurrentgeses
described in CSpused in FDR [4], and then it caautomaticallyreduce the number
of states in symbolic transition graphs with presenstaple-failures-equivalence

This paper is organised as follows: First, we give a definitoid process algebra with
symbolic semantics mainly according to [8] in Section 1slused for sequentialising con-
current processes. In Section 2, we present an analystschéir reducing the number of
states with preserving stable-failures-equivalencedasesymbolic approach. Then, in Sec-
tions 3 and 4, we introduce a ta@@NPASU which implements the analysis-method presented
in this paper, and demonstrate hG@NPASU can analyze concurrent processes. Finally, we
compare this work with related works.

1. Process Algebra with Symbolic Operational Semantics

The analysis-method presented in this paper can be appliednicurrent processes whose
behaviors are expressed by labeled transition systemisoutirespect to the syntax. It is,

however, convenient to use process algebra for expressmguoent processes. In this sec-
tion, we briefly introduce a sub-calculus of the processlaig€SP [1,2] in Subsection 1.1
and define the symbolic operational semantics with datagasent and locality for the sub-
calculus in Subsection 1.2.

1.1. Syntax

We assume that the following sets are given: a/aetof variableranged over by y, .. ., a
setVal of valuesranged over by, . . ., a setDexp of data-expressionsanged over b, . . .,
and a seBexp of Boolean-expressiomanged over by, . . ., whereDexp includesVar UVal
andBexp includesVar U {true, false}. Furthermore, we also assume that a®ein of
channel-nameganged over by, ..., and a sePN of process-namesanged over bW, . ..
are given.

Then, the seEvent of eventsranged over by, . . ., is defined as follows:

Event = {cle | ¢ € Chan,e € Dexp} U {C?X | € € Chan,X € Var}

where the event!le means sending the evaluation resuledb the channet, and the event
C”x means receiving a value from the chana@ndx is bound to the value. The sBtent
does not contain basic-events which do not pass values angad just for synchronization.
Such basic-events, however, can be expressed by sendimgraydvalue, for example zero.
In this paperg!0 is sometimes abbreviated ¢of the value0 has no meaning.

The language used in this paper is the&eft processesranged over b, F, . . ., and it
is a sub-calculus of CSP [1,2] as defined in Definition 1.1.

Definition 1.1 The syntax of processes E is given by
E :=ST0P | a—E| EDE| ENE| E[|CJE| E\C | b&E | A(®)

where ac Event, C C Chan, b € Bexp, and A< PN. Andé € Dexp" is an abbreviation of n
data-expressionsie. . ., e,. A(€) is the process obtained fron{# by replacing n arguments
X € Var" bye. 1

Since the semantics of processes is given in the next sutiseeach operator isriefly ex-
plained herea — E can perform the evertand thereafter behaves likeE O F andE M F
represent choices betweErandF, where the choice d& O F is externally made by an event
of eitherE or F, while the choice oE M F is internally madeE [|C|| F represents a concur-
rent composition oE andF, where they communicate through channels included in the se
C and independently perform events whose channel is nGt i\ C hides communications
through channels i@. b & E behaves lik& if bis true, otherwise itis inactive. The operators
have decreasing binding power in the following ordeYC, a — E, b&E, EOF, ENMF,
andE[|C|| F.

The sets obound variablesindfree variablesn the procesg& € £ are denoted byv(E)
andfv(E), respectively, where each input evefik binds the variable in E of c?’x — E.
Similarly, the sets of free variables of the data-exprassi@nd the Boolean-expressibrare
denoted bytv(e) andfv(b), respectively. The set of processes which have no freeblaria
denoted byP and ranged over b, Q,

The meaning of each process-name is given by a defining equate assume that for
every process-namk € PN, there is a defining equation of the forix) = E, whereE € £
andE has no free variables exceptc Var". Process-names are often used for expressing
recursive behaviors. For example, let the process-rsfitre be defined by

SQ(n) = ((n>0) & in?X — sq!(X*X) — SQ(n— 1)) O ((n == 0) & end — STOP).

If nis greater tha, SQ(n) firstly receives a value, to whickis bound, from the channel
in, and then send& x X) to the channetq, and thereafter behaves likg(n — 1). And if
nis 0, SQ(n) performs the everdnd, which is the abbreviation afnd!0, and then stops. In
other wordssQ(n) iteratively receives a value and sends the square of the metitmes, and
thereafter performsnd and then stops.

1.2. Symbolic Operational Semantics

In our analysis method, variables agmbolicallycomputed without instantiated to values.
It means that symbolic approach can express behaviors oégses with value-passing in a
finite graph even if ranges of variables are not finitised or parara@ire not fixed. Symbolic
labeled transition systems have been studied, for examp&9,10]. In this subsection, we
define a symbolic operational semantics of CSP, based onahéasd operational semantics
of CSP [2] with symbolic semantics of CSP (e.g. [11]), anceaged with data-assignment
[9] and locality [12]. The locality has been studied in pregalgebra (e.g. [12,13]) for giving
non-interleaving semantics. In this paper, however, weintseleaving semantics, thus lo-
cations are ignored when checking equality. The localitysed for checking independence
between transitions when reducing states. The symboliasgos defined in this section is
a combination of existing results [2,9,12] and no new teghaeiis used.

At first, a notation for assigning data-expressions to \wemis introduced. Arssign-
menthas the form{x := &), which is an abbreviation @k, := ey, ..., X, := &,), and means to
simultaneously replace every free variaklec Var by e € Dexp. The set of assignments is
denoted byssign and is ranged over by, The sets of the domain and the free variables
of an assignmer{ := &) are denoted bym(X := &) = {Xy,...,X,} andfv(X := &) = fv(&),
respectively. An assignmefitan be applied to procesgesdata-expressiores and Boolean-
expressiondy, and they are denoted ¥, e, andbd. For example,

(in?X — out!(X+Yy) — STOP)(X := 1,y := 2) = (in?X — out!(X+ 2) — STOP).

Then, the compositioficd’ such thate(dof') = (EA)#' of two assignments can be defined
by (X := &)of = (X := &')(0' — X), where(x := &) representsx := e6) for everyi and
(0" — X) is the assignment obtained frathby removing the assignmentso

If an assignment has no free variable (i.€v(0) = () and its domain is the set of all
variables (i.edm(¢) = Var), then it is called amvaluation We denote the set of evaluations
by Eval and letp, . .. range over evaluations.

Next, locality is introduced for indicating where eventgocin concurrent processes.
In the same way to [12], pcation/ is a binary tree defined by

§ == 0] 1] (d0)

and the set of locations is denotedyt, where0 means the inactive location andneans
the active location. For example, in the concurrent proEsg§C, || (E; [|C:|] E2)), the loca-
tion (0(10)) is attached to events whih independently performs arid(01)) is attached to
events which botlt, andE; participate in. The locations are used for checking thealdys
between events (e.g. the locatiqu$10)) and(1(01)) are independent), when searching for
reducible states (see Definition 2.5).

Then, we define the sett of actions which are guarded events with assignments and
locations, by

Act = {a[b]/0@5 | o € Event U {7}, b € Bexp, 0 € Assign, ¢ € Loc},

wherer is a special event, callédternal eventwhich cannot be observed ¢ Event), and
the seEvent U {7} is ranged over by, The actiony[b] /@) means if the conditiob is
true then the event can occur at the locatiofy and thereafter variables are updated by the

cle-Ee—E c?’x — E &— E(x:=Y)

(yis fresh

alb] /0 @5 . 7[b] /6 @6 ,
EECh,—E*—E (27 EECh,—E*——E ElCh,———
alb]/6@s 7[b] /6 @8 @1
EOFe——F EDFe——FEOF EMFe—E

alb]/6@5 =) albl/0@s5 »
Ee—— E X: =€) &—> o
E.Grd AT E.PN s (A(X) = E)
&Ee—F Ale) e—— F'

. alb]/6@s ”
E.Par; a[lb}/e@(éo) (ch(a) ¢ C)
E|[|C||F «e——— E'[|IC||F

clelbl/6@5 oxp)/0'@5
E.Par; clebAb’] /66 (x:=€) @(55) e
E[IC]F o = e

clelb] /6 @5) cle'[b']/6' @s’ ,
Ee————E Fe——F
E.Pars cle[(e=€/)AbAD'] /00’ @(56") (ceC)
E[IC]|F e E'[IC]F

c?x[b] /6 @5 , c?xX'[b'] /6’ @5’ ,
Ee——E Fe—F
E.Pary Cox[bAb'] /00’ @(55") (ceC)

E[ICl|F e E'[ICIF' (X :=x)

clefb] /0 @5) c?x[b] /0 @5)
E.Hide;—E B E__(ceC) EHide, E[F — @E (c€ C,ve Val)
E\Ce——FE'\C E\C & E'\C

£ alb]/0@s »
E.Hides /0@s (ch(a) ¢ C)
EN\Ce——FE\C

alb] /0 @5
Figure 1. The inference rules for transitioms—— for performing events (symmetric rules are omitted)

assignment. The true conditioritrue|, the identical assignmeit, and the unique-location
@1 are often omitted likev/0@d, «[bj@J, anda[b] /6.
By using the actions as labels, two symbolic transitionlafeed.

Definition 1.2 Two symbolic transitione— C £ x Act x £ and~ C £ x Assign x £ are
the smallest relations satisfying the inference rules guiFés 1 and 2, respectively. For con-

venience, we write M E' and E- E for (E, a[b]/0@6, E') ce— and (E, §,E') e~,
respectively. 1
: . alb]/0@5 . . .

The first transitiorE e—— E’ is used for performing the event The side condition
of the ruleE.Rcv means that the bound variable is renamed feeshname, which is not
used in the other processes, in order to avoid conflicting Wée variables, if necessary.
Though the renaming is represented only in the EiRcv for simplicity, the bound variables
can be actually renamed later, for example when composiogepses b¥.Par;. We have
implemented such renaming mechanism in the @@8PASU introduced in Section 3, and for
example the following transition can be inferred.

D.STOP—————— D.ACt———
STOP ~+ STOP a.E~ aE

D.PNT(A(X) = E, yare fresh and distingt
A(&) ~ A(Y)

0() 01
D.ParE™> E; - F~ P (@e{o,n C]})
EaF~E aF

0 0
DRes—E>E pgd—E~E
E\C~5 E\C b& E~ b&E

Figure 2. The inference rules for transition$ for updating data

(in7% — PO)) 9] (outx — Q(X)) s P(xy) (0] (outix — Q(X)

By renamingx to X,, the value received through the chanmelis correctly passed tB(x,)
and not toQ(x). It is also noted that the locatidn0) means that the left process performs
the event. If two or more processes synchronise, then albttegions of the processes are
indicated by the active symba| for example the following transition can be inferred.

com!X/(y:=x)@(11

(com!x — P(x)) [{| com [}] (com?y — Q(y)) o L PO] com 1] QW)

The second transitiod ~ E’ is used for updating variables by the assignnfewhen
process-names are unfolded. For example, the transitionsthe process(n) defined by
A(n) = up!n — A(n+ 1) are inferred by the rules in Figures 1 and 2 as follows:

An) 2% atn+ 1) ")
It means that the transition graph &) is finite, where the locatio@1 is omitted. On the
other hand, the standard transitions £6n) are inferred by the standard operational seman-
tics [2] as follows, when the initial value ofis 0:

A(0) 5 A1) =L p(2) BB a(3) 22 L

It means that the standard transition graph becomes infinite
Then, by composing the two symbolic transitions in Defimtio2, the symbolic opera-
tional semantics used in this paper is defined.

Definition 1.3 Thesymbolic operational semantics with assignments anditotsis given
by the symbolic labeled transition systéé Act,e—— C £ X Act x &), wheree—— is
defined by

. altl /01 @5
EVTE & (30,0, Een B EBE 0=0,00).

The processQ(n), given in Subsection 1.1, is used again here. Figure 3 shHuwsan-
sition graph derived froraQ(n) by the symbolic operational semantics in Definition 1.3. The
transition graph shows thag(n) iteratively receives a value and sends the square of the valu
n-times, and thereafter performad and then stops for any.

LIn this paper, we denote the set of chanmgls.. ., ¢, by {| c1, ..., cy |} rather than{cy, ..., c,} according
to the syntax of CSfp used in FDR[4].

in?x[n>0]

O)

sql(x*x)/n:=n-1

Figure 3. The transition graph adq(n) by the symbolic operational semantics with assignment

Figure 4. The transition graph a8Q(3) by the standard operational semantics

To compare the symbolic semantics with standard semarities ¢ [2], we show the
transition graph o$Q(n) by the standard operational semantics in Figure 4, whery gae-
able has to be instantiated to a value for each transitioa.grhph in Figure 4 has infinite
number of branches because the range of values receivadythtbe channein is not re-
stricted, and the initial value of must be fixed. On the other hand, the graph in Figure 3 is
finite for anyn because infinite number of values can be expressed by trabiexi

Here, we give the relations between the symbolic operdtsmaantmsm and the

(not-symbolic) standard operational semantiés in [2], wherea, € Act, andAct, is the
set of events without variables:

Acto = {cv | c € Chan,v e Val} U{T}.
It is similar to the result presented for value-passing C&S|[

Lemma 1.1 Ep - P’ if and only if for some b9, §, and E, either

c?x[b]/0@§
forsome ¢cv,x, Ee——— E', a =c.v, bp,and P = E'0(x := Vv)p,
clelb] /@6
or for some ce, Ee———— E', a = c.(ep), bp, and P = E'dp,

7[b] /6@5
or Ee——— FE a=r7,bp,and P = Elp.

Finally,.the prqqess-nam(_)_)ﬁa()?) is defined for generating a sequential process for
anysymbolic transition relatior—.

Definition 1.4 Let—C & x Act x £ be a symbolic transition relation. Then, for any process
E € &, the process-nan®&P __, (%) is defined as follows:

o o alb]/6@5
SP(H—ﬁE)(X) = O{b&obs(a) — (SP(H%,E’)(X)Q) | E——F}

whereX of SP_, , (X) is the list of free variables of E,0 {E;, ..., E,} is an abbreviation
of E; O --- O E,, namely replicated external choice, aois(«) is defined as follows:

tmp (ifa =71
obs(r) = {a ’ Elotherwige

wheretmp is a special observable event which is not used in the preseSs As a special
case, if— is &——, which is defined in Definition 1.3, it is often omitted, thus

SP(E) ()~() = SP(. ,E)()~(>'

The eventtmp is used instead of the internal evenfor choosing one from external
choice processed&; O --- O E,) because the external choice is not executed lfgee
the ruleE.ECh, in Figure 1). As expected andSPg)(X)\{tmp} arestrongly bisimilaf3],
where locationg are ignored, because the following relation can be easiyqut:

alb]/6@1 alb]/6@s
SP)(X)\{tmp} @&——— SPE/)(X)\{tmp} <= J6.E e— E"

2. State Reduction

As shown in Figure 3, the symbolic semantics with assignrmantavoid replicating states
for each value because variables are not instantiated tesaln this section, we present a
method for reducing the number of states by removing somél@geinternal transitions.

In order to reduce the number of states, there has been a dnethtinding an equal
pair of states and then folding them to one state, e.g. [14§, Ihowever, impossible to
automatically check whether two symbolic transition gplith assignments are equal or
not in general as discussed in [9,10]. Therefore, instedthding all such equal pairs, we
present a method for automatically findisgmeequal pairs.

At first, we prepare some notations: the composition of iooat the independent rela-
tion between locations, the composition of symbolic inétnansitions, and a consecutive
symbolic transition relation, whefns is an abbreviation of x Bexp x Assign X Loc X £
and it is used for expressing a subset of internal transtion

Definition 2.1 Letd, ' € Loc. The composition of locations is defined as follows:

(0p@0; 01007) (if 6 = (0p01) andd’ = (6507))
. (if 6 =0)
000' =15 (if &' = 0)
1 (otherwise

Definition 2.2 Letd, o’ € Loc. The independence of locations is defined as follows:

(00 Log) A (61 LdY) (if 6 = (0p61) andd’ = (6p07))
Lo true (if6 =00rd =0)
false (otherwise

The composition of two locations works like the disjunctioperator, for example,
((01)(01))e((00)(11)) = ((01)(11)). The independence of two locations checks whether the
same process participates in the two locations or not, famgte,

((10)(01)) L ((01)0) = true, ((10)(01))L ((01)(01)) = false.

Definition 2.3 Let(E, b, 0,0, E'), (F,b',0',§',F') € Trns. The composition of the transitions
is defined by

(E,b A b, 000,50, F) (ifE' =F)

(E,b,0,6,E") e (F, 10,6, 0" F) = {undeﬁned (otherwisé

then the composition is extended over sets of transitiol$ T Trns by

TeT ={tretr’ | treT, tr' € T tretr’isdefined.

Furthermore, the iterative compositiort ©f copies of TC Trns is the smallest set satisfying
the following inclusions:

{(E, true,c,0,E) | E€EE} CT* and (T*)eT C T°.

Definition 2.4 The consecutive symbolic internal transiti%g‘ C Trns is defined by

[]/.@. T[_]/_@. 7[b] /0@
o—=> *—— *—

=)*={(Eb6,6E)|E '},
Conveniently, we write gﬁgé E for (E,b,0,4,E') € T.:ﬁ)[‘]/'@'_ .
7[bl/0@5

Thus,E ‘e== FE represents that if the conditidnis true thenE can reach ta&’ by
zero or more internal transitions and thereafter the viesahre updated by the assignment
0, where) indicates the locations of all the processes which pa#teipn the consecutive
transition.

Next, we define a séR of internal transitions such théE, b, 0,6, F) € R implies that
E may be removed without changing behavior.

Definition 2.5 Let R C .Lg ThenR is a symbolically reducible seff for all a[b]/0@)

and E such that E e——— o{bl/0@ E,

(i) for all by, 6y, 09, and F such thatE, by, 6y, 69, F) € R, andsat(b A by),

if § L oo then forsome K F e—— of/ege F and(E', by, 0y, 0, F') € R,
elsey = §p,a = 7, and(E,b,0,6,E') € R,

(i) for all by, 6y, 09, and F such that(E’ bo, 6o, 00, F') € R andsat(b A by),
if 6 L d, then for some FF LY F" and(E, by, 6y, 60, F) € R,

wheresat(_) is the predicate for checking satisfiability, thetst (b) iff (3 p. bp = true).

The symbolically reducible set is used for reducing needig®rnal transitions mainly
caused byinterleaving For example, Figure 6(a) is the transition graph of the ooent
processAbs(x, z) defined in Figure 5Abs(X,z) consists of two process&aller(Xx) and
Callee(2): Callee(Z) returns the absolute value wpassed frontaller(X) if zis not zero,
otherwise nondeterministically returr®r —x. Caller(Xx) can independently performask,
while Callee(2z) is checking the sign ok and reversing the sign if necessary. The inde-
pendence is expressed by interleaving the events, for draimgpconditional internal event
7[b1] can occur before and afteask in Figure 6(a). Then, the followin@ is a symbolically
reducible set:

R = {(Slv b17 &, (01)7 Sd>7 (Sb b2757 (01)7 Sl)v (827 b17 &, (01)7 Sé)v (827 b2757 (01)7 SG)a
(Sov true, (y = _y)v (01)7 Sl)? (an true, (y = —Y), (01)7 SG)}

where each process (stagforresponds to the node Figure 6(a) and, is the initial state
of Abs. In this case, the state% andS; can be bypassédind removed like the transition
graph shown in Figure 6(b) whose initial stateAiss’, where Proposition 2.1 given later
guarantees thaibs andAbs’ are stable-failures-equivalent.

If the internal transition fron, to S; does not exist in the transition graphs of Fig-
ure 6(a), therhbs andAbs’ are not stable-failures-equivalent becanse can deadlock &5,

2The method to bypass reducible states is given in Definiti6riaer.

Abs(X,z) = Caller(X)[| {| call,ret |} ||(Callee(2) \ {| chk,minus |})
Caller(x) = calllx — task — ret?X — prt!x — STOP
Callee(2) = call?y — Check(y, 2)
Check(y,2) = ((y<0 V z==0) & chk — minus — Ret(—Y)) O ((=(y<0) V z==0) & chk — Ret(Yy))
Ret(y) = retly — STOP

Figure 5. A concurrent procestbs(X,z)

Abs Abs’

call'x/(y:=x)@(11)
task@(10)
t[b2]@(01)
t[b1]@(01)
task@(10)

call'x[b1)/(y:= -x)@(11) calllx[b2)/(y:=x)@(11)

t[b1]@(01) t[b2]@(01)

ly:= -
y= y@(07) uy:=-y@(01)

task@(10) task@(10)
@ 8
retly/(x:=y)@(11) \y_Prt!x@(10) retly/(x:= y)@(11)\, Prt'’x@(10)
® @ ®
b1 = (y<0) v (z==0), b2 = (= y<0) v (z==0) | | b1’ = (x<0) v (z==0), b2’ = (~ x<0) v (z==0) ‘
(a) the original transition graph of Abs (b) the reduced transition graph

Figure 6. The basic idea for reducing the number of transitions

if x = 0 andz # 0. The condition(i) in Definition 2.5 requires that the internal transition
from S, to S; must exist if the internal transition fro® to S;.

On the other hand, if the internal transition fr@nto S; does not exist, the sta must
remain for the caseb, even after making a bypass fra& to S,. It means that the nonde-
terminism in the case = 0 disappears by the bypass (i.ezi 0 thenx is deterministically
returned), thusibs andAbs’ are not stable-failures-equivalent. The conditign in Defini-
tion 2.5 requires that the internal transition fr@nto S; must exist if the internal transition
from S, to S exists.

In Figure 6, it is noted thatbs and Abs’ arenot weakly bisimilar [3] becausgébs has
a nondeterministic choice & aftercall if z = 0. This is an important reason why stable-
failures-equivalence is used in this paper.

Then, the process-narﬁeggﬁa(i) is defined forbypassingeducible states.

Definition 2.6 Let’ R be a symbolically reducible set andmNat. Then, thebypassed tran-
sition relatione—-—x »nC &£ x Act x &£ with respect toR and n is the smallest relation
satisfying the following rules:

. afb] /6@s a[b]/6@s
o (base): if E &——— E'then Ee——— 1 g
alb]/0@6

e (bypass):if (Ee——xn E' A (E,bg,0p,00,E") € R A bv(a) NEv(bed) = 0)
albAbg8]/0go0 @(5ed)
then E e———— a1y E,

. alb] /6@s a[b/\reSt(R,E,a,e)}/9@5
e (rest):ifE oﬂe@fbﬂn) E’' then Ee ®n+1) E

whererest) is the Boolean expression defined by

I'eSt('R,E’a’@) == /\{_|b0 | 3 00, 50, EI. (E, bo, 00, 50, E/) c R, bv(oz) N fV(boe) == @}

a[x==0] @ a[~ x==0]

a[x==0 A 7 x==0]

(a) original graph (b) bypassed graph (c) cleaned graph

Figure 7. The bypassed transition graph (every location &d is omitted)
Then, by using— % n), thebypassed procewgg) (X) is defined as follows:

M gy — <
BP(r.g)(X) = SP) (%)

whereSP g (X) is the process-name defined in Definition 1.4. 1

The first rule(base) means thaé—- o) is exactlye—-. The second rulébypass)

is used for bypassing’ by the actionab A byd]/0yc0@(dedy) if E oﬂi%i » E and

(E', by, 6y, 99, E”) € R, and the value received hydoes not affect the next conditidp (i.e.
bv(a) N fv(byd) = 0). The third rule(rest) is used for strengthening the condition of the
existing original transition byest . It means that the original transition can be performed
only if the condition of every bypassed-transition is fefise. rest) = true). For example,

in the transition graph of Figure 7(a), the following $&is a symbolically reducible set.

R ={(P2,x=0,¢,1,P3), (P2,x#0,¢,1,P4)}

Then, Figure 7(b) shows that the proc@ssgenerated fronP1 by bypassing the reducible
stateP2 (i.e.B1 = BPSQ)’M)(X)). Here, it is important to note that the transition fr@mnto B2
is never performed. Therefore, it can be removed as shownré-igc). This transformation
seems to be easy, but it is difficult to find such reducibleest@nd to bypass transitions
because there are generally many interleaving transitioosncurrent processes.

Then, in order to prove that the original process and the $sgxhprocess agable-
failures-equivalenf2], we give the following lemma.

Lemma2.1Lett € Act) and R be a symbolically reducible set. prE% P’, then for
some Eandp/, P = E'p’ and for all hy, 6y, dy, and F such that(E’, by, 6y, dp, F') € R*®
and kyy', for some b, ¢, &, and F, (E/, b{),e(),ég,F”) € R*, by, (E,by,0,d,F) <
(E', b, 05, 5, F"), and (BP(R ¢ (X)\{tmp})p == (BP(e (X)\{tmp}) (6hop’), where ti =
tr, represents that trand tr, are comparable (i,e.fr= tr2 V try < try) by the partial order
< defined by: tr < try < 3tr. tryetr =tr,. 3

Proof: This lemma can be proved by induction on the length ahdn. Especially, the
following sublemma is the key for proving it at the last triios of t.

Sublemma If Ep % P’ then for somée’ andy’, P’ = E/p’ and
for all by, 6y,), andF{, such that{E’, b}, 6;, &, F;) € R* andbj,’,
for someby, 0, do, andFy, (E, by, 0y, do, Fo) € R®, byp and
for all bl, 01, 01, andF such tha(E bo, 00, 50, Fo) (E bl, 91, 51,) eR® andblp,

3p s P s the sequential standard transition fréo P’ by t € Actj, Tis the event-sequence obtained

from t by deletingr, andP — P’ is the weak standard transition, where zero or more intéraasitions can
be inserted between observable transitions (e.g. seer{8jdéonveak standard transition).

P=Ep O OP=Ep

(2) E| (E, bO' 60, 60, FO) € R.‘/ j/(»]) V(E’, b’Ov evO! 6’0, F’O) cR®

(3)V(E, by, 8,84, F)eR"®

O a @) 3, b, 0,5, F)eR®
(BP(e () \{tmp})&p\; 5

(BP R () \{tmp}) 8,

Figure 8. The relation betwee and (8p"")

=.F) (X)) \{tmp} in the sublemma in Lemma 2.1

for someby, 0/, 67, andF’, (E’ bg,@g,&{],F’) = (B, b}, 01,01, F), by,
and(BP() (X)\{tmp})61p == (BP(3) (X)\{tmp})d/

When comparing the event-sequences of original proEessd the bypassed process

(BPE;Q r (X)) \{tmp}, itis noted thaE has to perform more internal events than the bypassed

process because the bypassed process can bypass rediatése Bhereforey is used in
the bypassed process for deleting the extra internal evaitE (note:7 = ¢). The re-

lation betweer_E and (BPE%F)()?))\.{tmp} is shown in Figure 8. See the proof-note in the
CONPASU website [15] for the details. 1

A bypass often makes the other bypasses possible. Therdf@dypassed process

BPE%E) (X) has the parameter for iteratively bypassing by using the sgt It is important
thatR can bereusedat each step in the iterative bypass, in other words, it is not necessary
to computeR for each step.

Then, we present Proposition 2.1 which guarantees thatrigaa process and the
bypassed process astable-failures-equivalerg].

Proposition 2.1 Let E€ &, n € Nat, andR be a symbolically reducible set. Then,

E =7 BP(¢)(X)\{tnp}

Proof: Lemma2.1impliesraces(Ep) C traces((BPERE (X)\{tmp})p), wheretraces(P)
is the set of traces d?. The opposite direction®” can be proven by the following sub-
lemma:

Sublemma if (BP' RE)(N\{tmp})p = P, then for som&’ andy’, Ep == E'p
andP' = (BP(p g (X)\{tmp}).
This sublemma is easier than Lemma 2.1. Furthermore, it 3§ &éa show thatE’ and

BPE%E,)(S()\{tmp} have the same refusals for aiy. Here, F” of BPE;‘%’F,,)()?')\{tmp} in
Lemma 2.1 is not necessarily the sameEgsbut if E' is stable (i.e. has no internal transi-

tion), thenE’ = F” becausdE', by,), ;,F") € R* C olig Hence,failures(Ep) =
failures((B PE%E(X)\{tmp})p), wherefailures(P) is the set of failures of. 1

By Proposition 2.1, internal transitions i can be bypassed with preserving the be-
havior up to stable-failures-equivalence. In order to gpipé proposition, however, it is nec-
essary to find a symbolically reducible s@f according to Definition 2.5. In general, it is

difficult to find the largest reducible set becafé]é‘:g‘ may be infinite by compositions of
assignments (e.g. the infinite compositionof.= n + 1)) even if the symbolical transition
graph is finite. Therefore, we present a method for gengyatireducible set, which is not
necessarily largest.

Definition 2.7 LetS C £. Then, the se3Rs C -u:/g is defined as follows:

SRs = Muzo SRS
0) _ 7[bo] /60 @3o
SRY = {(E, by, 00, 00,F) | E€ S, E o3 F, E£F},
sag‘+ " = SRB(SRF(SRY")),

whereSRF(R), SRF(R) C -:/g are defined as follows:

SRF(R) = {(E. by, 00, 60,F) € R | Ya,b,0,6,E'. (wsat(b A by), E e

— (if 6 L 8 then(IF". F o223 /0@ ' (g, 0, 00, F') € R)
else(6 = &, o = 7, (E, b,9,5, E') €R))}

E)

SRB(R) = {(E', by, 0, 60, F') € R | Y, b,0,6,E. (wsat(b A by), E o2 £
(5 L6y then(3F.F @ B (E by fo. b F) € R)))
wherewsat(_) is a predicate such that if b is satisfiable thesat(b) is true. 1

The setS in Definition 2.7 is usually the set of all the reachable stdtem the initial
process. The se&RF(R) andSRB(R) are used for removing internal transitions which do
not satisfy the condition§) and (ii) in Definition 2.5, respectively. Here, it is noted that if
it is hard to decide the satisfiability &fthenwsat(b) can betrue for the safety because
only one directionlf is satisfiable= wsat(b)) is required in Definition 2.7. It is useful for
implementing an automatic tool based on Definition 2.7.

By Definition 2.7, sinceSRF(R) C R andSRB(R) C R (i.e. SRg‘“) C Sng”)) for any
n, there is necessarily a natural numbesuch tha‘SRfsm) = SR‘(S"‘*” if the setS of reachable
states is finite. Then, the expected proposition is predente

Proposition 2.2 If SRY” = s thensr" is a symbolically reducible set.
Proof: It can be shown that the foIIowm’@ is a symbolically reducible set.
R ={(E,b,0,6F) | 3m. (E,b, 0,5 F) € sRI” = g™}

It is not difficult because the conditions in Definition 2.7glymones in Definition 2.5.

Consequently, by Propositions 2.1 and 2.2, the followingktary is derived.

Corollary 2.1 Assume that,m € Nat, E e E,R = SRg) = SR(”"+1 andS C £ is the set
of reachable states from E. Then=5- BP{" (R, E)(X)\{tmp}.

The setSRs is not necessarily the largest reducible set. Interackieerem provers like
Isabelle [16] may allow us to find such largest reducible.detghis paper, however, we
are more interested iautomatically reducinghe number of states thaemi-automatically
minimizingit. Therefore, our reduction method is sound but not corepléfe, however,
expect that the method can remove many needless internsitioas caused by interleaving.
It is demonstrated in Sections 3 and 4 by implementing théatkt

3. CONPASU-tool: an Implementation

We have implemented the analysis-method, which is predant&ections 1 and 2, in a
prototype-tool calledCONPASU (CONcurrent Process Analysis SUpport tool) in Java (cur-

CAL(N) = (SQREM(N) [|{lrem,end2|}|] SUM(0)) \ {lrem,end2|}
SQREM(n) = (83Q(n) [l{Isq,end1|}|] REM) \ {lIsq,end1]|}
SQ(n) = ((n>0) & in?x1 —> sq!(x1*x1) -> SQ(n-1)) [((n==0) & end1!0 -> STOP)
REM = sq7x2 -> rem! (x2%10) -> REM [] end1?7zl -> end2!'zl -> STOP
SUM(y) = rem?x3 -> prt!x3 -> SUM(y+x3) [] end27z2 -> prts'y -> STOP

Figure 9. The concurrent procesaL (N) (a readable script bgONPASU)

rently about 6,000 lines). It means tiGAINPASU is a tool for generating a sequential process
E from each concurrent proceBssuch thaE = F. It can also generate a script in the DOT
language [17] for drawing the symbolic transition graphhef generated sequential process,
for example by using Graphviz (Graph Visualization Soft)dd.8].

In this section, it is explained by the example.(N) in Figure 9 how to us€0NPASU for
analyzing concurrent processes , wherethe initial value ok in SQ(n). The input-language
of CONPASU is a sub-language of CiP(Machine-readable dialect of CSP) used in FDR [4],
and CONPASU can directly read the script of Figure 9. The concurrent @eCAL(N) con-
sists of three processes(n), REM, andSUM(y). The processQ(n) has been explained in
Section 1. The processkEM andSUM(y) behave as follows. IREM receives a value from the
channekgq, then sends the remainder of dividing the valud bynd then returns teeM, and
if it receives a value from the channeid1, then forwards it to the channehd2 and then
stops. IfSUM(y) receives a value, to whichis bound, from the channekmn, then prints it
and behaves likeUM(y + x), and if it receives a value from the chanreh?2, then printsy
and then stops

At first, Figure 10 shows the transition graph generated feaf(N) by CONPASU, ac-
cording to the symbolic operational semantics with assigmis and locations in Defini-
tion 1.3, where Graphviz [18] is used for drawing the graphdAcigure 11 shows the re-
duced transition graph generated from the graph in FigureyldDNPASU, according to the
state-reduction method presented in Section 2. By the-stdigction, the numbers of states
and transitions decrease byfrom 12 to 7) and7 (from 17 to 10), respectively.

Figure 11 is useful for understanding the whole behaviorhef ¢oncurrent process
CAL(N). However, it is not avoidable that transition graphs becaeeny complex for large
scale systems even if the state-reduction is applied. Ih sases, more abstract behaviors
can be extracted by hiding uninteresting events. For exanafthouglCAL(N) prints a value
by prt at each receiving, we can see the abstract behavior by fagosi the inputin and
the final resulprts, in other words, by hidingrt as follows.

ACAL(N) = CAL(M)\{lprtl}

In this caseACAL(N) is expected to behave like the specificat8REC(N) in Figure 12. The
specification means thaPEC(N) iteratively receives a value, to whichis bound, and adds
x*x%10 to the variabley, n-times, and thereaftey is printed byprts. In fact, the model
checker FDR can verify thaiCAL(N) and SPEC(N) are stable-failures-equivalent by fixing
the initial valueN and finitising the range of the input and the variapl&@ he specification
SPEC(N) is simple and is easily described. It is, however, sometima difficult to describe
such specifications than implementations.

CONPASU can automatically generate specifications (in z3eript) from implemen-
tations. Figures 13 and 14 show the transition grapAGfL(N) after state-reduction and
the sequential procesgN), respectively, generated I6pNPASU. Therefore, it is guaranteed
by Corollary 2.1 tha8(N) andACAL(N) are stable-failures-equivalent for any initial valie
and any input. By comparing the generated specificagion with the ideal specification
SPEC(N), S(N) has an extra internal transition (fra0(n, y) to S4(n, y)), but itis easy to man-

S(N)

In:=N,y:=0

ny)

S1(n,x1,y)

tau
/n:=n-1,x2:=x1*x1

@((11)0)

prt!x3
ly:=y+x3
@(01)

S3(n,x2,y)

tau
[n==0]
/21:=0
@((11)0)

tau
/x3:=x2%10
@((01)1)

S5(x2,n,x1,y)

prt!x3 tau
ly:=y+x3 /x3:=x2%10
@(01) @((01)1)

in?x1
[n>0]
@((10)0)

S8(n,x1,x3.y)

tau
In:=n-1,x2:=x1*x1
@((11)0)

in?x1
[n>0]
@((10)0)

Figure 10. The symbolic transition graph @iL(N) (the top box points to the initial state)

ually prove thatS(N) andSPEC(N) are stable-failures-equivalent for any initial vallend
any input. As shown in this example, specifications gendrag&€0NPASU are not necessarily
ideal. However, such generated specifications are helpfidbfmally describing ideal spec-
ifications used in FDRCONPASU will be also used as a support tool of FDR when formally
describing specifications of concurrent processes. We @aseconsidering how to improve
the analysis-method @fONPASU for generating more ideal specifications.

CONPASU is still a prototype and has not been polished yet. The cu@@PASU soundly
checks theunsatisfiabilityof Boolean expressions by transforming them to disjunatiove
mal forms, and it is not complete. The incompleteness, heweloes not invalidate Corol-
lary 2.1 because Definition 2.7 only requires that-ifsat(b) is true thenb is unsatisfi-
able. Furthermore, the syntactical identity is used foratpgality over data-expressions (e.g.
X+ 1 # 1+ x). The syntactical identity seems strong, but it is expettebe still useful
for reducing many transitions caused by interleaving, ahé$ been shown in the example
CAL(N) and it is also demonstrated in Section 4.

4. Application

In this section, we demonstrate h@@NPASU analyzes concurrent processes by using the
exampleTransferSys given in Figure 15. It is a system for transferring data-sewges

in?x1
[n>0]
/x3:=x1*x1%10,n:=n-1
@((11)1)

in?x1
[n>0]
In:=n-1,x2:=x1*x1

tau
[n==0]
@((11)1)

prt!x3
Ix3:=x2%10,y:=y+x3
@((01)1)

/n:=n-1,x2:=x1*x1,x3:=x2%10,y:=y+x3
@((111)

Figure 11. The symbolic transition graph @L(N) after state-reduction

SPEC(N) = LOOP(N,0)
LOOP(n,y) = (n>0) & in%x -> LOOP(n-1,y+x*x%10) [] (n==0) & prts'!'y -> STOP

Figure 12. The expected specification of the abstract concurrent psacaL (N)

In:=N,y:=0

in?x1

[n>0]
ly:=y+x1*x1%10,n:=n-1
@((111)

(oo D

Figure 13. The symbolic transition graph @CAL(N)

S(N) = SON,0\{|tmp|}

S0(n,y) = (n>0) & in?x1 —> S0(n-1,y+x1*x1%10) [1 (n==0) & tmp!0 -> S4(y)
S4(y) = prts!(y) -> S7

37 = STOP

Figure 14. A specifications(N) generated fromACAL(N) by CONPASU

TransferSys = (UI [|{l|input,quitO,succ,ok,ngl|}|] Transfer)
\ {linput,quit0,succ,ok,ng|}
Transfer = (Sender [|{|start,net,term,quitl,ack|}|] Receiver)

\ {lIstart,net,term,quitl,ack|}

UI = upload?ds -> input!ds -> (ok?a -> Wait [] ng?a -> UI)
Wait = (cancel?b -> quit0!0 -> UI)
[1 (succ?u -> complete!0 -> UI)

Sender = input?dsO -> Check(dsO0)
Check(ds0) = ((#ds0>0) & ok!0 -> start!0 -> Sending(ds0))
[1 ((not #ds0>0) & ng!0 -> Sender)
Sending(ds0) = ((#ds0>0) & net!(head(ds0)) -> Sending(tail(ds0)))
[1 ((not #ds0>0) & term!0 -> Term)
[1(quit0?x -> quitl!0 -> Sender)
Term = ack?z -> (succ!O -> Sender [] quitO0?x -> Sender)

Receiver = start?y -> Receiving(<>)
Receiving(dsl) = (net?d -> Receiving(ds1~<d>))
[1 (term?y -> output!dsl -> ack!0 -> Receiver)
[1(quitl?y -> Receiver)

Figure 15. The CSky-script of the systemransferSys for transferring data-sequences with Ul

TransferSys

Transfer

input start
upload ok net
cancel ng term) output
ul Sender Receiver
complete quit0 quit1
succ ack
—_ —

Figure 16. The structure of the transfer syst@ransferSys

from the procesSender to the proces8eceiver. The proces¥1I is the user-interface for
controllingSender. The structure ofransferSys is shown in Figure 16.
The systenTransferSys behaves as follows:

e Start phase procesd/I receives a data-sequence frapload and then sends it to the
channelinput. The procesSender checks the length of the data-sequence received
from input, and if the length is greater than zero tl&amder repliesok to UI and
thereafter sends the start sigralrt and moves to the transfer phase, otherwise
Sender repliesng to UI and thereafter both processes returns to the initial stites
Receiver receives the start signal, then it initialises the dataisageds1 to the
empty sequence>, and moves to the transfer phase.

e Transfer phase after starting the transfer, if the length of the data-seqe is greater
than zero #ds0>0), then Sender iteratively sends the first dateead(ds0) to the
channelet and retains the remaitnil(ds0), otherwise sends the terminal signal
term and moves to the termination phase. At the same tinksdéiver receives a
data fromnet, then adds it to the sequencedyt ~<d>, and ifReceiver receives the
terminal signal then moves to the termination phase.

e Termination phase procesRReceiver sends the data-sequentel to the channel
output and then acknowledges completiorsnder. After receiving the acknowl-

SO0

upload?ds

tau
[not#ds0>0]
@(1(10))

S2(ds0)
tau
[#ds0>0]
@(1(10))
@(0(11)

tau
/dsl:=<>
@(0(11))

tau
Goay | (e

cancel?b

cancel?b
@(10)

tau
[#ds0>0] tau
/ds0:=tail(ds0),ds1:=ds1"<head(ds0)> @(1(10))

@(0(11))

tau
[not#ds0>0]
@(0(11)

tau
[#ds0>0]

/ds0:=tail(ds0),ds1:=ds1"<head(ds0)>
@(0(11))

S8(ds0,ds1)

tau
@(1(10)

tau
[not#ds0>0]
@(0(11))

cancel?b [output!dsl

S11

output!dsl
@(0(01))

upload?ds
@(10)

ta
o{1(10))

tau cancel?b

@(0(11)) | @(10)

complete!0
@(10)

Figure 17. The symbolic transition graph @fransferSys in Figure 15

edgmentgSender replies with success @I, and therUI reports success to users.
e Cancet users can cancel the transfer by the chanagtel in the transfer phase. The

cancel is forwarded t8ender andReceiver by the quit-signalguit0 andquiti.

Since the processes have a lot of interactions in the syitensferSys, itis not easy to
understand the whole behavior. Figure 17 shows the trangtiaph derived from the C§P
script in Figure 15 by the symbolic operational semanticBdfinition 1.3. Then, it can be
reduced to the graph in Figure 18 by hiding the channelplete and reducing internal
transitions by Corollary 2.1. These graphs can be autoaiptigenerated by ONPASU. In

Figure 18, we can know hofransferSys behaves, for example, as follows:

e The label on the loop from/to the stege,

tau[#ds0>0] /ds0:=tail(ds0) ,dsl:=ds1 <head(ds0)>@(0(11))

means that if the length of the data-sequeti@ held in Sender is greater thar,

then the first data is attached to the taibefi. held inReceiver.

tau
[#ds0>0] cancel?b tau

/ds0:=tail(ds0),ds1:=ds1"<head(ds0)> @(1(10)) @(1(10))
@(0(11))

output!dsl
@(1(11)

S6(ds0,ds1)

cancel?b
@(10)

tau
[not#ds0>0]
@(0(11)

tau
[#ds0>0]

/ds0:=tail(ds0),ds1:=ds1"<head(ds0)>
@(0(11)

S8(ds0,ds1))

tau
[not#ds0>0]
@(0(11))

cancel?b
@(10)

output!dsl
@(0(11)

$10(ds1)

Figure 18. The reduced symbolic transition graphTafansferSys \ {| complete |}

e The loop from/to the stat&8 means that data may be transferred even after the cancel
because forwarding the quit-signals may delay.

In the end of this section, the termination phas@eafder is reconsidered. The process
Term in Figure 15 can receive the quit sigrali t0 even after receiving the acknowledgment.
It seems needless, but the systBransferSys’, which is the same e&ansferSys except
thatTerm is replaced by the followin@erm’

Term’ = ack?z -> succ!0 -> Sender,

has a deadlock because it is possible to perform the carstedfier the successful termina-
tion. Figure 19 is the reduced transition graph generated TiransferSys’\{| complete|},
and it shows how the system reaches to the deadlocktate

5. Related Work

There are various model checkers for process algebra, mmpbe, FDR [4], PAT [5],
CWB [6], and mCRL2 [7]. The main purpose of such model chexkerto check equali-
ties or refinements between an implementation and a spéific®n the other hand, the
main purpose of this work is to automatically generate aifipation (an abstract sequential
process) from an implementation (a concurrent process).

Some model checkers provide functionality to display titgos graphs. For example,
Figures 20 and 21 show two transition graph<aLt(N), introduced in Section 3 (see Fig-
ure 9), displayed by PAT [5] and LTSA [19], respectively. liglres 20 and 21, the number
of states ar@05 in PAT and42 (after minimised) in LTSA even if the parameteis fixed to
3 and the input values fronm is restricted to{0, 1}. The reason why the numbers of states
are larger than one in Figure 11 is that they use standardréEsiathus variables must be
instantiated to each value.

tau
[#ds0>0] tau

/ds0:=tail(ds0),ds1:=ds1"<head(ds0)> @(1(10))
@(0(11))

S6(ds0,ds1)

cancel?b
@(10)

tau
[not#ds0>0]
@(0(11))

tau
[#ds0>0]

/ds0:=tail(ds0),ds1:=ds1"<head(ds0)>
@(0(11)

S8(ds0,ds1

tau
[not#ds0>0]
@(0(11))

cancel?b |output!dsl

Figure 19. The reduced symbolic transition graphTafansferSys’ \ {| complete |}

Li and Chen [9] presented an algorithm to translate the praldbr checking bisimula-
tion between symbolic transition graphs with assignmetattine problem of solving a pred-
icate equation system. The translation is sound and coaiat it is hard to automatically
solve the generated predicate equation system.

Interactive theorem provers [20,21,22] for process algdlave been presented. In the-
orem provers, infinite state processes can be verified. éstdiowever, time to make proof-
scripts for giving proof-instructions. Especially, it ifi&n necessary and difficult to manu-
ally give expected relations between a concurrent proceta gaequential process. Probably,
CONPASU can support to make such proof-script even for infinite gabeesses.

6. Conclusion

We have presented an analysis-method for reducing the nuofilstates of the symbolic
transition graphs based on a symbolic operational sensantith assignments and loca-
tions. It is guaranteed that the original process and thecest process are stable-failures-
equivalent. Then, we have implemented the symbolic opmratisemantics and the state-
reduction method in the to@0NPASU, and demonstrated it. As far as we know, there is no
other tool which can automatically generate symbolic titeors graphs such as Figure 18
from concurrent processes such as Figure 15.

The sequential processes generated@PASU do not necessarily correspond to the
expected ideal specifications. It is, however, often diffite formally describe such ideal
specifications. The generated sequential processes @uggful information for describing
such ideal specifications.

prts{1]

prifd]

Figure 21. The minimised transition graph 6&L(3) displayed by LTSA (input-value {0,1})

The currentCONPASU is a prototype and we have not discussed the performance of
CONPASU yet. It is a future work to polisliONPASU and evaluate the performance. As a sam-
ple, it took 39 msec for computing the symbolically redueibkt from the process in Fig-
ure 15 by Definition 2.7 and 46 msec for bypassing the procgdatbl Core 2 Duo CPU
P9600, 2.66 GHz, and 4 GB RAM. In the theoretical side, we aresicering how bypass
affects divergence. We have confirmed that divergence is@waly created in bypassed pro-

cess of Definition 2.6, but we are still carefully discussivtgether divergence can disappear

by bypass or not. We conjecture tHatand (BPE;%E)(Y())\{tmp} in Corollary 2.1 are also
failures/divergence-equivalent.

Acknowledgments

This work was supported by JSPS-KAKENHI 20500023.

References

[1] C. A. R. Hoare.Communicating Sequential ProcessBsentice Hall, 1985.
[2] A. W. Roscoe.The Theory and Practice of Concurrendrentice Hall, 1998.
[3] R. Milner. Communication and Concurrencrentice Hall, 1989.
[4] Formal Systems (Europe) Limited. Failures-divergerefmement: FDR2http://www.fsel.com/.
[5] National University of Singapore. PAT: Process anayeblkit.
http://www.comp.nus.edu.sg/ pat/.
[6] The University of Edinburgh. The concurrency workbench
http://homepages.inf.ed.ac.uk/perdita/cwb/.
[7] Technische Universiteit Eindhoven. mcriRttp: //www.mcrl2. org/mcrl2/wiki/index. php/Home.
[8] M. Hennessy and H. Lin. Symbolic bisimulatioriEheoretical Computer Scienck38(2):353—-389, 1995.
[9] z. Li and H. Chen. Computing strong/weak bisimulatiorueglences and observation congruence for
value-passing processes. TACAS '99 LNCS 1579, pages 300-314. Springer-Verlag, 1999.
[10] H.Lin. Symbolic transition graph with assignmentG®ONCUR '96 LNCS 1119, pages 50-65. Springer-
Verlag, 1996.
[11] R. S. Lazic. A Semantic Study of Data Independence with ApplicationsadeViChecking PhD thesis,
Oxford University Computing Laboratory, 1999.
[12] U. Montanari and D. Yankelevich. A parametric appro&ztocalities. INICALP '92, LNCS 623, pages
617-628. Springer-Verlag, 1992.
[13] G.Boudol, I. Castellani, M. Hennessy, and A. Kiehn. &ting localities.Theoretical Computer Science
114:31-61, June 1993.
[14] R. Wimmer, M. Herbstritt, and B. Becker. Minimizatioffi large state spaces using symbolic branching
bisimulation. InDDECS’06 2006.
[15] Y. Isobe. Webpage on CONPASWHttp://staff.aist.go.jp/y-isobe/conpasu/.
[16] T. Nipkow, L. C. Paulon, and M. Wenzdisabelle/HOL LNCS 2283. Springer, 2002.
[17] E. Gansner, E. Koutsofios, and S. North. Drawing grapitis eot, 2006.
http://www.graphviz.org/Documentation/dotguide.pdf.
[18] J. Ellson, E. Gansner, E. Koutsofios, S. North, and G. dtadi. Graphviz - graph visualization software.
http://www.graphviz.org/.
[19] Imperial College London. LTSA - labelled transitionstgm analyser.
http://www.doc.ic.ac.uk/1ltsa/.
[20] B. Dutertre and S. Schneider. Using a PVS embedding d? @Sverify authentication protocols. In
TPHOL 1997LNCS 1275, pages 121-136. Springer, 1997.
[21] Y. Isobe and M. Roggenbach. Webpage asr®rover.
http://staff.aist.go.jp/y-isobe/CSP-Prover/CSP-Prover.html.
[22] Y. Isobe and M. Roggenbach. A generic theorem prover3 @finement. ITACAS 2005LNCS 3440,
pages 108-123. Springer, 2005.

