CONPASU-tool:
A Concurrent Process Analysis Support tool
based on Symbolic Computation

Yoshinao Isobe (B3} %)

Information Technology Research Institute
AIST, Japan

CPA 2011 (21 June 2011)

Contents

B Introduction
® Motivation
® CONPASU

B Analysis method
® Sequentialization
® State-reduction
® Abstraction

B Application
® Data transferring
® Analysis

B Related work

B Summary

CONAPSU is a static analysis tool of concurrent processes.

Design

(")
Structures of concurrent processes,

Behaviors of component processes

Analysis-results

Feedback

S —

.......

‘‘‘‘‘‘

_ Y.
Formalizing
CSP model Input
(CSPy Script)

Introduction

B Motivation

B CONPASU

2:00

B How can we see behaviors of concurrent processes?

Implementation

Concurrent process
(CSP model)

The goal is to develop it

= : failures-equivalence

Specification
Sequential procesj Requirement

(CSP model)

|

Sequential process
(CSP model)

“Reading” is easier
than “writing”.

CAL: An example of concurrent process

B CAL: a concurrent process which consists of 3 processes with synchronous channels

“in” receives
a value N times “prt” prints each

interim result.
“prts” prints
the final sum.
\

/n N end1|0[n==0] A 4 /y:=0 :end2?z : prtsly :

|n?x1[n>0] sq!(x1#x1) /n =n-1 rem?x3(| prtIx3 /y:=y+x3

e |
end1?z — end2lz
Assignment ._>O__>@__>O

sq?x2< rem!(x2%10)

.

The analysis method of CONPASU (outline)

[step 1] A transition graph is generated from a given CSP model (sequentialization).

[step 2] Needless internal-transitions are bypassed (state-reduction).
yd

12 states I 7 states
17 transitions I 10 transitions

in?xl

[n=0)
Fd=xt 1% 1 0n=n-1
@111y

tau
in==0]

i21:=0
@110

i CAL(N) = (SQREM(N) [|{|rem,end2|}|] SUM(0)) i
E \ {Irem,enc2|} 4
: SQREM(n) = (SQ(n) [I{]|sg,end1|}|] REM) : SEQ(N) = SEQO(N,0) \ {|tmp]|}
: SEQO(n,y) = (n>0) & in?x1 -> SEQ6(n-1,x1*x1%10,y)
. [1 (h==0) & tmp!0 -> SEQ4(y)
P [‘ SEQ4(y) = prts!(y) -> SEQ7
SQ(n) = ((n>0) & in?x1 ->sq!(x1.x1) -> SQ(n-1)) } y SEQ6(n,x3,y) = (n>0) & in?x1 -> SEQ11(n-1,x3,y,x1*x1)
] ((n==0) & end1!0 -> STOP) o o [] (n==0) & tmp!0 -> SEQ9(x3,y,0)
REM = sq?x2 -> rem!(x2%10) -> REM [1 prt!(x3) -> SEQO(n,y+x3)
[l end1?z1 -> end2!z1 -> STOP SEQ7 = STOP
SUM(y) = rem?x3 -> prt!x3 -> SUM(y+x3) SEQ9(x3,y,z1) = prt!(x3) -> SEQ4(y+x3)
[1 end2?z2 -> prtsly -> STOP SEQ11(n,x3,y,x2) = (n>0) & in?x1 -> SEQ12(x3,y,x2,n,x1)
s [1 prt!(x3) -> SEQ6(Nn,x2%10,y+x3)
SEQ12(x3,y,x2,n,x1)
= prt!(x3) -> SEQ11(n-1,%x2%10,y+x3,x1*x1)

Sequential process (CSP model)

Graphviz is used for display graphs. = : (stable) failures-equivalence

Analysis method

B Sequentialization
B State-reduction
B Abstraction

9:00

Sequentialization

B A symbolic operational semantics with data-assignments and locations is used.

B Variables are not instantiated to values in symbolic semantics.

— Many values can be folded into a variable in symbolic labeled transition graphs.
— State-minimization is difficult (often undecidable).

The CSP model of CAL(N)

CAL(N) = (SQREM(N) [|{|rem,end2|}|] SUM(0)) ¥ {|rem,end2 |}
SQREM(n) = (SQ(n) [|{|sq,end1|}|] REM) ¥ {|sq,end1|}

sQ(n) = ((n>0) & in?x1 ->sq!(x1:x1) -> SQ(n-1)) e O NPASU |-

1 ((n==0) & end1!0 -> STOP)
REM =sq?x2 -> rem!(x2%10) -> REM)

[] end1?z1 -> end2!z1 -> STOP b I . I
SUM(y) = rem?x3 -> prt!x3 -> SUM(y+x3) Sym olic operatlona

[1 end2?z2 -> prtsly -> STOP SemantiCS / x s u

r prt!x3 / y:=y+x3 @ (01) |

)]
T/ x3:=x2%10 @ ((01)1)]

Locations T: Internal event

State-reduction (internal-choice)

B Needless internal transitions are bypassed with preserving the failures-equivalence =¢.

e.g. A removable state with non-deterministic internal transitions.
(in fact, it is more complex because conditions and assignments are considered)

(Rl)/[Bypass)

d

-
[Removable

Non-deterministic choice

Y.
T: Internal event

) Deterministic choice

= : (stable) failures-equivalence

State-reduction (interleaving)

B Needless internal transitions are bypassed with preserving failures-equivalence =.

e.g. Removable states with interleaving.

Removable

.

In CONPASU, locations are used for checking the independency.

State-reduction (an example)

B The removable states in the transition graph of CAL(N) and the reduced graph.

4]

n=N,y:=0

(Removable ‘ 7 states l

in?x1
[n=0]
@((10)0)

S1(nx1.y)

tau
n=n-1,x2:=x1"x1
@(110)

[r=0]

- e Fed=el 21 %1 0n=n-1
I 1

K3=x2%10 i it e

o) @(11)0)

in?xl
'm"".bml . zgl:iiz%m.y;ms
S L= X @uﬂl]l}

he3:=x2%10 n>0]
@qonm @((10)0)

S8(n.x1,x3.y)

In=ne1 x2i=x1"x1

@110

12 states By Corollary 2.1 (p.353) in Proceedings of CPA2011
17 transitions

Abstraction

B Analysis by focusing on interesting channels (e.g. in and prts)

ACAL(N)
CAL(N)
SQREM(n)

= CAL(N) \ {|prt]|}
= (SQREM(N) [|{|rem,end2|}|] SUM(0)) \ {|rem,end2]|}
(SQ(n) [|{Isa,end1|}|] REM) \ {|sq,end1|}

SQ(n) = ((n>0) & in?x1 -> sq!(x1+x1) -> SQ(n-1))
[] ((h==0) & end1!0 -> STOP)
REM =sq?x2 -> rem!(x2%10) -> REM
[] end1?z1 -> end2!z1 -> STOP
SUM(y) = rem?x3 -> prt!x3 -> SUM(y+x3)
[] end2?z2 -> prtsly -> STOP

Hiding interim
result on prt

Sequentialization,

| lCONPASu | State-reduction

3 states (12— 3)
3 transitions (17->3)

AO(n.y)

in?x1

[n>0]
fy=y+x1*x1%10,n:=n-1
@((1n1)

tau
[n==0]
@(1Nn1)

Ad(y)

prisly
@(01)

\

in?x1 [n>0]
/ y:=y+(x1+x1)%10,n:=n-1
@ ((11)1)

17:10

Application

B Data-sequence transfer

B Analysis

13

The CSP model of TransferSys

B TransferSys is a concurrent process that consists of 3 processes: Ul, Sender, and Receiver.

B Sender transfers data-sequences from Ul to Receiver (it can be cancelled).

TransferSys

The CSP model of TransferSys

(TTansferSys

TransferSys = (Ul [|{]input, quitO, succ, ok, ng|}|] Transfer)
: \ {]input, quit0, succ, ok, ng|}

upload

ancel 1

c)
—? Sender Receiver

Transfer = (Sender [|{|start,net,term,quit1,ack|}|] Receiver) JU—
\ {|start,net,term,quit1,ack|} : LS
Structure

(Ul = upload?ds -> input!ds -> (ok?a -> Wait [] ng?a -> Ul)
Wait = cancel?b -> quit0!0 -> Ul [] succ?u -> complete!0 -> Ul

(Senderl Sender = input?ds0 -> Check(ds0)
Check(ds0) = ((#ds0>0) & ok!0 -> start!0 -> Sending(ds0))
3 [1 ((not #ds0>0) & ng!0 -> Sender)
Sending(ds0) = ((#ds0>0) & net!(head(ds0)) -> Sending(tail(ds0)))
[] ((not #ds0>0) & term!0 -> Term)
[] (quit0?x -> quit1!0 -> Sender)
Term = ack?z -> succ!0 -> Sender

Rece ive r ; a netlhead(ds0)
"':; Receiver = start?y -> Receiving(<>) D 2l

Receiving(ds1) = (net?d -> Receiving(ds1~<d>))
[] (term?y -> output!ds1 -> ack!0 -> Receiver)

[] (quit1?y -> Receiver)

The behaviors of the 3 components

B Sender synchronously communicates with Ul or Receiver.
- How does their composition behave? TransferSys

upload

Sender Lcell? Sender Receiver
—

cgmplete 1

N —————) ———————— -

N ——

% ngl0
upload?ds) 1 [not#ds0=0]

quit110

netthead(ds0) quit1?y

SND3(ds0)) D[#ds0>0]
/ds0:=tail(ds0) <., net?d

= /ds1:=ds1*<d>

term!0 (----
[not#ds0=0]

The behavior of TransferSys

dsO : the sequence-variable in Sender
ds1 : the sequence-variable in Receiver

B The symbolic labeled transition graph generated by CONPASU from TransferSys

TransferSys \ {|complete |}

TransferSys = (Ul [|{|input, quitO, succ, ok, ng|}|] Transfer)
\ {linput, quit0, succ, ok, ng|}

Transfer = (Sender [|{|start,net,term,quit1,ack|}|] Receiver)
\ {|start,net,term,quit1,ack|}

Ul = upload?ds -> input!ds -> (ok?a -> Wait [] ng?a -> Ul)
Wait = cancel?b -> quit0!0 -> Ul [] succ?u -> complete!0 -> Ul

Sender = input?ds0 -> Check(ds0)
Check(ds0) = ((#ds0>0) & ok!0 -> start!0 -> Sending(ds0))
(1 ((not #ds0>0) & ng!0 -> Sender)
Sending(ds0) = ((#ds0>0) & net!(head(ds0)) -> Sending(tail(ds0)))
(] ((not #ds0>0) & term!0 -> Term)
(1 (quit0?x -> quit1!0 -> Sender)
Term = ack?z -> succ!0 -> Sender

Receiver = start?y -> Receiving(<>)
Receiving(ds1) = (net?d -> Receiving(ds1*<d>))
[] (term?y -> output!ds1 -> ack!0 -> Receiver)
[] (quit1?y -> Receiver)

Sequentialization,
State-reduction

DO

upload?ds \ tau
[not#ds0=0]
@(1(10)

/ds0:=ds
@(1(10))

D2(ds0)

tau
tau [#ds0=0]
@(1(11)) lds1:=<>
@(1(11))

T[#ds0>0]
/ds0:=tail(ds0),

dsl:=ds1”<head(ds0)>
@(0(11))

T

D&(ds0,ds1

tau

[#ds0=0]
lds0:=tail(cIs0),ds1:=ds1*<head(ds0)>
@(©0(11))

tau
@(1(10)

cancel?b

@(10

tau
[not#ds0>0]
@(0(11)

tau

>

[#dis0>0]
D8(cls0.dsfl) Jds0:=tail(ds0),ds1:=ds1*<head(ds0)>
3 @(0(11))

tau
[not#ds0>0]

| CONPASU |

8 states (18 = 8)
14 transitions (27 = 14)

outputlds1
@(0(11))

cancel?b

@(10)

Deadlock !)

X

7

Graphviz is used for display graphs. 16

A revision of Sender

B A transition is added in Sender for receiving the cancel signal after transfer completion.

r

ng!d
[not#ds0=0]

SND1(ds0)

ok!0

[#ds0>0] .
| Sending
SNoz@ quit110

start!0

netlhead(ds0)
SND3(ds0)) D[#ds0>0]
fds0:=tail(cds0)

i

term!0
[not#ds0=0]

Competed) ack?z

D=
ancel

quit0?x

~N

(

(A revised version)

ng!0
[not#ds0=0]

SND1(ds0)

okl0
[#ds0>0]

y

start!0

y
SND3(ds0)

netlhead(ds0)
) D) [#ds0=0]
fds0:=tail(cs0)

term!0

it0?
[not#ds0>0] quit0?x

quit110

N

It can receive the
cancel signal after
the completion.

' The behavior of the revised TransferSys

B The transition graph of the revised TransferSys.

TransferSys \ {|complete |}

TransferSys = (Ul [|{|input, quit0, succ, ok, ng|}|] Transfer)
\ {linput, quit0, succ, ok, ng|}

Transfer = (Sender [|{|start,net,term,quit1,ack|}|] Receiver)
\ {|start,net,term,quit1,ack|}

Ul = upload?ds -> input!ds -> (ok?a -> Wait [] ng?a -> Ul)
Wait = cancel?b -> quit0!0 -> Ul [] succ?u -> complete!0 -> Ul

Sender = input?ds0 -> Check(ds0)
Check(ds0) = ((#ds0>0) & ok!0 -> start!0 -> Sending(ds0))
(1 ((not #ds0>0) & ng!0 -> Sender)
Sending(ds0) = ((#ds0>0) & net!(head(ds0)) -> Sending(tail(ds0)))
(] ((not #ds0>0) & term!0 -> Term)
(1 (quit0?x -> quit1!0 -> Sender)
Term = ack?z -> (succ!0 -> Sender [] quit0?x -> Sender) Revi Se d
Receiver = start?y -> Receiving(<>)
Receiving(ds1) = (net?d -> Receiving(ds1*<d>))
[] (term?y -> output!ds1 -> ack!0 -> Receiver)
[] (quit1?y -> Receiver)

Sequentialization,
State-reduction

-

tau

outputlds
@(1(11)

tau

@(0(11)

\ A
A10(ds1)

N

@(1(11))

AB(ds0.dsT))) [#ds0>0]

[not#ds0=>0]

7 states (18 = 8)
14 transitions (27 - 14)

[not#ds0=0]
@(1(10)

A2(ds0)

tau

[#ds0=0]
fds1:=<>
@(1(11))

Y tau
[#s0=0]
A(ds0.ds1)) Ids0:=tail(ds0),dis1:=ds1*<head(ds0)>
@(0(11))

cancel?b tau

@(1(10)

tau
[not#ds0=>0]
@(0(11))

cancel?b

@(10)

cancel?b

@(10)

tau

lds0:=tail(ds0),ds1:=ds1*<head(ds0)>
@(0(11)

outputldsi
@(o(11))

@(1(10)

21:50

Related works

19

8 states
12 transitions

PAT (Process Analysis Toolkit)

M PAT can display transition graphs of CSP models.

B Standard (non-symbolic) semantics is used.
(all variables are instantiated to possible values)

any N and any input

). PAT - An Enhanced Simulaticn and Model Checking Tool (Version 2.9.1)
D-EFEHRS S D0 DM P (%I
Specification [Check Grammar (F5) | [l Simulation (F6) &) Verification (F7)

File Edit View Tools Examples Window Help .1 \in. 105 States

| wr) Document 1 /ur] cal3.csp 1

: 5 160 transitions

channel prt 0
7 channel prts 0:

g #alphabet 3Q {in,sq,end};
0 #alphabet REM {sqg,rem,end2}:
#alphabet SUM {rem,prt,prtsum};

caL = (bQ(3) || REM || SUM(0Q))
Y {=q.0,sq.1,s5q9.2,s9.4,53.9,59.16,end.0,
rem.0,rem.1,rem.2,rem.3, rem. 4, rem. §, rem. 9, end2 .0} ;

SQ(c) = if (c»0) {in?x -> sq! (x*x) -> SQ(c-1)}
[1 if (e==0) {end!0 -> Stop}:

REM = sg?x -> rem! (x310) -> REM
[] end?z -> end2!z -> Stop:

SUM(y) = rem?x —> prtlx -> SUM(y+x)
[]1 end2?z -> prts'!y -> Stop:

cal3.csp Ln: 13 Col: 8 INS .:

by Simulator

fix N=3 and finitize input in {0,1}

LTSA (LTS analyzer)

8 states
12 transitions

M LTSA can display minimized transition graphs.

B Standard (non-symbolic) semantics is used.
(all variables are instantiated to possible values)

any N and any input

| LTSA - cal3.lts

File Edit Check Build Window Help Options

DSH L BB o |@E & Il 8 aca G e |44

Edit | Qutput | Draw

[1GAL = (S0 || REM || SUM) ¥ {sal0..11,renl0..1],end,end2}.
| |4CAL = (S0 || REM || SUM) ¥ {=ql0..1],rem[0..1],end,end2,pris[0..31}.

30 = 30031,

L
1]
300,31 = if (c»0) then (inlx:0..1] -> sqlxtx] -> S0[c-11)

mf1]
elze (end -> STOP).

1t [0
R A o \ o

CAL in[lin[lpn[tn[fprt{prthprts[] \prt[pr] prt[tinftprt], prtfrt [0] prt[ﬁn[lpﬂ[ﬂl prt[]
REM = (sqlx:0..1] -» rem[x¥10] -> REM

ot > ceece\e{g@mmccmccg:,qeeeemez(@,aeaaee@aem

NS4 4 N[

SUMLy:0..3] = (rem[x:0..1] =3 pri[x] -> SUM[{w+x)33]

1
il
| end? - prisly] -> STOP). Py {0 ‘ ol ‘
e— | pris[1] ;

by Draw

fix N=3 and finitize input in {0,1}

>\ (42 states (102->42)
67 transitions (157->67)

23:50

M Advantages

B Future works

22

B A symbolic analysis method and its implementation CONPASU have been presented.

B The advantages[A] and disadvantages[D] of CONPASU compared with model-checkers:
® [A] Symbolic operational semantics is used (i.e. variables are not instantiated),
® [A] An equal sequential process (and the graph) can be automatically generated.
® [D] Symbolic labels are usually more complex than standard (instantiated) labels.
® [D] Generated sequential processes are not nececssarily optimized (e.g. not minimized).

-> CONPASU and model checker will complement each other.

By symbolic semantics By standard (non-symbolic) semantics

S
sq!n2/ n:=n+1

/n:=0 .sq!O .sq!l .sq!4 .sq!9
.

S(n) =sq!n2 - S(n+1)

B Future works:

® Careful consideration about livelocks
® Symbolic computation of data-expressions (1+2 # 2+1 in the prototype)
® Improvement of CONPASU (Java, 6,000 lines) and evaluation of performance

CONPASU-website: http://staff.aist.go.jp/y-isobe/conpasu/

	CONPASU-tool: �A Concurrent Process Analysis Support tool�based on Symbolic Computation
	Contents
	Introduction
	Motivation
	CAL: An example of concurrent process
	The analysis method of CONPASU (outline)
	Analysis method
	Sequentialization
	State-reduction (internal-choice)
	State-reduction (interleaving)
	State-reduction (an example)
	Abstraction
	Application
	The CSP model of TransferSys
	The behaviors of the 3 components
	The behavior of TransferSys
	A revision of Sender
	The behavior of the revised TransferSys
	Related works
	PAT (Process Analysis Toolkit)
	LTSA (LTS analyzer)
	Summary
	Summary

