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Abstract.  This paper describes a model for concurrent computation based on 
single-writer single-assignment variables. The description is primarily graphical, 
resembling the interaction nets formalism. The model embodies rules in a process 
which may require two or more communications from other processes to respond. 
However, these are managed by a partial evaluation response on receiving a single 
communication.  
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Introduction 

This work originates from an attempt to redescribe the committed choice concurrent logic 
programming model in terms of the dynamics of handling its variables rather than in terms 
of logical deduction. The key to the success of this model in terms of its ability to be 
mapped with ease onto multiprocessor architecture was the concept of the “logic variable” 
combined with a strict moding on the direction of information flow, but with the property 
of “back communication”. This means every variable has exactly one writer, and can only 
be assigned once, but an assignment is a structure containing further variables some of 
which have the reverse mode, so the reader of the structure becomes their writer. 

We demonstrate the model using a graphical notation. The description in this paper is 
informal, but it is hoped the intuitive nature of the notation will make it more clear how this 
model works operationally than earlier, more formal, textual descriptions.  

1. The Logic Programming Background 

In a previous paper [1] we introduced what was described as “The Core Language of 
Aldwych”. Aldwych was an attempt to build on earlier work to provide object-oriented 
programming structures in a concurrent logic programming framework [2]. The concurrent 
logic programming languages had a brief period of success in the 1980s, being seen then as 
the first attempt to build practical programming languages which were inherently 
concurrent. Although they gained little practical use, they were influential in the 
development of Erlang [3], a language which obtained widespread use for concurrent 
programming [4], and some years later was relaunched with an emphasis on it being a 
functional language [5]. Aldwych had a similar aim, the idea was that although there was 
much of value in the concurrent logic programming languages in terms of their ease for 
handling concurrency, they had failed to gain much practical use because their simple 
syntactic structure did not scale up well to large sized programs.  



  

Observation of attempts to use the concurrent logic languages showed there were 
common patterns of code usage, which we might now recognise as “design patterns” [6]. 
The most widely used was to give the effect of an object with a mutable state through a 
logic programming predicate in which the state was an argument, so the changed state was 
an argument to a recursive call. Access to an object was managed by “streams” of “calls”, 
where a stream was a list whose head was the first call to the object, and whose tail was a 
list of further calls. Concurrent access to objects was managed by non-deterministic 
merging of several streams into one. A “call” was a tuple, which could give the effect of a 
method call giving a return value. This worked because concurrent logic programming has 
the idea of “back communication” [7]. Back communication comes when a computation 
may bind a variable to a tuple containing further variables. Some of those further variables 
may also be bound by the computation, or it sets up further computations to bind them, but 
back communication is when the reader of the initial variable which was bound to the tuple 
is expected to become the writer of one or more variables in the tuple. 

There were then four things which lay behind the power of the concurrent logic model 
for concurrent programming: 

1. Non-determinacy was inherent in the model, enabling a concurrent computation to 
behave in different ways for the same input. A computation which is the reader of 
two variables whose values are being computed concurrently may react as soon as 
one of them receives a value without having to wait for the other. What it does 
depends on which gets a value first. Non-deterministic stream merger is a good 
example, the head value of whichever stream gets a head value first is passed on as 
the head value of the merged stream. 

2. Back communication gives a two-way interaction between computations, managed 
very simply as variable binding. A computation sends a tuple containing an unbound 
variable to another computation just by binding a shared variable to which it has read 
access and the other has write access. It receives its reply as the value of that 
unbound variable to which it has read access and the other computation was given 
write access. 

3. Variables may not be re-assigned. Once a variable has been given a value, that value 
can never be over-written. This is the standard “logic variable” property [8]. It means 
the complexity of managing shared access to mutable variables that dominates 
concurrent programming with threads in standard programming languages is 
avoided. 

4. Variables serve as “futures” [9] that is, placeholders for values being computed 
concurrently. When a computation “sends” a tuple as described above, as well as 
unbound variables intended for back communication, it may include in the tuple 
variables which are unbound because another computation has the task of writing to 
them. The receiver of the tuple may send them on further in other tuples without 
waiting for them to acquire a value.  

Each of these is handled naturally in the concurrent logic programming model, 
whereas other computational models may require special syntax and operators to provide 
them. In some ways it was because these aspects were handled so simply in concurrent 
logic programming that their power was not recognised. However, it was also hidden 
because the logic programming philosophy was to see code in the language as static 
statements of facts, and thus to hide the dynamics of how variables became bound to values 
that were in accordance with those facts. So it was logic programming philosophy not to 
indicate a direction of flow through variables, or to see computations as having specifically 
read or write access to variables.  



  

Concurrent logic programming had an unfortunate start because its proponents were 
apologetic about it, tending to emphasise its restrictions and to see it as an intermediate 
stage which in time would be developed to full “parallel Prolog”, spending much time 
trying to develop more elaborate models which were closer to that aim. The concurrent 
programming language Strand [10] (winner of the 1989 British Computer Society award) 
started the process of looking positively at the clean concurrent mechanisms of this model 
instead of apologetically at it as over-restrained logic programming, but it kept the logic 
programming syntax with its lack of syntactically clear modes on variable occurrences.  

Our work derives from wishing to rescue the simple underlying model from its logic 
programming “baggage”, and to use it as a foundational calculus for programming 
languages which are naturally concurrent.  

2. Aldwych-Core 

Aldwych used the Strand model of concurrent logic programming in its most pared down 
“flat” committed choice form. The semantics of the various Aldwych constructs were 
originally described in terms of a translation to Strand or a similar language (hence the 
name as “Aldwych turns into Strand” as both programming languages and London street 
names). However, it became clear that this was unsatisfactory, as the operational model of 
Strand and similar languages was still unnecessarily complicated by their logic 
programming inheritance.  In particular for most purposes they required variables to have a 
single writer, but this was not enforced, and there were rare cases where variables had 
multiple writers, which then required mechanisms to deal with more than one writer trying 
to bind a single variable. There was also a practical need to break Aldwych’s reliance on 
programming language implementations which were no longer being supported. So, a new 
description of the underlying model was developed. This work led to the discovery that 
underneath was a model comparable in its simplicity to other fundamental models of 
concurrency, such as CSP [11] and the π–calculus [12]. In our previous paper [1] we called 
this “The Core Language of Aldwych”, in this paper we shorten that to “Aldwych-Core”.  

Although the development of a practical naturally concurrent general purpose 
programming language remains part of our aims, we have found that Aldwych-Core works 
well in providing an operational semantics for other programming languages which can 
then be used to explore how concurrency impacts on their key features. An informal sketch 
of the use of Aldwych for modelling mutable variables, object-oriented programming, and 
higher order functions can be found in another of our previous papers [13]. The refined and 
simplified model presented in this paper opens the way for use of Aldwych-Core in work 
oriented around semantics of programming language constructs.  

Aldwych-Core strictly enforces a mode on all variables, ensuring that each unbound 
variable always has exactly one computation that has write access to it. Once a variable is 
bound, no computation can have write access to it, giving the single-assignment property. 
The combination of strict enforcement of modes and back communication resulted in 
identifying the need for enforced linearity [14] in any variable which could be used for back 
communication. In addition to the single-writer property, variables classified as linear must 
also have exactly one computation with read access (possibly indirectly through being in a 
tuple which is assigned to a variable with a single reader). The distinction between linear 
and non-linear variables is enforced syntactically. Only a linear variable may be bound to a 
tuple which contains back communication. Non-linear variables may only be bound to 
tuples which contain only non-linear variables. The reason for this is that a non-linear 
variable can have multiple readers or no readers: so if it were possible to bind it to a tuple 
with back communication, the back communication variables could have zero or multiple 



  

writers, so breaking the requirement that every variable has exactly one writer. This applies 
indirectly, so if a non-linear variable could be bound to a tuple containing no back 
communication but containing linear variables, the duplication or deletion of readers of that 
variable would duplicate or delete readers of the linear variables in the tuple, which would 
duplicate or delete writers for any back communication in tuples to which they are bound.  

Our earlier paper describes a syntax for Aldwych-Core which is based on enforcing the 
single-writer property rather than on writing “clauses” which attempt to have some 
resemblance to predicate logic notation. It describes an operational model which is broken 
down into smaller steps than those conventionally associated with logic programming. 
Rather than the logic process of unification of call with pattern in clause head, each 
individual variable match and assignment was described as a separate stage.  

3. A Diagrammatic Representation of Aldwych-Core Agent Networks 

The Aldwych-Core universe of computation can be described as follows. We have a 
collection of computational agents and a collection of variables. Each computational agent 
has read access to zero or more variables and write access to zero or more variables. We 
have a collection of assignments, each of which has read access to zero or more variables 
and write access to exactly one variable. Every variable must occur in exactly one write 
position, that is there must be either exactly one agent which has write access to it or 
exactly one assignment which has write access to it. If a variable is designated as “linear”, 
it must occur in exactly one read position, that is there must be either exactly one agent 
which has read access to or exactly one assignment which has read access to it, and no 
other agent or assignment has read access to it. A variable designated as “non-linear” may 
occur in any number of read positions, so it may have zero readers, one reader, or more 
than one reader. An assignment can be considered the simplest form of agent, one which 
declares a static relationship between input and output, and Aldwych computation consists 
of agents reducing until they become just a network of assignments. 

This describes the universe of computations because an agent may have the same 
internal structure. What is a read position internally is a write position externally. So for 
any computation, the world may be considered just another agent with which it interacts 
through variables it shares with the world. 

In our previous paper, we showed this textually, but another way of representing 
Aldwych-Core computations is diagrammatically. If we represent an agent by a circle, 
variables it has write access to are represented by arrows leading from it, variables it has 
read access to are represented by variables leading to it. So what is textually written as 
g(x)->z, f(z,y)->v can be shown diagrammatically as either of figures 1 and 2. 
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Figure 2. Computational agent with internal agents. Figure 1. The world as an agent. 
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In figure 1, “the world” is shown as everything except the agents in question. We could 
consider them as a “not the world” agent that interacts with “the world” (figure 3). 
 

 
 
 
 
 
 
 
 
This is the insight of game semantics [15] which describes computation in terms of 

“player” (“not-the-world”) versus “opponent” (“the world”). Any agent may have an 
internal state which consists of a network of agents linked by variables with the variables to 
which it has read access being variables to which an agent representing “everything else” 
has write access, and vice versa. Given a network of agents, we can arbitrarily group 
together any of the agents and regard the result as a single agent. Arcs between agents 
included in the group become considered as internal variables, but there is no requirement 
for the resulting graph structure not to be disjoint. For example, the agent with the diagram 
in figure 4 appears to the world outside as a single agent which takes three inputs and gives 
two outputs. The clean nature of Aldwych-Core is shown by the way we can arbitrarily take 
any processes from the universe and give the result an operational meaning which has no 
dependency on anything else. The agent shown in figure 4 can be written textually as 
g(x)->u, f(y,z)->v but the variable names in the diagram are just to give a link to the 
textual representation. There is no significance in the particular name used, and the 
diagrammatic representation does not require arcs to be labelled with variable names. 
 
 
 
 
 
 
 
 
 
 

 
We need to distinguish between linear and non-linear variables and to allow multiple 

readers of non-linear variables. In the diagrammatic notation, linear variables are shown by 
double-lined arrows. Multiple readers are shown by the use of a “duplicator” (indicated by 
a small square); we are influenced in this by a similar concept in Lafont’s Interaction Nets 
[16], another diagrammatic model of computation. A duplicator and linear variables are 
shown in figure 5. 

The diagram in figure 5 represents what is written textually as: 

g(x)->z, f(y,z)->v, h(z,P)->Q 
using the convention that in the textual representation linear variables are indicated by 
initial upper-case letters. The order in which the component agent representations are given 
in the textual representation has no significance. The order in which the variables are given 
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Figure 4. An agent with disjoint components. 

Figure 3. Computation as world versus not-the-world. 



  

for individual agents is significant, in the diagrammatic notation anti-clockwise from 12 
o’clock for read access and clockwise from 12 o’clock for write access corresponds to left-
to-right textually. The notation u<-v indicates a variable-to-variable assignment, shown 
diagrammatically by a variable name on the arc leading from a duplicator. If the arc from 
the duplicator to the agent labelled f in the diagram were separately labelled w, that would 
indicate what is written textually as: 

g(x)->z, w<-z, f(y,w)->v, h(z,P)->Q. 

Variable-to-variable assignments are not assignments in Aldwych-Core terms, they just 
transfer the actual assignment of one variable to another, and can be executed before the 
actual assignment is available. Section 6 shows reduction rules to cover this. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Aldwych-Core assignments are assignments of tuples to variables, written textually as 

v=t where t must be a tuple, not a variable. Diagrammatically they are indicated by 
triangles, with the tuple tag inside the triangle. So the diagram of figure 6: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
represents what is written textually as: 

g(x)->z, w<-z, f(u,r)->v, h(z,P)->Q, u=t(y,z), M=s(w,Q)->r. 

This indicates a case of back communication, in the assignment M=s(w,Q)->r. The whole 
may be seen as an agent which the world sees as Agent(y,x,P)->(v,M) where the back 
communication will result in the reader of M becoming the writer of r. We could show this 
as in figure 7: 
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Figure 5.  An example with a duplicator and linear. 
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Figure 6.  An example with assignments and back communication. 
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Now suppose we were to redraw the boundaries of Agent, so that the assignment 

M=s(w,Q)->r is no longer part of it. This would give the situation in figure 8: 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

which could be shown as in figure 9: 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

We could then redraw the boundaries of the world to obtain what is shown in figure 10: 
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Figure 7.  The agent of figure 6 communicating with the world. 
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Figure 8.  Redrawing the boundaries of figure 6. 
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Figure 9. The agent of figure 8 communicating with the world and an assignment. 
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The result here is that the communication from Agent to World through M has been 
replaced by communication from Agent to World through w and Q and from World to 
Agent through r. Our model assumes there is unbounded nondeterminism in this 
communication, that is the rearrangement of agent boundaries so that an assignment is 
extruded by one agent and absorbed by another is done at whatever pace the agents decide 
on; there is no central scheduler which orders it. We can only say that an assignment is 
absorbed at some time arbitrarily later than the time it is extruded. 

The diagrammatic notation gives a more intuitive feel than the textual rules of our 
earlier paper for how the single-writer single-assignment model works to express 
concurrency. Assigning a tuple to a variable can be seen as communication across a 
channel, with one variable in the tuple designated as the continuation of the channel for 
further communications. The duplicator mechanism extends this to the multiple reader of 
non-linear variables. In this case we want an agent to be able both to extrude an assignment 
and keep it to use internally. Diagrammatically this is shown by a rearrangement in which 
the duplicator duplicates the tag of a tuple and then passes the duplication up to each of the 
variables in the tuple. As an example, from figure 11: 

 
 
 
 
 
 
 
 
 
 

 
we obtain figure 12: 

 
 
 
 
 
 
 
 
 
 

 

Figure 10.  Redrawing the boundaries of figure 9. 
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Figure 11.  An assignment going in to a duplicator. 
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Textually, this is equivalent to the expression: 

g(x)->w, z=t(y,w), f(z,w)->v, u<-z 
transforming to: 

g(x)->w, z1=t(y,w), z2=t(y,w), f(z2,w)->v, u<-z1 
which is then followed up by the extrusion of the assignment to u via z1. This is written as 
u=t(y,x) in the world where u is read, while the agent becomes: 

g(x)->w, z2=t(y,x), f(z2,w)->v, y1<-y, w1<-w 
and shown diagrammatically in figure 13: 
 

 
 
 
 
 
 
 
 
 
 

4. A Diagrammatic Representation of Aldwych-Core Rules  

An agent could be a simple assignment, or a network of assignments as in figure 14, which 
represents agent(y,x)->(u,v,w), which internally is u=t(x,y), v=t(y,x), w<-x. 
It could be an agent in the real world set up with an Aldwych-Core interface through the 
variables it has read and write access to, in which case we can say no more about it. 

 
 

 
 
 
 
 
 
 
 
 

 
 

An agent representing an Aldwych-Core process however has a structure consisting of 
a collection of rules. Rules have a left-hand side which consists of matches and a right-hand 
side which is an Aldwych-Core agent. A match is the reverse of an assignment, so is shown 
diagrammatically as such, a triangle in the opposite direction. It has an arrow leading into 
the point representing a variable being matched, arrows leading out on the other side are 
standard variables in the tuple, arrows leading in are variables for back communication. 
Each match in a rule must be either to one of the variables to which the process has read 
access, or to one of the variables introduced but not for back communication in another 
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Figure 13.  Extrusion of the duplicated assignment. 
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match in the same rule. The right hand side of the rule is an agent which has read access to 
all variables which are input to the process or introduced in a match in the rule except linear 
variables which are matched. The match of a linear variable represents the consumption of 
that variable. Duplicators are used to show non-linear variables both matched and passed to 
the right hand side agent, but non-linear variables may not be matched twice. The right-
hand side agent has write access to all variables to which the process has write access and 
also all variables introduced for back communication in matches. An example is given in 
figure 15: 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

This represents a process which has read access to P, Q and m and write access to n and 
S, so it could be written as Process(P,Q,m)->(n,S) if Process were a template for 
these rules in the form suggested by our previous paper [1]. The process has two rules, the 
first matches P with h(t)->r and then matches the t which came from that tuple with 
c(x,y). The second matches Q with k(T)->R and also matches m with d(x,y). 
Textually, this would be written as: 

  (P,Q,m)->(n,S) 
  { 
   P=h(t)->r, t=c(x,y) || Body1(x,y,t,Q,m)->(n,S,r); 
   Q=k(T)->R, m=d(x,y) || Body2(P,T,x,y,m)->(n,S,R) 
  } 

The variables internal to a rule are local, so the x and y in the first rule have no 
connection with the x and y in the second rule. In fact the names are added to the arrows 
just to link the diagram with the textual representation, the purely diagrammatic 
representation has no need for them. In the first rule there is a match for the linear variable 
P but no match for the linear variable Q, so Q is passed to the agent that forms the body of 
the rule but P is not. In the second rule, it is the other way round. The variable m is not 
linear, so even though it is matched in the second rule it is still passed to the agent that 
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Figure 15.  A process with two rules. 



  

forms the body. The first rule shows an example of a variable, t, which is introduced in a 
match and then matched itself in a further match. The body of each rule has to write to the 
external variables of the process n and S and also to any back communication variables 
introduced in the match, so r in the first rule and R in the second. Matches with back 
communication or with any linear variables whether for back communication or not (for 
example T in the second rule is linear but not for back communication) can only be with 
linear variables.  

In this example, Body1 and Body2 could be any network of agents so long as it has 
arcs for variables leading to the required output variables, and arcs from all input linear 
variables leading to readers or directly to the outputs. However, a non-linear variable may 
be passed in to a process and then not used. This should be explicitly indicated by the use of 
an “eraser” (as with the duplicator, the term comes from interaction nets). Figure 16 shows 
a third rule to add to the two in figure 15, but in this third rule the input m is not used.  

 
 
 
 
 
 
 
 
 
 
 

 
 

 

The rule can be written textually as: 

P=e(x,R)->v || h(x,R)->U, s(U), k(x)->(n,v), S<-Q 

The small circle to which the arrow from m leads indicates the eraser. It might be 
though that as s(U) has no output variable it is equivalent to an eraser. However, because U 
is a linear variable it could be bound to a tuple with back communication going back to 
h(x,R)->U. A linear variable cannot be directed to an eraser because it must be read to 
provide a writer for any back communication there might be in a tuple to which it is set. 

The two rules of figure 15 are enough to demonstrate the non-determinacy of 
Aldwych-Core. If P is bound to h(u)->v, and u is bound to c(i,j), and Q is bound to 
k(C)->D, and m is bound to d(a,b) then either rule applies. Aldwych-Core does not have 
a mechanism for specifying which is to be taken. However, this would eliminate the rule of 
figure 16 as h(u)->v to which P is bound does not match with the e(x,R)->v on the 
rule’s left-hand side. Unbounded non-determinism means if P, Q and m were bound in a 
particular time order we cannot assume the process will receive them in that order, so long 
as there is no dependency in the bindings. For example if P, and the variable which matches 
t within the binding for P, are bound before Q and m are bound, it is not necessarily the case 
that the first rule of figure 15 is applied rather than the second. If it happened, however, that 
an agent which was a reader of n was also the writer of m, we could guarantee that the 
second rule of figure 15 would not be applied. This is because, unlike the first rule and the 
rule in figure 16, the second rule requires m to be bound, and if that is dependent on n being 
bound it will only happen when one of the other rules has already been applied. 
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Figure 16.  An extra rule for figure 15, showing content of body and an eraser. 



  

It is important to be clear that the rules represent alternatives. If there were a computer 
implementation on this notation, they should be shown stacked on top of each other using a 
third dimension. The limitations of two dimensions mean in the next section we see 
assignments to linear variables apparently duplicated as they enter the rules, but the single 
selection means no real duplication takes place. 

5. Assignment Absorption 

Aldwych-Core computation works by selecting one rule from those of a process where 
there is a full match with the arguments passed to process, and then reducing the process to 
the body on the right-hand side of the rule. The other rules are discarded, the choice of a 
rule is a commitment from which there is no backtracking. Assignments in the body will 
then be extruded, as described under section 3 above, they will then interact with the 
processes which have read access to the variables which are assigned. A common pattern is 
that the body contains a recursive copy of the original rules, so this can be seen as a 
continuation of the original process, communicating with the assignments as “messages” to 
other processes, essentially the Actor [17] model of computation. Aldwych-Core as 
described in our previous paper had named templates for rules, so a recursive call would be 
indicated by a call to the same template as the one which provided the original rules. Full 
Aldwych [13] provides a syntactic sugar for hiding this, enabling code to be written in a 
way which resembles CSP and other message-passing calculi. A variable bound to a tuple 
consisting of a message and a variable for future messages can be considered a channel, the 
syntactic sugar gives a notation which hides the shared variable implementation. We are 
currently working on a modified version of Aldwych-Core called “Anonymous Aldwych” 
which takes a little of the syntactic sugar in full Aldwych into the core computation 
mechanism to remove the need for named templates. This enables a process to be described 
completely by its rules instead of having a dependency on an external set of named 
templates. 

In our previous paper, we explained the Aldwych-Core computation mechanism in 
terms of reduction steps which are smaller than the full step of selecting a rule. Each 
matching of an assignment against a match in a rule is one reduction step, but as rules may 
have more than one match, the step may not complete the action of selecting a rule for use. 
The step of making a single match may be considered a form of partial evaluation [18], it 
modifies the rules so they reflect the situation where some but not all of the inputs are 
provided. As explained in section 1 above, where variable values are not needed 
Aldwych-Core computation handles variables whose binding is being computed elsewhere 
as “futures”. Partial evaluation is evaluation where the values of some variables are not 
known, so leaving “residual code” to handle them when they become available. Some of 
the power of Aldwych-Core comes from the way in which partial evaluation is a natural 
part of its normal computation mechanism.  

The diagrammatic notation makes the partial evaluation nature of Aldwych-Core’s 
computation mechanism clearer, and shows further similarity with the interaction nets 
formalism. As an example, let us consider the case of figure 15, in an environment where P 
is bound to h(u)->v and m is bound to d(w,z). This is not enough to allow the selection 
of either rule, as the first requires additionally that u is bound in a way to match c(x,y) 
and the second requires additionally that Q is bound in a way to match k(T)->R. It is, 
however, enough to discard the rule in figure 15 because the assignment P=h(u)->v does 
not fit the match P=e(x,R)->v. The match is ruled out by both difference in tuple tag and 
difference in number and types of argument (where a “type” is the composition of the mode 
and the linearity of the variable in the tuple). 



  

The partial evaluation of a process and an assignment converts the process to a new set 
of rules in which any back communication variables in the tuple of the assignment are 
added as process variables with write access, and the other variables are added with read 
access. The variable which is assigned to is removed from the external variables of the 
process. If a variable is matched in the rule and it is linear, the variable is consumed and 
removed altogether from that rule. If it is not matched in the rule, or it is non-linear, the 
variable is added as a local variable to the body of the rule. If the variable is matched, the 
local variables in the match are linked directly to the external variables of the assignment. 
In general, if we have a linear variable V to which a process has read access and it is 
assigned t(i1,…,in)->(o1,…,om), the absorption of this variable is as follows. The 
variables i1,…,in are added with read access, o1,…,om are added with write access, V is 
removed as an external variable. Any rule which has a match for V which does not have tag 
t and n inputs and m back communications (with also matching linearity for each of these) 
is removed altogether.  
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Figure 17.  Absorption of an assignment. 
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The diagram in figure 17 shows an example (using different rules than figures 15 and 

16). Textually this represents the situation where we have the assignment written 
V=t(I1,I2)->(o1,O2) and the process written: 

  (V,…)->(…) 
  { 
   V=t(P,Q)->(r1,R2), P=s(x)->R, … || BodyA(x,Q,…)->(r1,R2,R,…); 
                                 … || BodyB(V,…)->(…); 
   … 
  } 

The ellipses here indicate the possibility of more external variables with read and write 
access, more matches in the rules, more internal variables from those other matches and 
more rules. The variable V is assigned a tuple t(I1,I2)->(o1,O2). There are two rules 
left after the exclusion of those which have an incompatible match for V, the first has a 
compatible match, the second has no match for V. Other input and output variables for the 
process are not shown as their links remain unchanged by the absorption. The 
transformation absorbs the assignment, resulting in: 

  (I1,I2,…)->(o1,O2,…) 
  { 
   I1=s(x)->R, … || Q<-I2, BodyA(x,Q,…)->(r1,R2,R,…), o1<-r1, O2<-R2; 
               … || V=t(I1,I2)->(o1,O2), BodyB(V,…)->(…) 
  } 

The lack of the final ellipsis here indicates the removal of other rules which have 
incompatible matches for V, the other ellipses indicate that other external variables and 
other matches and other internal variables from the other matches are unchanged.  

It can be seen here that the linear variable V is consumed by the match in the first rule, 
but as it is not read in a match in the second rule, it is passed in and becomes a local 
variable in its body. The added variable to variable assignments in the first rule are used in 
the place of any sort of substitution. If there were no other matches in the second rule, 
computation could commit to it and discard the first rule. 

The variation on assignment absorption when an assignment to a non-linear variable is 
absorbed, so the match does not result in the variable being consumed, can be shown by 
considering the second rule in figure 15 with the assignment m=d(i1,i2). Figure 18 
shows this diagrammatically. 



  

  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

6. Reduction of Duplicators and Erasers and Deletion of Irrelevant Tasks 

The effect of variable to variable assignment as shown in the textual representation of 
figure 17 is covered by the following reduction rules when considered textually:  

 x<-y, y<-z   ⇒    x<-z, y<-z  
 x<-y, y=t(…)   ⇒    x=t(…), y=t(…) 
 X<-Y, Y<-Z   ⇒    X<-Z 
 X<-Y, Y=t(…)->(…) ⇒    X=t(…)->(…) 

The first two represent the effect of what is done through the duplicator in the diagram 
notation. The linking variable y is non-linear, so is not consumed in the reduction. In the 
second two, the linear variable Y is used and so consumed. In the diagram notation, the 
effect is shown simply by different labels at each end of the arrow.  

The eraser, as shown in figure 16, can be used to establish a form of garbage 
collection. If a duplicator has one branch leading to an eraser, the duplicator can be 
removed. If a tuple is read only by an eraser, the tuple can be removed, with the eraser 
being passed to the variables to which it has read access, causing further application of 
eraser reductions. Figure 19 shows a diagrammatic representation of these two reduction 
rules for an eraser. 

A refinement to this allows a whole process to be removed, without further evaluation 
of its rules if all the variables to which it has write access lead to erasers, and all the 
variables to which it has read access are non-linear. Figure 20 shows this diagrammatically. 
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Figure 18.  Absorption of an assignment to a non-linear variable. 
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The process b here has no way of communicating to the world because none of the 

variables it writes to are used and none of the variables it reads are linear and so may lead 
to back communication. The deletion of b under these circumstances is the deletion of 
irrelevant tasks as proposed by Grit and Page [19]. 

7. Speculative Computation and Partial Evaluation 

In the Aldwych-Core model, computation may commit to a rule if that rule has no matches. 
The body of the rule then becomes linked in directly with the world as an agent. Any 
assignments to variables to which the original process had read access may then be 
extruded to be absorbed by the readers of those variables. The absorption of the final 
assignment which removes the last match of a rule, and the commitment to that rule are 
separate reduction steps. However, as the only observable interaction an agent has with the 
world is to extrude an assignment, the steps of absorbing assignments and making a 
commitment are observed as a single step. 

Assignments that are absorbed are trapped within rules, as shown in figures 17 and 18. 
The assignment is freed if computation commits to a rule because it then becomes part of 
the general network of agents. The assignment V=t(I1,I2)->(o1,O2) may be absorbed 
by BodyB in figure 17 and the assignment m=d(i1,i2) may be absorbed by Body2 in 
figure 18 if computation commits to the rules which contain them. Viewing the process as 
an agent which continues as the body of the rule to which it commits, these absorptions are 
not observable, although they may lead to further commitments and an assignment which 
can be extruded being reached. 
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Figure 19.  Reduction rules for erasers. 
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Suppose the absorption of V=t(I1,I2)->(o1,O2) by BodyB or the absorption of 
m=d(i1,i2) by Body2 were done before the process had committed to the rule containing 
them. In terms of what is observable, it makes no difference if the absorptions were done at 
that stage. This would count as “speculative computation”, that is computation which is 
done before it is known whether it is needed. This may be seen just as a useful trick to keep 
processors busy in a multi-processor system [20]. In artificial intelligence terms, it may be 
seen as a form of “planning”: an agent making plans for the various interactions it may 
have in future with the world. Yet another way of viewing this is as more partial evaluation, 
with specialised versions of BodyB and Body2 being produced as “residual code” for the 
circumstances when its is known that V will take the form t(I1,I2)->(o1,O2) and it is 
known that m will take the form d(i1,i2) with I1, I2, i1, and i2 as variables to be 
assigned.  

The idea of partial evaluation is that it produces specialised code for future use a 
multiple number of times, as it is expected the circumstances for which it is specialised will 
re-occur. Speculative computation, however, is a one-off computation of values before it is 
known whether they will be needed. In Aldwych-Core there is no difference in 
representation between the right-hand side of a rule interacting with the external variables 
of the process, and a computation in general interacting with the world. The body of a rule 
may be evaluated as if it is a full computation in the world. One way of thinking of this is as 
the imagined world of an intelligent agent. Alternatively, we may consider the world in 
which our agents are computing to be the imagined world of a super-agent. 

In Anonymous Aldwych, an assignment may be absorbed by a recursive process and 
thus the absorption is realised as partial evaluation rather than speculative computation 
because the resulting rule set is not restricted to a once-only execution. Care must be taken 
to ensure there is what is known as a “stop criterion” in partial evaluation [21]. This is 
where a partial evaluation step is taken within the imagined world resulting from another 
partial evaluation step and the outer step is recognised as a variant of the inner. A simple 
case is when the two are identical except for variable names, a more complex case is any 
other situation where the relationship between the two is such that there is no guarantee the 
partial evaluation process will terminate. In some circumstances this leads to the partial 
evaluation being abandoned, in others it generates recursive residual code. 

Although we have not yet integrated partial evaluation into the implemented version of 
Aldwych, nor formally described its operational steps as an aspect of the Aldwych-Core 
model, our earlier work on the partial evaluation of concurrent logic programming 
languages [22, 23] gives a lead on the techniques that could be employed. 

 
Conclusion 

The imposition of strict modes on logic variables enabled our graphical description to be 
developed. Our combination of moding with linearity enables us to have a guaranteed 
single writer for every variable, in a way that was not possible with earlier attempts to put 
mode information on logic variables, such as in Parlog [7]. Full moding on variables is not 
found in Erlang [5], a language with an inheritance from concurrent logic programming, 
and whose recent revival suggests this paradigm has something valuable to offer as we 
move into the era where multicore processors are the norm rather than something exotic.  

The foundational core we have developed here has rich possibilities. We have already 
used it to demonstrate its basis for describing functional and object-oriented programming 
[13]. In section 7 of this paper we sketch some interesting further directions, stemming 
from the way concurrent evaluation handling unbound variables as “futures”, which is a 
natural part of our model, relates closely to partial evaluation. 



  

Implementations of Aldwych and Aldwych-Core have existed for longer than the 
models described in this paper. The formal model of Aldwych-Core derives from an 
abstraction of what were originally purely practical techniques used to build a 
reimplementation of a programming language first conceived as “parallel logic 
programming”. What first appeared as limitations on the richer logic programming model 
came to be appreciated as strengths, enabling us to identify a new model for concurrent 
programming which is powerful, distinct from other foundational models, and 
straightforward enough to be describable using simple intuitive diagrams. 
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