rlydra: a Python Framework
for Parallel Computing

Waide Tristram

Karen Bradshaw
3rd November 2009

RHODES UNIVERSITY

Where leaders learn

sponsore d by ’\
COMVERSE T amatole

Heip (&
Ttellabs signt deas 3

openVOICE

>

>

>

>

>

>

>

Hydra in ¥ hour

An Opportunity

Why Python and CSP?
Alm

Approach

Framework

Results

Conclusions

An Opportunity

Desktop and Server CPUs have changed quite
considerably over the last few years

No longer a race for GHz
Shift to multi-core CPUs

Main drawback is the difficulty involved in writing
concurrent software able to make use of these parallel
CPUs

Performance gains aren’t automatic when adding more
cores

. Developers need to explicitly code concurrency into their
software to benefit from multiple processors

. Tools and frameworks are required to ease the process ﬁ;

Python 7

- Python is a good candidate for such a framework
- Powerful built-in data types
- Extensive and powerful libraries
— Supports multiple programming paradigms

- Increased use In scientific computing
SciPy, NumPy, BioPython

- Suffers from some concurrency limitations
- Global Interpreter Lock — single thread at a time
- Affects modules based on Python’s threading module
- Multiple Python interpreter processes can bypass this
- Co-ordinating multiple Python interpreters is tricky

a(‘a r
\I_)
\/\) a

Message-passing model good start

CSP provides key constructs for developing programs
based on the message-passing

Several CSP implementations exist for modern
languages such as Java and C/C++

CSP implementation for Python, PyCSP, is limited by
the GIL (newer versions address this)

Current CSP implementations require the programmer
to convert CSP algorithm into the appropriate form

I 20
- Investigate the feasiblility of a concurrent
framework for Python that overcomes the GIL
based on the original CSP notation

» Develop prototype framework that:

- provides concurrent programming functionality for
Python based on CSP constructs

- properly harnesses power of multi-processor
systems

- provides a high level approach instead of requiring
that CSP algorithms be manually converted

Approach

» ldentify or develop suitable grammar
» Select a suitable compiler generator

» ldentify suitable existing libraries to form the
pase of the framework

» Develop the parser and code generator for the
grammar

» Basic testing

Ao

» Grammar was developed as a modified version
I of the original CSP notation

Approacn - Grammar

» Novel syntax chosen over an existing machine
readable syntax such as that used by FDR

- Can keep the language small — prototype
- Allows for the incorporation of Python expressions

- Reduce parser complexity

Approacn - Grammar

- Number of modifications required

I - Process construct uses [[instead of [to avoid
ambiguity with the Alternative construct.

- Inclusion of Python import statements at the start of
the program: _include{import time}

- Expression handling removed in favour of having
Python interpret the expressions as Python code,

anything within { }
e ;
A

5

(oY

2

Approacn - Librar)

(D

(

- PYRO - Python Remote Objects

- Powerful library for distributed Python objects with easy access
- Handles the network communication between objects
- Used as CSP style channels for inter-process communication

> PyCSP

Python module that provides a number of CSP constructs
- Channels can be created as PYRO objects
- Process and Parallel implemented using Python threads

- However, newer versions (v0.6) create Processes as OS
processes and network processes

Ao

I L CSP Code
E:'sp algorithm] o

Tokens ;
AST
-
String Templates Python Code

Approach — Compiler Design

Hydra
Program

A A a e

core 0 core 1

11 Hydra: a Python Framework for Parallel Computing

I Framework — Using Hydra

- Include the csp module from the Hydra package in
Python program

- Write Hydra CSP code in a triple-quoted Python string
or read It into a string from a file

- Call the cspexec method with the string as an
argument

from Hydra.csp import cspexec
code ="""[|
prod ::
data : integer;
data := 4;
L ™

cspexec(code, progname='simple’)

I > Parallel construct

Framework - Implementation

- Defines the concurrent architecture of the program
- Takes a list of processes to be executed in parallel

- During execution, these processes are spawned
asynchronously and may execute in parallel

> Drawbacks

- Spawning a Python interpreter for every parallel process is
not viable

- Only the top-level parallel processes run in separate VMs
and nested parallel processes use Python’s threading library

Ao

» | / O commands define the channels of
I communication (and synchronisation)

Framework - Communication

» Channels are implemented as remote PyCSP
channel objects using PYRO
- Named according to source and destination processes

- Carefully tracked and recorded
- Registered with PYRO nameserver before execution

» | / O commands generate simple read / write
method calls on appropriate Channel objects

Ao

Frameworg — Hydra CSP

> Process construct
- Represented as a PyCSP Process for simplicity
- Care taken to retrieve relevant Channel objects from PYRO
- Need to handle definition of anonymous CSP processes

> Flow control

- Repetitive, alternative and guarded statements implemented
using appropriately constructed Python while and if-else
statements

- Input guards are implemented using PyCSP's Alternative
class and the priSelect() method and can be mixed with

boolean guards
f";
A

Framework - Bootstrapping

Hydra CSP-based program defined as a Python file

PyCSP's network channel functionality requires
channels to be registered with PYRO

Processes asynchronously executed by %:)awnin a
new Python interpreter using a loop and Python threads
(process started by passing its name as a cmdline
argument).

The cspexec method then waits for the Processes to
finish executing and allows the user to view the results

before ending the program.

17

The Framework

Hydra CSP
Frogram

A

Main Py Process

A
RO | N

Hydra.csp
Converted - SR
: cspexec(): Farser and
Program in * Parseprogram | Code
Python * Generate Python code
* Register channels Generator
-ll * Execufe processes

Process 1 Process 2 Process 3 Process 4

Hydra: a Python Framework for Parallel Computing

Results

(D

- Prototype for investigating use of CSP within Python

Performance was not considered

Use of Python expressions and statements embedded in CSP
By no means rigorous testing (correctness and communication)
Focus on multiprocessor execution in Python

Execution observed using operating system's process and CPU load
monitoring tools

Simple producer-consumer program running in an infinite loop
performing numerous mathematical operations

« Processes

Four Python processes were spawned for this example

- Average CPU loads over program execution.

CPU Core 1: 83% ﬁ
CPU Core 2: 79% ﬁ

19

Results - Sample Hydra
program

from Hydra.csp import cspexec
prodcons = """
_include{from time import time}

[l

producer ::
X :integer; x:=1,;
*

{x <= 10000} -> {print "prod: x =" + str(x)};
consumer ! x; x := {time()};
I
|

consumer ::

-- code omitted

;™

cspexec(prodcons, progname="prodcons’)

Hydra: a Python Framework for Parallel Computing

Ao

Results — Python conversion

import sys
from pycsp import *
from pycsp.plugNplay import *
from pycsp.net import *
from time import time
def __ program(_proc_):
@process
def producer():
__procname = 'producer’
__chan_consumer_out = getNamedChannel("producer->consumer")

X = None
x=1
__letrl_1 =True
while(__lctrl_1):
if False:
pass
elif x <= 10000:
print "prod: " + str(x)
__chan_consumer_out.write(x)
X =time()
else:

__lectrl_1 = False

@process
def consumer():
code omitted

20 Hydra: a Python Framework for Parallel Computing

Cconclusions

Is possible to convert a CSP algorithm
Into suitably concurrent Python code
using the chosen approach and tools

- Conversion process Is automatic — easier for
non-programmers

- More flexible than standard CSP as Python
expressions and functionality can be used

- Parallel execution is possible
e ;
o

22

Questions?

Hydra: a Python Framework for Parallel Computing

