
HydraHydra:: a Python Framework a Python Framework
for Parallel Computingfor Parallel Computing

Waide Tristram
Karen Bradshaw

3rd November 2009

 An Opportunity
 Why Python and CSP?
 Aim
 Approach
 Framework
 Results
 Conclusions

Hydra in Hydra in ½½ hourhour

2 Hydra: a Python Framework for Parallel Computing

 Desktop and Server CPUs have changed quite
considerably over the last few years

 No longer a race for GHz
 Shift to multi-core CPUs
 Main drawback is the difficulty involved in writing

concurrent software able to make use of these parallel
CPUs

 Performance gains aren’t automatic when adding more
cores
 Developers need to explicitly code concurrency into their

software to benefit from multiple processors
 Tools and frameworks are required to ease the process

An OpportunityAn Opportunity

3 Hydra: a Python Framework for Parallel Computing

Python ?Python ?

 Python is a good candidate for such a framework
 Powerful built-in data types
 Extensive and powerful libraries
 Supports multiple programming paradigms
 Increased use in scientific computing

SciPy, NumPy, BioPython

 Suffers from some concurrency limitations
 Global Interpreter Lock – single thread at a time
 Affects modules based on Python’s threading module
 Multiple Python interpreter processes can bypass this
 Co-ordinating multiple Python interpreters is tricky

4 Hydra: a Python Framework for Parallel Computing

CSP ?CSP ?

 Message-passing model good start
 CSP provides key constructs for developing programs

based on the message-passing
 Several CSP implementations exist for modern

languages such as Java and C/C++
 CSP implementation for Python, PyCSP, is limited by

the GIL (newer versions address this)
 Current CSP implementations require the programmer

to convert CSP algorithm into the appropriate form

5 Hydra: a Python Framework for Parallel Computing

SoSo

 Investigate the feasibility of a concurrent
framework for Python that overcomes the GIL
based on the original CSP notation

 Develop prototype framework that:
 provides concurrent programming functionality for

Python based on CSP constructs
 properly harnesses power of multi-processor

systems
 provides a high level approach instead of requiring

that CSP algorithms be manually converted

6 Hydra: a Python Framework for Parallel Computing

ApproachApproach

 Identify or develop suitable grammar
 Select a suitable compiler generator
 Identify suitable existing libraries to form the

base of the framework
 Develop the parser and code generator for the

grammar
 Basic testing

7 Hydra: a Python Framework for Parallel Computing

Approach Approach -- GrammarGrammar

 Grammar was developed as a modified version
of the original CSP notation

 Novel syntax chosen over an existing machine
readable syntax such as that used by FDR

 Can keep the language small – prototype
 Allows for the incorporation of Python expressions
 Reduce parser complexity

8 Hydra: a Python Framework for Parallel Computing

Approach Approach -- GrammarGrammar

 Number of modifications required

 Process construct uses [[instead of [to avoid
ambiguity with the Alternative construct.

 Inclusion of Python import statements at the start of
the program: _include{import time}

 Expression handling removed in favour of having
Python interpret the expressions as Python code;
anything within { }

9 Hydra: a Python Framework for Parallel Computing

Approach Approach -- LibrariesLibraries

 PYRO – Python Remote Objects
 Powerful library for distributed Python objects with easy access
 Handles the network communication between objects
 Used as CSP style channels for inter-process communication

 PyCSP
 Python module that provides a number of CSP constructs
 Channels can be created as PYRO objects
 Process and Parallel implemented using Python threads

 However, newer versions (v0.6) create Processes as OS
processes and network processes

10 Hydra: a Python Framework for Parallel Computing

Approach Approach –– Compiler DesignCompiler Design

11 Hydra: a Python Framework for Parallel Computing

Framework Framework –– Using HydraUsing Hydra

 Include the csp module from the Hydra package in
Python program

 Write Hydra CSP code in a triple-quoted Python string
or read it into a string from a file

 Call the cspexec method with the string as an
argument

from Hydra.csp import cspexec
code = """[[

prod ::
data : integer;
data := 4;

]]; """
cspexec(code, progname='simple')

12 Hydra: a Python Framework for Parallel Computing

Framework Framework -- ImplementationImplementation

 Parallel construct
 Defines the concurrent architecture of the program
 Takes a list of processes to be executed in parallel
 During execution, these processes are spawned

asynchronously and may execute in parallel

 Drawbacks
 Spawning a Python interpreter for every parallel process is

not viable
 Only the top-level parallel processes run in separate VMs

and nested parallel processes use Python’s threading library

1313 Hydra: a Python Framework for Parallel Computing

Framework Framework -- CommunicationCommunication

 I / O commands define the channels of
communication (and synchronisation)

 Channels are implemented as remote PyCSP
channel objects using PYRO

 Named according to source and destination processes
 Carefully tracked and recorded
 Registered with PYRO nameserver before execution

 I / O commands generate simple read / write
method calls on appropriate Channel objects

1414 Hydra: a Python Framework for Parallel Computing

Framework Framework –– Hydra CSPHydra CSP

 Process construct
 Represented as a PyCSP Process for simplicity
 Care taken to retrieve relevant Channel objects from PYRO
 Need to handle definition of anonymous CSP processes

 Flow control
 Repetitive, alternative and guarded statements implemented

using appropriately constructed Python while and if-else
statements

 Input guards are implemented using PyCSP's Alternative
class and the priSelect() method and can be mixed with
boolean guards

1515 Hydra: a Python Framework for Parallel Computing

Framework Framework -- BootstrappingBootstrapping

 Hydra CSP-based program defined as a Python file

 PyCSP's network channel functionality requires
channels to be registered with PYRO

 Processes asynchronously executed by spawning a
new Python interpreter using a loop and Python threads
(process started by passing its name as a cmdline
argument).

 The cspexec method then waits for the Processes to
finish executing and allows the user to view the results
before ending the program.

1616 Hydra: a Python Framework for Parallel Computing

The FrameworkThe Framework

17 Hydra: a Python Framework for Parallel Computing

ResultsResults

 Prototype for investigating use of CSP within Python
 Performance was not considered
 Use of Python expressions and statements embedded in CSP
 By no means rigorous testing (correctness and communication)
 Focus on multiprocessor execution in Python
 Execution observed using operating system's process and CPU load

monitoring tools
 Simple producer-consumer program running in an infinite loop

performing numerous mathematical operations

• Processes
 Four Python processes were spawned for this example
 Average CPU loads over program execution.

CPU Core 1: 83%
CPU Core 2: 79%

1818 Hydra: a Python Framework for Parallel Computing

Results Results -- Sample Hydra Sample Hydra
programprogram

from Hydra.csp import cspexec
prodcons = """
_include{from time import time}

[[
producer ::

x : integer; x := 1;
*[

{x <= 10000} -> {print "prod: x = " + str(x)};
consumer ! x; x := {time()};

];
||

consumer ::
-- code omitted

]]; """
cspexec(prodcons, progname='prodcons')

19 Hydra: a Python Framework for Parallel Computing

Results Results –– Python conversionPython conversion
import sys
from pycsp import *
from pycsp.plugNplay import *
from pycsp.net import *
from time import time
def __program(_proc_):

@process
def producer():

__procname = 'producer'
__chan_consumer_out = getNamedChannel("producer->consumer")
x = None
x = 1
__lctrl_1 = True
while(__lctrl_1):

if False:
pass

elif x <= 10000:
print "prod: " + str(x)
__chan_consumer_out.write(x)
x = time()

else:
__lctrl_1 = False

@process
def consumer():

code omitted
20 Hydra: a Python Framework for Parallel Computing

ConclusionsConclusions

Is possible to convert a CSP algorithm
into suitably concurrent Python code
using the chosen approach and tools

 Conversion process is automatic – easier for
non-programmers

 More flexible than standard CSP as Python
expressions and functionality can be used

 Parallel execution is possible

21 Hydra: a Python Framework for Parallel Computing

Questions?Questions?

22 Hydra: a Python Framework for Parallel Computing

